Recent Advances and Challenges in Machine Learning Representations of Molecules

Julien Mairal

Inria Grenoble

stablished by the European Commission

Julien Mairal

Machine Learning Representations of Molecules

My team at Inria Who are we?

Julien Mairal

Machine Learning Representations of Molecules

• Statistical machine learning and optimization

- Statistical machine learning and optimization
- Representation learning of images.

- Statistical machine learning and optimization
- Representation learning of images.
- Machine learning for science (pluri-disciplinary collaborations)
 - scientific imaging (ex: exoplanet detection, molecular microscopy).
 - Earth observation (remote sensing).

- Statistical machine learning and optimization
- Representation learning of images.
- Machine learning for science (pluri-disciplinary collaborations)
 - scientific imaging (ex: exoplanet detection, molecular microscopy).
 - Earth observation (remote sensing).
 - Graph representations for material science and computational biology.

Representation learning for molecules

Representation learning for molecules

Representation learning for molecules

This talk:

A story that has been very successful in computer vision to learn generic image representations φ(x), trained on a large corpus of images with no annotations.
 What are the opportunities/difficulties for chemistry?

This talk:

- A story that has been very successful in computer vision to learn generic image representations φ(x), trained on a large corpus of images with no annotations.
 What are the opportunities/difficulties for chemistry?
- A very short survey of classical graph representations in machine learning. What are the current challenges?

What is supervised learning?

The goal is to learn a prediction function $f : \mathcal{X} \to \mathcal{Y}$ given labeled training data $(x_i, y_i)_{i=1,\dots,n}$ with x_i in \mathcal{X} , and y_i in \mathcal{Y} :

What is representation learning?

What is representation learning?

Handcrafted representations (encoder is predefined)

- traditional representations based on domain knoweldge (e.g., SIFT [Lowe, 2004]).
- the predictor is typically linear $f(x) = W\varphi(x)$.
- $\varphi(x)$ may be very high-dimensional (reasonable expressiveness).

What is representation learning?

Learned representations with neural networks

- the encoder's architecture is adapted to images (e.g., convolutional neural networks).
- the predictor is often simple (linear model or multilayer perceptron).
- for more complex tasks, the predictor is also **adapted to the output structure** (*e.g.*, U-Net decoder for semantic segmentation in images).

What is self-supervised learning?

Tentative definition and remarks

- learning "good" representations $\varphi(x)$ with prediction tasks in mind, but...
- without having access to any label y (unsupervised learning).
- achieved by finding supervisory signals within the data and/or with pretext tasks.

What is self-supervised learning?

Multiple purposes

- finding representations for learning simple predictors when annotations are scarce.
- harnessing information from massive unannotated databases.
- finding **generic** representations that perform well on all visual recognition tasks (foundation models).

from SwAV to DINO with self-distillation

I want to solve task A but I do not have (much) annotated data.

I want to solve task A but I do not have (much) annotated data.

Perhaps a representation $\varphi(x)$ that is good for task B will also be good for task A?

Example: Spatial context prediction Picture courtesy of Doersch et al. [2015]

Example: Spatial context prediction Picture courtesy of Noroozi and Favaro [2016]

Example: Masked auto-encoders (also context prediction) Picture courtesy of He et al. [2022]

• inspired from masked language modeling [Devlin et al., 2018], revolution in NLP.

Your turn: which pretext tasks for molecular representations?

Your turn: which pretext tasks for molecular representations? Picture courtesy of Hu et al. [2019].

First idea: a good representation φ should be useful for context prediction tasks

Your turn: which pretext tasks for molecular representations? Picture courtesy of Rong et al. [2020].

First idea: a good representation φ should be useful for context prediction tasks

Back to computer vision: Harnessing data augmentation Picture courtesy of Dosovitskiy et al. [2014]

Use data augmentation to create "classes" around each sample.

