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Big data

An ill-defined concept

a “buzz” word; regardless of rationality, you may get some funding
and become famous by making extensive use of “big data”;

replacing “thinking” by “data” and hope for the best;

a means to make money from your personal data.
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Collaborator

The analysis of the regularization path is a joint work
with Bin Yu, from UC Berkeley.

Reference

J. Mairal and B. Yu. Complexity analysis of the Lasso regularization
path. ICML. 2012.

Advertisement

The introduction to parsimony is based on the material of the upcoming
monograph, which will be freely available on arXiv mid-october:

J. Mairal, F. Bach and J. Ponce. Sparse Modeling for Image and Vision
Processing. 2014.

Julien Mairal Complexity Analysis of the Lasso Regularization Path 3/67



Part I: A Short Introduction to Parsimony
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1 A short introduction to parsimony
Early thoughts
Sparsity in the statistics literature from the 60’s and 70’s
Wavelet thresholding in signal processing from 90’s
The modern parsimony and the ℓ1-norm
Structured sparsity
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Early thoughts

(a) Dorothy Wrinch
1894–1980

(b) Harold Jeffreys
1891–1989

The existence of simple laws is, then, apparently, to be
regarded as a quality of nature; and accordingly we may infer
that it is justifiable to prefer a simple law to a more complex
one that fits our observations slightly better.

[Wrinch and Jeffreys, 1921]. Philosophical Magazine Series.
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Historical overview of parsimony

14th century: Ockham’s razor;

1921: Wrinch and Jeffreys’ simplicity principle;

1952: Markowitz’s portfolio selection;

60 and 70’s: best subset selection in statistics;

70’s: use of the ℓ1-norm for signal recovery in geophysics;

90’s: wavelet thresholding in signal processing;

1996: Olshausen and Field’s dictionary learning;

1996–1999: Lasso (statistics) and basis pursuit (signal processing);

2006–now: compressed sensing (signal processing) and Lasso
consistency (statistics); applications in various scientific fields such
as image processing, bioinformatics, neuroscience, computer vision...
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Sparsity in the statistics literature from the 60’s and 70’s

Given some observed data points z1, . . . , zn that are assumed to be
independent samples from a statistical model with parameters θ in R

p,
maximum likelihood estimation (MLE) consists of minimizing

min
θ∈Rp

[

L(θ) △

= −
n∑

i=1

logPθ(zi )

]

.

Example: ordinary least square

Observations zi = (yi , xi ), with yi in R.
Linear model: yi = x⊤i θ + εi , with εi ∼ N (0, 1).

min
θ∈Rp

n∑

i=1

1

2

(

yi − x⊤i θ
)2
.
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Sparsity in the statistics literature from the 60’s and 70’s

Given some observed data points z1, . . . , zn that are assumed to be
independent samples from a statistical model with parameters θ in R

p,
maximum likelihood estimation (MLE) consists of minimizing

min
θ∈Rp

[

L(θ) △

= −
n∑

i=1

logPθ(zi )

]

.

Motivation for finding a sparse solution:

removing irrelevant variables from the model;

obtaining an easier interpretation;

preventing overfitting;
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Sparsity in the statistics literature from the 60’s and 70’s

Given some observed data points z1, . . . , zn that are assumed to be
independent samples from a statistical model with parameters θ in R

p,
maximum likelihood estimation (MLE) consists of minimizing

min
θ∈Rp

[

L(θ) △

= −
n∑

i=1

logPθ(zi )

]

.

Why this is highly relevant in a modern big data context:

large n allows learning (better) complex models with large p;

large p leads to poor interpretation and irrelevant variables;

large p and large n lead to high computational cost;
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Sparsity in the statistics literature from the 60’s and 70’s

Given some observed data points z1, . . . , zn that are assumed to be
independent samples from a statistical model with parameters θ in R

p,
maximum likelihood estimation (MLE) consists of minimizing

min
θ∈Rp

[

L(θ) △

= −
n∑

i=1

logPθ(zi )

]

.

