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My team at Inria: Who are we?
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Some of my research topics

Statistical machine learning and optimization

Representation learning of images.

Machine learning for science (pluri-disciplinary collaborations)
scientific imaging (ex: exoplanet detection, molecular microscopy).
Earth observation (remote sensing).
Graph representations for material science and computational biology.
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Representation learning for molecules

Input x

Encoder φ(x) ∈ Rp

Representation

Predictor
for Task 2

Predictor
for Task 3

Predictor
for Task 1

Output y2

Output y3

Output y1
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Representation learning for molecules

Input x

Encoder φ(x) ∈ Rp

Representation

Predictor
for Task 2

Predictor
for Task 3

Predictor
for Task 1

Output y2

Output y3

Output y1What is the right class of representations φ?

φ should be generic and perform well across tasks.

How to learn the parameters of these representations?

Annotations are costly. . .
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This talk:
1 A story that has been very successful in computer vision to learn generic image

representations φ(x), trained on a large corpus of images with no annotations.
What are the opportunities/difficulties for chemistry?

2 A very short survey of classical graph representations in machine learning.
What are the current challenges?
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What is supervised learning?

The goal is to learn a prediction function f : X → Y given labeled training data
(xi, yi)i=1,...,n with xi in X , and yi in Y:

min
f∈F

1

n

n∑
i=1

L(yi, f(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.
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What is representation learning?

Input x

Encoder φ(x)

Representation

Predictor Output y
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What is representation learning?

Input x

Encoder φ(x)

Representation

Predictor Output y

Handcrafted representations (encoder is predefined)

traditional representations based on domain knoweldge (e.g., SIFT [Lowe, 2004]).

the predictor is typically linear f(x) = Wφ(x).

φ(x) may be very high-dimensional (reasonable expressiveness).
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What is representation learning?

Input x

Encoder φ(x)

Representation

Predictor Output y

Learned representations with neural networks

the encoder’s architecture is adapted to images (e.g., convolutional neural networks).

the predictor is often simple (linear model or multilayer perceptron).

for more complex tasks, the predictor is also adapted to the output structure (e.g.,
U-Net decoder for semantic segmentation in images).
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What is self-supervised learning?

Input x

Encoder φ(x)

Representation

Predictor Output y

Tentative definition and remarks

learning “good” representations φ(x) with prediction tasks in mind, but. . .

without having access to any label y (unsupervised learning).

achieved by finding supervisory signals within the data and/or with pretext tasks.

Julien Mairal Machine Learning Representations of Molecules 8/44



What is self-supervised learning?

Input x

Encoder φ(x)

Representation

Predictor Output y

Multiple purposes

finding representations for learning simple predictors when annotations are scarce.

harnessing information from massive unannotated databases.

finding generic representations that perform well on all visual recognition tasks
(foundation models).
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from SwAV to DINO with self-distillation
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Pretext tasks?

I want to solve task A but I do not have (much) annotated data.

Perhaps a representation φ(x) that is good for task B
will also be good for task A?
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Example: Spatial context prediction
Picture courtesy of Doersch et al. [2015]
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Example: Spatial context prediction
Picture courtesy of Noroozi and Favaro [2016]

Julien Mairal Machine Learning Representations of Molecules 12/44



Example: Masked auto-encoders (also context prediction)
Picture courtesy of He et al. [2022]

inspired from masked language modeling [Devlin et al., 2018], revolution in NLP.
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Your turn: which pretext tasks for molecular representations?
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Your turn: which pretext tasks for molecular representations?
Picture courtesy of Hu et al. [2019].

First idea: a good representation φ should be useful for context prediction tasks
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Your turn: which pretext tasks for molecular representations?
Picture courtesy of Rong et al. [2020].