Harnessing data augmentation and contrastive learning SimCLR, Picture courtesy of Chen et al. [2020]

Second idea: a good representation φ should make augmented views of the same image closer and push apart different images.

$$\ell_{i,j} = -\log\left(\frac{e^{\mathsf{sim}(\mathbf{z}_i, \mathbf{z}_j)}}{\sum_{i \neq k} e^{\mathsf{sim}(\mathbf{z}_i, \mathbf{z}_k)}}\right)$$

• trained online with large batch sizes.

• strong data augmentation.

Harnessing data augmentation and contrastive learning SimCLR, Picture courtesy of Chen et al. [2020]

Uncovering hidden structures in images: DeepCluster Picture courtesy of Caron et al. [2018]

Third idea: a good representation φ should uncover data clusters.

Clustering, contrastive learning, and context prediction: SwAV Picture courtesy of Caron, Misra, Mairal, Goyal, Bojanowski, and Joulin [2020]

Recipe

- clustering: prototypes \approx centroids. Trivial solutions avoided by optimal transport.
- contrastive learning with data augmentation but no explicit negative pairs.
- context prediction: predicting global crops from local crops (multicrop).

Clustering, contrastive learning, and context prediction: SwAV

Clustering, contrastive learning, and context prediction: SwAV Picture courtesy of Caron, Misra, Mairal, Goyal, Bojanowski, and Joulin [2020]

A foundation model for images: DINOv2

- DINO: a more recent model with self-distillation [Caron et al., 2021];
- DINOv2: foundation model trained well-engineered data [Oquab et al., 2024].

Opportunities/challenges for molecular representation

What would be a foundation model for molecules/materials?

() Which **model architecture**? (see second part of this talk).

Opportunities/challenges for molecular representation

What would be a foundation model for molecules/materials?

- **(1)** Which model architecture? (see second part of this talk).
- Which learning algorithm? Should we follow the self-supervised computer vision recipe? How to design data augmentation strategies?
Opportunities/challenges for molecular representation

What would be a foundation model for molecules/materials?

- Which model architecture? (see second part of this talk).
- Which learning algorithm? Should we follow the self-supervised computer vision recipe? How to design data augmentation strategies?
- What for? What are the downstream tasks of interest?

Opportunities/challenges for molecular representation

What would be a foundation model for molecules/materials?

- Which model architecture? (see second part of this talk).
- Which learning algorithm? Should we follow the self-supervised computer vision recipe? How to design data augmentation strategies?
- What for? What are the downstream tasks of interest?
- O How to engineer a good dataset?

Part II: A few machine learning models for molecules

Part II: A few machine learning models for molecules

Part II: A few deep learning models for graphs

Molecular Graphs for Deep Learning Models

Ex: ZINC or OGB datasets

- Nodes are *atoms*, edges are *bonds*.
- Node features can be atom-type, spatial position, ...
- Edge features are bond types (*single, double, triple*).

Learning graph representations

Input G

- Expressiveness: Find a representation (vector) that is able to discriminate graphs with different structures (distinguish non-isomorphic graphs as best as possible).
- Tractability: The representation should be efficiently computable on modern hardware.
- Learnable: One should be able to adapt the representation to the task and to the data.
- Taking into account physics: long-range potentials, 3D geometry, symmetries...

Graphs with node attributes

We consider graphs G = (V, E, a) where V and E are the sets of vertices and edges,
and a : V → ℝ^p is a function assigning attributes to each node.

Classical (non-deep) graph representations

Map each graph G to a vector φ(G) in ℝ^p, which lends itself to learning tasks.
A large class of kernel mappings can be written in the form

$$\varphi(G) := \sum_{u \in \mathcal{V}} \varphi_{\mathsf{base}}(\ell_G(u)) \quad \text{where } \varphi_{\mathsf{base}} \text{ embeds some local patterns } \ell_G(u) \text{ to } \mathbb{R}^p.$$

[Shervashidze et al., 2011, Lei et al., 2017, Kriege et al., 2019]

Classical (non-deep) graph representations

Find a high-dimensional representation $\varphi(G)$ for which we can efficiently compute

 $K(G,G') = \langle \varphi(G), \varphi(G') \rangle.$

There is a very rich literature about graph kernels performing (implicitly or explicitly) substructure enumeration.