Two questions:

1 how to choose k?

2 how to find the best subset of k variables?
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Sparsity in the statistics literature from the 60’s and 70’s

How to choose k?

Mallows’s Cp statistics [Mallows, 1964, 1966];

Akaike information criterion (AIC) [Akaike, 1973];

Bayesian information critertion (BIC) [Schwarz, 1978];

Minimum description length (MDL) [Rissanen, 1978].

These approaches lead to penalized problems

min
θ∈Rp

L(θ) + λ‖θ‖0,

with different choices of λ depending on the chosen criterion.
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Sparsity in the statistics literature from the 60’s and 70’s

How to solve the best k-subset selection problem?

Unfortunately...

...the problem is NP-hard [Natarajan, 1995].

Two strategies

combinatorial exploration with branch-and-bound
techniques [Furnival and Wilson, 1974] → leaps and bounds,
exact algorithm but exponential complexity;

greedy approach: forward selection [Efroymson, 1960] (originally
developed for observing intermediate solutions),
already contains all the ideas of matching pursuit algorithms.

Important reference: [Hocking, 1976]. The analysis and selection of
variables in linear regression. Biometrics.
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Wavelet thresholding in signal processing from the 90’s

A wavelet basis represents a set of functions ϕ1, ϕ2 that are essentially
dilated and shifted versions of each other [see Mallat, 2008].

Concept of parsimony with wavelets

When a signal f is “smooth”, it is close to an expansion
∑

i αiϕi where
only a few coefficients αi are non-zero.
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(b) Morlet’s wavelet
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Wavelet thresholding in signal processing from the 90’s

Wavelets where the topic of a long quest for representing natural images

2D-Gabors [Daugman, 1985];

steerable wavelets [Simoncelli et al., 1992];

curvelets [Candès and Donoho, 2002];

countourlets [Do and Vertterli, 2003];

bandlets [Le Pennec and Mallat, 2005];

⋆-lets.

(a) 2D Gabor filter. (b) With shifted phase. (c) With rotation.
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Wavelet thresholding in signal processing from 90’s

The theory of wavelets is well developed for continuous signals, e.g.,
in L2(R), but also for discrete signals x in R

n.
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Wavelet thresholding in signal processing from 90’s

Given an orthogonal wavelet basis D = [d1, . . . ,dn] in R
n×n, the wavelet

decomposition of x in R
n is simply

β = D⊤x and we have x = Dβ.

The k-sparse approximation problem

min
α∈Rp

1

2
‖x−Dα‖22 s.t. ‖α‖0 ≤ k ,

is not NP-hard here: since D is orthogonal, it is equivalent to

min
α∈Rp

1

2
‖β −α‖22 s.t. ‖α‖0 ≤ k .
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Wavelet thresholding in signal processing from 90’s

Given an orthogonal wavelet basis D = [d1, . . . ,dn] in R
n×n, the wavelet

decomposition of x in R
n is simply

β = D⊤x and we have x = Dβ.

The k-sparse approximation problem

min
α∈Rp

1

2
‖x−Dα‖22 s.t. ‖α‖0 ≤ k ,

The solution is obtained by hard-thresholding:

αht[j ] = δ|β[j ]|≥µβ[j ] =

{
β[j ] if |β[j ]| ≥ µ
0 otherwise

,

where µ the k-th largest value among the set {|β[1]|, . . . , |β[p]|}.
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Wavelet thresholding in signal processing, 90’s

Another key operator introduced by Donoho and Johnstone [1994] is
the soft-thresholding operator:

αst[j ]
△

= sign(β[j ])max(|β[j ]| − λ, 0) =







β[j ]− λ if β[j ] ≥ λ
β[j ] + λ if β[j ] ≤ −λ
0 otherwise

,

where λ is a parameter playing the same role as µ previously.

With β
△

= D⊤x and D orthogonal, it provides the solution of the
following sparse reconstruction problem:

min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1,

which will be of high importance later.
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Wavelet thresholding in signal processing, 90’s

β

αst

λ

−λ

(d) Soft-thresholding operator,
αst = sign(β)max(|β| − λ, 0).