First idea: a good representation φ should be useful for context prediction tasks
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Back to computer vision: Harnessing data augmentation
Picture courtesy of Dosovitskiy et al. [2014]

Use data augmentation to create “classes” around each sample.
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Harnessing data augmentation and contrastive learning
SimCLR, Picture courtesy of Chen et al. [2020]

Second idea: a good representation φ should make augmented views
of the same image closer and push apart different images.

ℓi,j = − log

(
esim(zi,zj)∑
i ̸=k e

sim(zi,zk)

)
.

trained online with large batch sizes.

strong data augmentation.
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Harnessing data augmentation and contrastive learning
SimCLR, Picture courtesy of Chen et al. [2020]
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Uncovering hidden structures in images: DeepCluster
Picture courtesy of Caron et al. [2018]

Third idea: a good representation φ should uncover data clusters.
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Clustering, contrastive learning, and context prediction: SwAV
Picture courtesy of Caron, Misra, Mairal, Goyal, Bojanowski, and Joulin [2020]

Recipe

clustering: prototypes ≈ centroids. Trivial solutions avoided by optimal transport.

contrastive learning with data augmentation but no explicit negative pairs.

context prediction: predicting global crops from local crops (multicrop).
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Clustering, contrastive learning, and context prediction: SwAV
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Clustering, contrastive learning, and context prediction: SwAV
Picture courtesy of Caron, Misra, Mairal, Goyal, Bojanowski, and Joulin [2020]
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A foundation model for images: DINOv2

DINO: a more recent model with self-distillation [Caron et al., 2021];

DINOv2: foundation model trained well-engineered data [Oquab et al., 2024].
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Opportunities/challenges for molecular representation

What would be a foundation model for molecules/materials?

1 Which model architecture? (see second part of this talk).

2 Which learning algorithm? Should we follow the self-supervised computer vision
recipe? How to design data augmentation strategies?

3 What for? What are the downstream tasks of interest?

4 How to engineer a good dataset?
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Part II: A few machine learning models for molecules
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Part II: A few machine learning models for molecules
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Part II: A few deep learning models for graphs
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Molecular Graphs for Deep Learning Models

Ex: ZINC or OGB datasets

Nodes are atoms, edges are bonds.

Node features can be atom-type, spatial position, . . .

Edge features are bond types (single,double, triple).

Julien Mairal Machine Learning Representations of Molecules 27/44



Learning graph representations

Input G

Encoder φ(G) ∈ Rp

Representation

Expressiveness: Find a representation (vector) that is able to discriminate graphs with
different structures (distinguish non-isomorphic graphs as best as possible).

Tractability: The representation should be efficiently computable on modern hardware.

Learnable: One should be able to adapt the representation to the task and to the data.

Taking into account physics: long-range potentials, 3D geometry, symmetries. . .
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Graphs with node attributes

u

G = (V,E, a) with a : V → R3

a(u) = [0.3, 0.8, 0.5]

We consider graphs G = (V,E, a) where V and E are the sets of vertices and edges,

and a : V → Rp is a function assigning attributes to each node.
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Classical (non-deep) graph representations

The approach

1 Represent explicitly each graph x by a vector of fixed dimension
�(x) 2 Rp.

2 Use an algorithm for regression or pattern recognition in Rp.

φ
HX

410 / 666

Map each graph G to a vector φ(G) in Rp, which lends itself to learning tasks.

A large class of kernel mappings can be written in the form

φ(G) :=
∑
u∈V

φbase(ℓG(u)) where φbase embeds some local patterns ℓG(u) to Rp.

[Shervashidze et al., 2011, Lei et al., 2017, Kriege et al., 2019]
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Classical (non-deep) graph representations

Find a high-dimensional representation φ(G) for which we can efficiently compute

K(G,G′) = ⟨φ(G), φ(G′)⟩.

There is a very rich literature about
graph kernels performing (implicitly or
explicitly) substructure enumeration.

subgraphs and path kernels (NP-hard, [Gärtner et al., 2003]).

walk kernels [Kashima et al., 2003, Mahé et al., 2004].

shortest-path kernels [Borgwardt and Kriegel, 2005].

graphlets kernels [Shervashidze et al., 2009].