- subgraphs and path kernels (NP-hard, [Gärtner et al., 2003]).
- walk kernels [Kashima et al., 2003, Mahé et al., 2004].
- shortest-path kernels [Borgwardt and Kriegel, 2005].
- graphlets kernels [Shervashidze et al., 2009].
- Weisfeiler-Lehman kernel [Shervashidze et al., 2011].

Classical (non-deep) graph representations

Find a high-dimensional representation $\varphi(G)$ for which we can efficiently compute

 $K(G, G') = \langle \varphi(G), \varphi(G') \rangle.$

There is a very rich literature about graph kernels performing (implicitly or explicitly) substructure enumeration.

 $\begin{array}{c} (A) & (A) \\ (B) & (A) \\ (B) & (A) \\ (A) & (A) \\ (A) & (A) \\ (B) & (B) \\ (B) & (B)$

For a review, see the course material

• https://mva-kernel-methods.github.io/course-2023-2024/

Graph neural networks with message passing

- a multi-layer representation: for each node u and layer k, we store a vector $\varphi_k(u)$.
- by increasing k, $\varphi_k(u)$ contains information about a larger neighborhood.
- final graph representation is obtained by pooling $\varphi(G) = \sum_{u \in V} \varphi_K(u) \in \mathbb{R}^p$.

Graph neural networks with message passing

• Layer k is built from layer k-1 by message passing

$$\begin{split} \varphi_k(u) &= \mathsf{Process}(\varphi_{k-1}(u), \{\varphi_{k-1}(v) : v \in \mathcal{N}(u)\}) \\ &= \sum_{v \in \mathcal{N}(u) \cup u} \mathsf{ReLU}(Z_k^\top \varphi_{k-1}(v)) \quad \text{(for example)} \end{split}$$

• There are many, many variants (e.g., GCN [Kipf and Welling, 2017]).

Graph transformers

- G. Mialon, D. Chen, M. Selosse, and J. Mairal. GraphiT: Encoding Graph Structure in Transformers. *arXiv:2106.05667*. 2021.
- R. Menegaux, E. Jehanno, M. Selosse and J. Mairal. Self-Attention in Colors: Another Take on Encoding Graph Structure in Transformers. *TMLR*. 2023.

An example of GNN layer (GCN, Kipf and Welling, 2017)

$$\varphi_k(u) = \mathsf{ReLU}\left(Z_k^\top \left(\frac{1}{|\mathcal{N}(u)| + 1} \sum_{v \in \mathcal{N}(u) \cup u} \varphi_{k-1}(v)\right)\right).$$

An example of GNN layer (GCN, Kipf and Welling, 2017)

$$\varphi_k(u) = \operatorname{ReLU}\left(Z_k^{\top}\left(\frac{1}{|\mathcal{N}(u)| + 1}\sum_{v \in \mathcal{N}(u) \cup u}\varphi_{k-1}(v)\right)\right).$$

The basic transformer layer with self attention

$$\begin{split} \varphi_k(u) &= \mathsf{ReLU}\left(Z_k^\top \left(\varphi_{k-1}(u) + \sum_{v \in V} A_k[u,v]\varphi_{k-1}(u)\right)\right) \\ \text{with} \ A_k &= \mathsf{Softmax}\left(\frac{\varphi_{k-1}Q_k^\top K_k \varphi_{k-1}^\top}{\sqrt{d}}\right). \end{split}$$

(Note that a classical residual connection has been removed for simplicity).