β

αht

µ

−µ

(e) Hard-thresholding operator
αht = δ|β|≥µβ.

Figure : Soft- and hard-thresholding operators, which are commonly used for
signal estimation with orthogonal wavelet basis.
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Wavelet thresholding in signal processing, 90’s

Various work tried to exploit the structure of wavelet coefficients.

α1

α2 α3

α4 α5 α6 α7

α8 α9 α10 α11 α12 α13 α14 α15

Figure : Illustration of a wavelet tree with four scales for one-dimensional
signals. We also illustrate the zero-tree coding scheme [Shapiro, 1993].
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The modern parsimony and the ℓ1-norm
Sparse linear models in signal processing

Let x in R
n be a signal.

Let D = [d1, . . . ,dp] ∈ R
n×p be a set of

elementary signals.
We call it dictionary.

D is “adapted” to x if it can represent it with a few elements—that is,
there exists a sparse vector α in R

p such that x ≈ Dα. We call α the
sparse code.



x





︸ ︷︷ ︸

x∈Rn

≈



 d1 d2 · · · dp





︸ ︷︷ ︸

D∈Rn×p








α[1]
α[2]
...

α[p]








︸ ︷︷ ︸

α∈Rp
,sparse
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The modern parsimony and the ℓ1-norm
Sparse linear models: machine learning/statistics point of view

Let (yi , xi )
n
i=1 be a training set, where the vectors xi are in R

p and are
called features. The scalars yi are in

{−1,+1} for binary classification problems.

R for regression problems.

We assume there exists a relation y ≈ β⊤x, and solve

min
β∈Rp

1

n

n∑

i=1

L(yi ,β
⊤xi )

︸ ︷︷ ︸

empirical risk

+ λψ(β)
︸ ︷︷ ︸

regularization

.
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The modern parsimony and the ℓ1-norm
Sparse linear models: machine learning/statistics point of view

A few examples:

Ridge regression: min
β∈Rp

1

n

n∑

i=1

1

2
(yi − β⊤xi )

2 + λ‖β‖22.

Linear SVM: min
β∈Rp

1

n

n∑

i=1

max(0, 1− yiβ
⊤xi ) + λ‖β‖22.

Logistic regression: min
β∈Rp

1

n

n∑

i=1

log
(

1 + e−yiβ
⊤xi

)

+ λ‖β‖22.
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The modern parsimony and the ℓ1-norm
Sparse linear models: machine learning/statistics point of view

A few examples:

Ridge regression: min
β∈Rp

1

n

n∑

i=1

1

2
(yi − β⊤xi )

2 + λ‖β‖22.

Linear SVM: min
β∈Rp

1

n

n∑

i=1

max(0, 1− yiβ
⊤xi ) + λ‖β‖22.

Logistic regression: min
β∈Rp

1

n

n∑

i=1

log
(

1 + e−yiβ
⊤xi

)

+ λ‖β‖22.

The squared ℓ2-norm induces “smoothness” in β. When one knows in
advance that β should be sparse, one should use a sparsity-inducing
regularization such as the ℓ1-norm. [Chen et al., 1999, Tibshirani, 1996]
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The modern parsimony and the ℓ1-norm

Originally used to induce sparsity in geophysics [Claerbout and Muir,
1973, Taylor et al., 1979], the ℓ1-norm became popular in statistics with
the Lasso [Tibshirani, 1996] and in signal processing with the Basis
pursuit [Chen et al., 1999].

Three “equivalent” formulations

1

min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1;

2

min
α∈Rp

1

2
‖x−Dα‖22 s.t. ‖α‖1 ≤ µ;

3

min
α∈Rp

‖α‖1 s.t. ‖x−Dα‖22 ≤ ε.
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The modern parsimony and the ℓ1-norm

And some variants...

For noiseless problems

min
α∈Rp

‖α‖1 s.t. x = Dα.