Weisfeiler-Lehman kernel [Shervashidze et al., 2011].
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Classical (non-deep) graph representations

Find a high-dimensional representation φ(G) for which we can efficiently compute

K(G,G′) = ⟨φ(G), φ(G′)⟩.

There is a very rich literature about
graph kernels performing (implicitly or
explicitly) substructure enumeration.

For a review, see the course material

https://mva-kernel-methods.github.io/course-2023-2024/
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Graph neural networks with message passing

u1

u3

u4u5 u2 u6
m24

m14

m34

a multi-layer representation: for each node u and layer k, we store a vector φk(u).

by increasing k, φk(u) contains information about a larger neighborhood.

final graph representation is obtained by pooling φ(G) =
∑

u∈V φK(u) ∈ Rp.
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Graph neural networks with message passing

u1

u3

u4u5 u2 u6
m24

m14

m34

Layer k is built from layer k − 1 by message passing

φk(u) = Process(φk−1(u), {φk−1(v) : v ∈ N (u)})
=

∑
v∈N (u)∪u

ReLU(Z⊤
k φk−1(v)) (for example)

There are many, many variants (e.g., GCN [Kipf and Welling, 2017]).
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Graph transformers

u1

u3

u4u5 u2 u6

G. Mialon, D. Chen, M. Selosse, and J. Mairal. GraphiT: Encoding Graph Structure in
Transformers. arXiv:2106.05667. 2021.

R. Menegaux, E. Jehanno, M. Selosse and J. Mairal. Self-Attention in Colors: Another
Take on Encoding Graph Structure in Transformers. TMLR. 2023.
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From GNNs to Graph transformers

An example of GNN layer (GCN, Kipf and Welling, 2017)

φk(u) = ReLU

Z⊤
k

 1

|N (u)|+ 1

∑
v∈N (u)∪u

φk−1(v)

 .

The basic transformer layer with self attention

φk(u) = ReLU

(
Z⊤
k

(
φk−1(u) +

∑
v∈V

Ak[u, v]φk−1(u)

))

with Ak = Softmax

(
φk−1Q

⊤
k Kkφ

⊤
k−1√

d

)
.

(Note that a classical residual connection has been removed for simplicity).
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From GNNs to Graph transformers

The basic transformer layer with self attention

φk(u) = ReLU

(
Z⊤
k

(
φk−1(u) +

∑
v∈V

Ak[u, v]φk−1(u)

))

with Ak = Softmax

(
φk−1Q

⊤
k Kkφ

⊤
k−1√

d

)
.

u1

u3

u4u5 u2 u6
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From GNNs to Graph transformers

The basic transformer layer with self attention

φk(u) = ReLU

(
Z⊤
k

(
φk−1(u) +

∑
v∈V

Ak[u, v]φk−1(u)

))

with Ak = Softmax

(
φk−1Q

⊤
k Kkφ

⊤
k−1√

d

)
.

Challenges

How to encode the graph structure? (note that if we multiply elementwise the
attention matrix by the adjacency matrix, we are back to message passing)

How to take into account edge features?
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Graph transformers: recipes

How to take into account edge features?

treat edge features as node features with additional variables Ek(u, v) undergoing
“similar” updates.

Local structure encoding

Enrich input features. A successful feature is based on the diagonals of random walk
kernels

p(u) = [RWuu, . . . , RW p
uu]

where RW p
uu probability for a p-step random walk to loop back to node u:

[Dwivedi and Bresson, 2020, Rampášek et al., 2022, Lim et al., 2022]
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Graph transformers: recipes

Modulate the attention matrix with relative positional encoding

Graphormer computes an average of the dot-products of edge feature and a learnable
embedding along shortest paths

A = Softmax

(
fk−1W

⊤
QWKf⊤

k−1√
d

+Bshortest-paths
k

)
.