The basic transformer layer with self attention

$$\begin{split} \varphi_k(u) &= \mathsf{ReLU}\left(Z_k^\top \left(\varphi_{k-1}(u) + \sum_{v \in V} A_k[u,v]\varphi_{k-1}(u)\right)\right) \\ & \text{with} \ A_k = \mathsf{Softmax}\left(\frac{\varphi_{k-1}Q_k^\top K_k \varphi_{k-1}^\top}{\sqrt{d}}\right). \end{split}$$

The basic transformer layer with self attention

$$\begin{split} \varphi_k(u) &= \mathsf{ReLU}\left(Z_k^\top \left(\varphi_{k-1}(u) + \sum_{v \in V} A_k[u,v]\varphi_{k-1}(u)\right)\right) \\ & \text{with} \ A_k = \mathsf{Softmax}\left(\frac{\varphi_{k-1}Q_k^\top K_k \varphi_{k-1}^\top}{\sqrt{d}}\right). \end{split}$$

Challenges

- How to encode the graph structure? (note that if we multiply elementwise the attention matrix by the adjacency matrix, we are back to message passing)
- How to take into account edge features?

Graph transformers: recipes

How to take into account edge features?

• treat edge features as node features with additional variables $E_k(u, v)$ undergoing "similar" updates.

Local structure encoding

• Enrich input features. A successful feature is based on the diagonals of random walk kernels

$$p(u) = [RW_{uu}, \dots, RW_{uu}^p]$$

where RW_{uu}^p probability for a p-step random walk to loop back to node u:

[Dwivedi and Bresson, 2020, Rampášek et al., 2022, Lim et al., 2022]

Graph transformers: recipes

Modulate the attention matrix with relative positional encoding

• Graphormer computes an average of the dot-products of edge feature and a learnable embedding along shortest paths

$$A = \operatorname{Softmax}\left(\frac{f_{k-1}W_Q^\top W_K f_{k-1}^\top}{\sqrt{d}} + B_k^{\operatorname{shortest-paths}}\right).$$

• GraphiT weights the attention with a diffusion kernel. This captures both short-range and long-range graph topology

$$A = \text{Normalize}\left(\mathsf{Exp}\left(\frac{f_{k-1}W_Q^\top W_K f_{k-1}^\top}{\sqrt{d}}\right) \circ K_\sigma\right).$$

[Ying et al., 2021, Mialon et al., 2021]

Graph transformers: recipes

Modulate the attention matrix with relative positional encoding

- GraphiT uses a hard-coded kernel and does not include edge features in the attention.
- CSA first enriches original edge features with random walks kernels:

$$E_{uv}^{\mathsf{rw}} = [RW_{uv}, \dots, RW_{uv}^p]$$

and then learns how to exploit these features to modulate the attention matrix

$$A = \operatorname{Softmax}\left(\frac{f_{k-1}W_Q^\top W_K f_{k-1}^\top}{\sqrt{d}} + W_E^\top E_{k-1}\right).$$

Additional tricks

• introduce features for structures that are known to be useful (carbon rings).

[Menegaux et al., 2023]

All of this summarized in a pretty picture

Visualizing self attention

Benchmarks

	Model	ZINC MAE↓	(12k graphs)
MPNN	GCN (Kipf & Welling, 2017) GatedGCN (Dwivedi et al., 2022a) GPS (Rampášek et al., 2022)	$egin{array}{l} 0.367 \pm 0.011 \ 0.090 \pm 0.001 \ 0.070 \pm 0.004 \end{array}$	
NNAM-4	CIN (Bodnar et al., 2021a) CRaWL (Toenshoff et al., 2021) GIN-AK+ (Zhao et al., 2022)	0.079 ± 0.006 0.085 ± 0.004 0.080 ± 0.001	
Transformers	SAN (Kreuzer et al., 2021) Graphormer (Ying et al., 2021) SAT (Chen et al., 2022) EGT (Hussain et al., 2022) GRPE (Park et al., 2022)	$\begin{array}{c} 0.139 \pm 0.006 \\ 0.122 \pm 0.006 \\ 0.094 \pm 0.008 \\ 0.108 \pm 0.009 \\ 0.094 \pm 0.002 \end{array}$	
	CSA (ours) CSA-rings (ours)	$\begin{array}{c} 0.070 \pm 0.003 \\ 0.056 \pm 0.002 \end{array}$	