Beyond least squares

min
α∈Rp

f (α) + λ‖α‖1,

where f : Rp → R is convex.
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The modern parsimony and the ℓ1-norm

And some variants...

For noiseless problems

min
α∈Rp

‖α‖1 s.t. x = Dα.

Beyond least squares

min
α∈Rp

f (α) + λ‖α‖1,

where f : Rp → R is convex.

An important question remains:

why does the ℓ1-norm induce sparsity?
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The modern parsimony and the ℓ1-norm

Why does the ℓ1-norm induce sparsity?

Can we get some intuition from the simplest isotropic case?

α̂(λ) = argmin
α∈Rp

1

2
‖x−α‖22 + λ‖α‖1,

or equivalently the Euclidean projection onto the ℓ1-ball?

α̃(µ) = argmin
α∈Rp

1

2
‖x−α‖22 s.t. ‖α‖1 ≤ µ.

“equivalent” means that for all λ ≥ 0, there exists µ ≥ 0 such that
α̃(µ) = α̂(λ) and vice versa.
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The modern parsimony and the ℓ1-norm

Why does the ℓ1-norm induce sparsity?

Can we get some intuition from the simplest isotropic case?

α̂(λ) = argmin
α∈Rp

1

2
‖x−α‖22 + λ‖α‖1,

or equivalently the Euclidean projection onto the ℓ1-ball?

α̃(µ) = argmin
α∈Rp

1

2
‖x−α‖22 s.t. ‖α‖1 ≤ µ.

“equivalent” means that for all λ ≥ 0, there exists µ ≥ 0 such that
α̃(µ) = α̂(λ) and vice versa.
The relation between µ and λ is unknown a priori.
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Why does the ℓ1-norm induce sparsity?
Regularizing with the ℓ1-norm

ℓ1-ball

‖α‖1 ≤ µ

α[2]

α[1]

The projection onto a convex set is “biased” towards singularities.
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Why does the ℓ1-norm induce sparsity?
Regularizing with the ℓ2-norm

α[2]

α[1]
ℓ2-ball

‖α‖2 ≤ µ

The ℓ2-norm is isotropic.
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Why does the ℓ1-norm induce sparsity?
In 3D. (images produced by G. Obozinski
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Why does the ℓ1-norm induce sparsity?
Regularizing with the ℓ∞-norm

α[2]

α[1]
ℓ∞-ball

‖α‖∞ ≤ µ

The ℓ∞-norm encourages |α[1]| = |α[2]|.
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Why does the ℓ1-norm induce sparsity?
Analytical point of view: 1D case

min
α∈R

1

2
(x − α)2 + λ|α|

Piecewise quadratic function with a kink at zero.

Derivative at 0+: g+ = −x + λ and 0−: g− = −x − λ.

Optimality conditions. α is optimal iff:

|α| > 0 and (x − α) + λ sign(α) = 0

α = 0 and g+ ≥ 0 and g− ≤ 0

The solution is a soft-thresholding:

α⋆ = sign(x)(|x | − λ)+.
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Why does the ℓ1-norm induce sparsity?
Comparison with ℓ2-regularization in 1D

ψ(α) = α2

ψ′(α) = 2α

ψ(α) = |α|

ψ′
−(α) = −1, ψ′

+(α) = 1

The gradient of the ℓ2-penalty vanishes when α get close to 0. On its
differentiable part, the norm of the gradient of the ℓ1-norm is constant.
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Why does the ℓ1-norm induce sparsity?
Physical illustration

E1 = 0 E1 = 0

x
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Why does the ℓ1-norm induce sparsity?
Physical illustration

E1 =
k1
2 (x − α)2

E2 =
k2
2 α

2 α

α

E1 =
k1
2 (x − α)2

E2 = mgα
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Why does the ℓ1-norm induce sparsity?
Physical illustration

E1 =
k1
2 (x − α)2

E2 =
k2
2 α

2 α

α = 0 !!