GraphiT weights the attention with a diffusion kernel. This captures both short-range
and long-range graph topology

A = Normalize

(
Exp

(
fk−1W

⊤
QWKf⊤

k−1√
d

)
◦Kσ

)
.

[Ying et al., 2021, Mialon et al., 2021]
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Graph transformers: recipes

Modulate the attention matrix with relative positional encoding

GraphiT uses a hard-coded kernel and does not include edge features in the attention.

CSA first enriches original edge features with random walks kernels:

Erw
uv = [RWuv, . . . , RW p

uv]

and then learns how to exploit these features to modulate the attention matrix

A = Softmax

(
fk−1W

⊤
QWKf⊤

k−1√
d

+W⊤
E Ek−1

)
.

Additional tricks

introduce features for structures that are known to be useful (carbon rings).

[Menegaux et al., 2023]
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All of this summarized in a pretty picture
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Visualizing self attention
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Benchmarks
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Benchmarks
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Physics and Geometry

Challenges (not addressed in this presentation)

Is there another structure within the graph? (e.g., chain of amino acids for proteins).

Is the graph part of a larger structure (crystallography)?

Does the representation model the right symmetries and inv/equivariances?

Is the graph construction satisfactory? What about long-range interactions?
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Recap: graph representations with deep learning

Graph neural networks with message passing

multi-layer construction.

sequence of local operations.

limited expressivity [Xu et al., 2019].

u1

u3

u4u5 u2 u6
m24

m14

m34

Graph transformers

non-local operations with attention.

how to encode the graph structure?

u1

u3

u4u5 u2 u6

For a detailed review, see

graph neural networks for 3D atomic systems: [Duval et al., 2023].

survey on graph transformers: [Müller et al., 2023].

course material from Xavier Bresson https://lnkd.in/dZZWay3Z.
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Bonus: Relation between Weisfeler-Lehman
and graph neural networks
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Principles of the Weisfeiler-Lehman kernel

Consider a graph G = (V,E, a) with discrete labels l0(u) = a(u) at each vertex u.

This is a multi-layer construction producing new labels lk(u) for each vertex at layer k.
A label lk(u) represents (lk−1(u), {lk−1(v) : v ∈ N (u)}).
Based on the graph isomorphism test of Weisfeiler and Lehman, 1968.

Pictures courtesy of Shervashidze et al. [2011].
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Principles of the Weisfeiler-Lehman kernel

The final representation is a histogram of label occurences.

Extensions with substructure enumeration.

Pictures courtesy of Shervashidze et al. [2011].
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Principles of the Weisfeiler-Lehman kernel

Given a graph G = (V,E, a) with discrete labels l0(u) = a(u) in A0 for all u in V .

The Weisfeiler-Lehmann kernel representation

Representation at layer k: Label lk(u) ∈ Ak for all u in V .

Construction of layer k (message passing):

lk(u) = Relabel(lk−1(u), {lk−1(v) : v ∈ N (u)}).

Last layer representation with global aggregation:

φWL(G) =
∑
v∈V

one-hot-encoding(lK(u)) ∈ R|A|.
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Principles of graph neural networks with message passing

Given a graph G = (V,E, a) with continous attributes φ0(u) = a(u) in Rp0 for all u in V .

Canonical form of message passing architecture

Representation at layer k: φk(u) ∈ Rpk for all u in V .

Construction of layer k (message passing):

φk(u) = Process(φk−1(u), {φk−1(v) : v ∈ N (u)})
=

∑
v∈N (u)∪u

ReLU(Z⊤
k φk−1(v)) (for example)

Last layer representation with global pooling:

φGNN(G) =
∑
v∈V

φL(u) ∈ RpK .
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Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding graph
structure in transformers. arXiv preprint arXiv:2106.05667, 2021.

Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to graph
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