Benchmarks

-

	Modol	PCQM4Mv2 (4M gr	
wiodei		Validation MAE \downarrow	# Param.
NNAM	GCN	0.1379	2.0M
	GCN-virtual	0.1153	4.9M
	GIN	0.1195	3.8M
	GIN-virtual	0.1083	6.7M
s	Graphormer	0.0864	48.3M
mer	EGT	0.0869	89.3M
for	GRPE	0.0890	46.2M
ans	GPS-small	0.0938	6.2M
Ţ	GPS-medium	0.0858	19.4M
	CSA-small (ours)	0.0898	2.8M
	CSA-deep (ours)	0.0853	8.3M

Physics and Geometry

Challenges (not addressed in this presentation)

- Is there another structure within the graph? (e.g., chain of amino acids for proteins).
- Is the graph part of a larger structure (crystallography)?
- Does the representation model the right symmetries and inv/equivariances?
- Is the graph construction satisfactory? What about long-range interactions?

Recap: graph representations with deep learning

Graph neural networks with message passing

- multi-layer construction.
- sequence of local operations.
- limited expressivity [Xu et al., 2019].

Graph transformers

- non-local operations with attention.
- how to encode the graph structure?

For a detailed review, see

- graph neural networks for 3D atomic systems: [Duval et al., 2023].
- survey on graph transformers: [Müller et al., 2023].
- course material from Xavier Bresson https://lnkd.in/dZZWay3Z.

Bonus: Relation between Weisfeler-Lehman and graph neural networks

Consider a graph G = (V, E, a) with discrete labels $l_0(u) = a(u)$ at each vertex u.

- This is a multi-layer construction producing new labels $l_k(u)$ for each vertex at layer k.
- A label $l_k(u)$ represents $(l_{k-1}(u), \{l_{k-1}(v) : v \in \mathcal{N}(u)\}).$
- Based on the graph isomorphism test of Weisfeiler and Lehman, 1968.

Pictures courtesy of Shervashidze et al. [2011].

Consider a graph G = (V, E, a) with discrete labels $l_0(u) = a(u)$ at each vertex u.

- This is a multi-layer construction producing new labels $l_k(u)$ for each vertex at layer k.
- A label $l_k(u)$ represents $(l_{k-1}(u), \{l_{k-1}(v) : v \in \mathcal{N}(u)\})$.
- Based on the graph isomorphism test of Weisfeiler and Lehman, 1968.

Pictures courtesy of Shervashidze et al. [2011].

- The final representation is a histogram of label occurences.
- Extensions with substructure enumeration.

Pictures courtesy of Shervashidze et al. [2011].

Given a graph G = (V, E, a) with discrete labels $l_0(u) = a(u)$ in \mathcal{A}_0 for all u in V.

The Weisfeiler-Lehmann kernel representation

- Representation at layer k: Label $l_k(u) \in \mathcal{A}_k$ for all u in V.
- Construction of layer k (message passing):

$$l_k(u) = \mathsf{Relabel}(l_{k-1}(u), \{l_{k-1}(v) : v \in \mathcal{N}(u)\}).$$

• Last layer representation with global aggregation:

$$\varphi_{\mathsf{WL}}(G) = \sum_{v \in V} \mathsf{one-hot-encoding}(l_K(u)) \in \mathbb{R}^{|\mathcal{A}|}.$$

Principles of graph neural networks with message passing

Given a graph G = (V, E, a) with continous attributes $\varphi_0(u) = a(u)$ in \mathbb{R}^{p_0} for all u in V.