E1 =
k1
2 (x − α)2

E2 = mgα
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Why does the ℓ1-norm induce sparsity?
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Figure : The regularization path of the Lasso.

min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1.
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Non-convex sparsity-inducing penalties

Exploiting concave functions with a kink at zero

ψ(α) =
∑p

j=1 ϕ(|α[j ]|).
ℓq-penalty, with 0 < q < 1: ψ(α)

△

=
∑p

j=1 |α[j ]|q, [Frank and
Friedman, 1993];

log penalty, ψ(α)
△

=
∑p

j=1 log(|α[j ]|+ ε), [Candès et al., 2008].

ϕ is any function that looks like this:

α

ϕ(|α|)
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Non-convex sparsity-inducing penalties

(a) ℓ0.5-ball, 2-D (b) ℓ1-ball, 2-D (c) ℓ2-ball, 2-D

Figure : Open balls in 2-D corresponding to several ℓq-norms and
pseudo-norms.
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Non-convex sparsity-inducing penalties

α[2]

α[1]
ℓq-ball

‖α‖q ≤ µ with q < 1
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Elastic-net

The elastic net introduced by [Zou and Hastie, 2005]

ψ(α) = ‖α‖1 + γ‖α‖22,

The penalty provides more stable (but less sparse) solutions.

(a) ℓ1-ball, 2-D (b) elastic-net, 2-D (c) ℓ2-ball, 2-D
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The elastic-net
vs other penalties

α[2]

α[1]
ℓq-ball

‖α‖q ≤ µ with q < 1
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The elastic-net
vs other penalties

ℓ1-ball

‖α‖1 ≤ µ

α[2]

α[1]
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The elastic-net
vs other penalties

elastic-net

ball

(1− γ)‖α‖1 + γ‖α‖22 ≤ µ

α[2]

α[1]
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The elastic-net
vs other penalties

α[2]

α[1]
ℓ2-ball

‖α‖22 ≤ µ
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Total variation and fused Lasso

The anisotropic total variation [Rudin et al., 1992]

ψ(α) =

p−1
∑

j=1

|α[j + 1]−α[j ]|,

called fused Lasso in statistics [Tibshirani et al., 2005]. The penalty
encourages piecewise constant signals (can be extended to images).

Image borrowed from a talk of J.-P. Vert, representing DNA copy
numbers.
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Group Lasso and mixed norms
[Turlach et al., 2005, Yuan and Lin, 2006, Zhao et al., 2009]
[Grandvalet and Canu, 1999, Bakin, 1999]

the ℓ1/ℓq-norm : ψ(α) =
∑

g∈G
‖α[g ]‖q.

G is a partition of {1, . . . , p};
q = 2 or q = ∞ in practice;

can be interpreted as the ℓ1-norm of [‖α[g ]‖q]g∈G .

ψ(α) = ‖α[{1, 2}]‖2 + |α[3]|.
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Spectral sparsity
[Fazel et al., 2001, Srebro et al., 2005]

A natural regularization function for matrices is the rank

rank(A)
△

= |{j : sj(A) 6= 0}| = ‖s(A)‖0,

where sj is the j-th singular value and s is the spectrum of A.

A successful convex relaxation of the rank is the sum of singular values

‖A‖∗ △

=

p
∑

j=1

sj(A) = ‖s(A)‖1,

for A in R
p×k with k ≥ p.

The resulting function is a norm, called the trace or nuclear norm.
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Structured sparsity
images produced by G. Obozinski

Julien Mairal Complexity Analysis of the Lasso Regularization Path 41/67



Structured sparsity
images produced by G. Obozinski
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Structured sparsity
Metabolic network of the budding yeast from Rapaport et al. [2007]
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Structured sparsity
Metabolic network of the budding yeast from Rapaport et al. [2007]
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Structured sparsity

Warning: Under the name “structured sparsity” appear in fact
significantly different formulations!