Canonical form of message passing architecture

- Representation at layer k: $\varphi_k(u) \in \mathbb{R}^{p_k}$ for all u in V.
- Construction of layer k (message passing):

$$\begin{split} \varphi_k(u) &= \mathsf{Process}(\varphi_{k-1}(u), \{\varphi_{k-1}(v) : v \in \mathcal{N}(u)\}) \\ &= \sum_{v \in \mathcal{N}(u) \cup u} \mathsf{ReLU}(Z_k^\top \varphi_{k-1}(v)) \quad \text{(for example)} \end{split}$$

• Last layer representation with global pooling:

$$\varphi_{\mathsf{GNN}}(G) = \sum_{v \in V} \varphi_L(u) \in \mathbb{R}^{p_K}.$$

References I

- Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In *Fifth IEEE international conference on data mining (ICDM'05)*, pages 8–pp. IEEE, 2005.
- Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsupervised learning of visual features. In *Proceedings of the European conference on computer vision (ECCV)*, 2018.
- Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsupervised learning of visual features by contrasting cluster assignments. *Advances in neural information processing systems*, 2020.
- Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the IEEE/CVF international conference on computer vision*, 2021.
- Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In *International conference on machine learning*, 2020.

References II

- Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.
- Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning by context prediction. In *CVPR*, 2015.
- Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox. Discriminative unsupervised feature learning with convolutional neural networks. *Advances in neural information processing systems*, 2014.
- Alexandre Duval, Simon V Mathis, Chaitanya K Joshi, Victor Schmidt, Santiago Miret, Fragkiskos D Malliaros, Taco Cohen, Pietro Lio, Yoshua Bengio, and Michael Bronstein. A hitchhiker's guide to geometric gnns for 3d atomic systems. arXiv preprint arXiv:2312.07511, 2023.
- VP Dwivedi and X Bresson. A generalization of transformer networks to graphs. arxiv. arXiv preprint arXiv:2012.09699, 2020.
- Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient alternatives. In *COLT*, pages 129–143. Springer, 2003.

References III

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable vision learners. In *CVPR*, 2022.

- Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec. Strategies for pre-training graph neural networks. *arXiv preprint arXiv:1905.12265*, 2019.
- Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. Marginalized kernels between labeled graphs. In *Proceedings of the 20th international conference on machine learning (ICML-03)*, pages 321–328, 2003.
- Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2017.
- Nils M Kriege, Marion Neumann, Christopher Morris, Kristian Kersting, and Petra Mutzel. A unifying view of explicit and implicit feature maps of graph kernels. *Data Mining and Knowledge Discovery*, 33(6):1505–1547, 2019.
- Tao Lei, Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Deriving neural architectures from sequence and graph kernels. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2017.
References IV

- Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation learning. *arXiv* preprint arXiv:2202.13013, 2022.
- David G Lowe. Distinctive image features from scale-invariant keypoints. *International journal of computer vision*, 60:91–110, 2004.
- Pierre Mahé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and Jean-Philippe Vert. Extensions of marginalized graph kernels. In *Proceedings of the twenty-first international conference on Machine learning*, page 70, 2004.
- Romain Menegaux, Emmanuel Jehanno, Margot Selosse, and Julien Mairal. Self-attention in colors: Another take on encoding graph structure in transformers. *Transactions on Machine Learning Research (TMLR)*, 2023.
- Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph structure in transformers. *arXiv preprint arXiv:2106.05667*, 2021.
- Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to graph transformers. *arXiv preprint arXiv:2302.04181*, 2023.

References V

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw puzzles. In *Proceedings of the European Conference on Computer Vision (ECCV)*, 2016.

- Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual features without supervision. *TMLR*, 2024.
- Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. *Advances in Neural Information Processing Systems*, 35:14501–14515, 2022.
- Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang. Self-supervised graph transformer on large-scale molecular data. *Advances in Neural Information Processing Systems*, 33:12559–12571, 2020.
- Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt. Efficient graphlet kernels for large graph comparison. In *Artificial intelligence and statistics*, pages 488–495. PMLR, 2009.

References VI

- Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M Borgwardt. Weisfeiler-Lehman graph kernels. *Journal of Machine Learning Research (JMLR)*, 12: 2539–2561, 2011.
- Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2019.
- Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-Yan Liu. Do transformers really perform badly for graph representation? *Advances in Neural Information Processing Systems*, 34:28877–28888, 2021.