1 non-convex

zero-tree wavelets [Shapiro, 1993];
predefined collection of sparsity patterns: [Baraniuk et al., 2010];
select a union of groups: [Huang et al., 2009];
structure via Markov random fields: [Cehver et al., 2008];

2 convex (norms)

tree-structure: [Zhao et al., 2009];
select a union of groups: [Jacob et al., 2009];
zero-pattern is a union of groups: [Jenatton et al., 2011];
other norms: [Micchelli et al., 2013].
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Structured sparsity
Group Lasso with overlapping groups [Jenatton et al., 2011]

ψ(α) =
∑

g∈G
‖α[g ]‖q.

What happens when the groups overlap?

the pattern of non-zero variables is an intersection of groups;

the zero pattern is a union of groups.

ψ(α) = ‖α‖2 + |α[2]|+ |α[3]|.
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Structured sparsity
Hierarchical norms [Zhao et al., 2009].

(d) Sparsity. (e) Group sparsity. (f) Hierarchical sparsity.
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Some thoughts from Hocking [1976]:

The problem of selecting a subset of independent or
predictor variables is usually described in an idealized
setting. That is, it is assumed that (a) the analyst has data
on a large number of potential variables which include all
relevant variables and appropriate functions of them plus,
possibly, some other extraneous variables and variable
functions and (b) the analyst has available “good” data on
which to base the eventual conclusions. In practice, the lack
of satisfaction of these assumptions may make a detailed
subset selection analysis a meaningless exercise.
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Part II: Complexity Analysis of the Lasso
Regularization Path
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What this work is about

another paper about the Lasso/Basis Pursuit [Tibshirani, 1996,
Chen et al., 1999]:

min
w∈Rp

1

2
‖y − Xw‖22 + λ‖w‖1; (1)

the first complexity analysis of the homotopy method [Ritter, 1962,
Osborne et al., 2000, Efron et al., 2004] for solving (1);

a robust homotopy algorithm.

A main message reminiscent of

the simplex algorithm [Klee and Minty, 1972];

the SVM regularization path [Gärtner et al., 2010].
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The Lasso Regularization Path and the Homotopy

When it exists, the regularization path is piecewise linear:
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Our Main Results

Theorem - worst case analysis

In the worst-case, the regularization path of the Lasso has exactly
(3p + 1)/2 linear segments.

Proposition - approximate analysis

there exists an ε-approximate path with O(1/
√
ε) linear segments.
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Brief Introduction to the Homotopy Algorithm

Optimality conditions of the Lasso

w⋆ in R
p is a solution of Eq. (1) if and only if for all j in {1, . . . , p},

xj⊤(y − Xw⋆) = λ sign(w⋆
j ) if w⋆

j 6= 0,

|xj⊤(y − Xw⋆)| ≤ λ otherwise.
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Brief Introduction to the Homotopy Algorithm

Optimality conditions of the Lasso

w⋆ in R
p is a solution of Eq. (1) if and only if for all j in {1, . . . , p},

xj⊤(y − Xw⋆) = λ sign(w⋆
j ) if w⋆

j 6= 0,

|xj⊤(y − Xw⋆)| ≤ λ otherwise.

Uniqueness of the solution

Define J
△

= {j ∈ {1, . . . , p} : |xj⊤(y − Xw⋆)| = λ}.
If the matrix X⊤

J XJ is invertible, the solution is unique and

w⋆
J = (X⊤

J XJ)
−1(X⊤

J y − ληJ) = A+ λB,

where η
△

= sign(X⊤(y − Xw⋆)).
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Brief Introduction to the Homotopy Algorithm

Piecewise linearity

Under uniqueness assumptions of the Lasso solution, the regularization
path λ 7→ w⋆(λ) is continuous and piecewise linear.

Julien Mairal Complexity Analysis of the Lasso Regularization Path 54/67



Brief Introduction to the Homotopy Algorithm

Piecewise linearity

Under uniqueness assumptions of the Lasso solution, the regularization
path λ 7→ w⋆(λ) is continuous and piecewise linear.

Recipe of the homotopy method - main ideas

1 finds a trivial solution w⋆(λ∞) = 0 with λ∞ = ‖X⊤y‖∞;

2 compute the direction of the piecewise linear segment of the path;

3 follow the direction of the path by decreasing λ;

4 stop at the next “kink” and go back to 2.
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Brief Introduction to the Homotopy Algorithm

Piecewise linearity

Under uniqueness assumptions of the Lasso solution, the regularization
path λ 7→ w⋆(λ) is continuous and piecewise linear.

Recipe of the homotopy method - main ideas

1 finds a trivial solution w⋆(λ∞) = 0 with λ∞ = ‖X⊤y‖∞;

2 compute the direction of the piecewise linear segment of the path;

3 follow the direction of the path by decreasing λ;

4 stop at the next “kink” and go back to 2.

Caveats - questions

kinks can be very close to each other;

X⊤
J XJ can be ill-conditioned;

what is the complexity?
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Worst case analysis

Theorem - worst case analysis

In the worst-case, the regularization path of the Lasso has exactly
(3p + 1)/2 linear segments.

100 200 300

−1

0

1

2

Regularization path, p=6

Kinks

C
o

e
ff

ic
ie

n
ts

 (
lo

g
 s

c
a

le
)

Julien Mairal Complexity Analysis of the Lasso Regularization Path 55/67



Worst case analysis

Consider a Lasso problem (y ∈ R
n, X ∈ R

n×p).
Define the vector ỹ in R

n+1 and the matrix X̃ in R
(n+1)×(p+1) as follows:

ỹ
△

=

[
y

yn+1

]

, X̃
△

=

[
X 2αy
0 αyn+1

]

,

where yn+1 6= 0 and 0 < α < λ1/(2y
⊤y + y2n+1).

Adverserial strategy

If the regularization path of the Lasso (y,X) has k linear segments, the
path of (ỹ, X̃) has 3k − 1 linear segments.
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Worst case analysis

ỹ
△

=

[
y

yn+1

]

, X̃
△

=

[
X 2αy
0 αyn+1

]

,

Let us denote by {η1, . . . ,ηk} the sequence of k sparsity patterns in
{−1, 0, 1}p encountered along the path of the Lasso (y,X).

The new sequence of sparsity patterns for (ỹ, X̃) is

{
first k patterns

︷ ︸︸ ︷
[
η1 = 0

0

]

,

[
η2

0

]

, . . . ,

[
ηk

0

]

,

middle k patterns
︷ ︸︸ ︷
[
ηk

1

]

,

[
ηk−1

1

]

, . . . ,

[
η1=0

1

]

,

[
−η2

1

]

,

[
−η3

1

]

, . . . ,

[
−ηk

1

]

︸ ︷︷ ︸

last k−1 patterns

}

.
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Worst case analysis

ỹ
△

=

[
y

yn+1

]

, X̃
△

=

[
X 2αy
0 αyn+1

]

,

Some intuition why this is true:

1 the patterns of the new path must be [ηi⊤, 0]⊤ or [±ηi⊤, 1]⊤;
2 the factor α ensures the (p + 1)-th variable to enter late the path;

3 after the k first kinks, we have y ≈ Xw⋆(λ) and thus

X̃

[
w⋆(λ)

0

]

+

[
0

yn+1

]

≈ ỹ ≈ X̃

[
−w⋆(λ)
1/α

]

.

We are now in shape to build a pathological path with (3p + 1)/2
linear segments. Note that this lower-bound complexity is optimal.
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Approximate Complexity

Strong Duality

w⋆

w κ

κ⋆

f (w), primal

g(κ), dual

b

b

b

b

Strong duality means that maxκ g(κ) = minw f (w)
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Approximate Complexity

Duality Gaps

w̃

w

κ̃

κ

f (w), primal

g(κ), dual

b

b

b

b
δ(w̃, κ̃)

Strong duality means that maxκ g(κ) = minw f (w)

The duality gap guarantees us that 0 ≤ f (w̃)− f (w⋆) ≤ δ(w̃, κ̃).
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Approximate Complexity

min
w

{

fλ(w)
△

=
1

2
‖y − Xw‖22 + λ‖w‖1

}

, (primal)

max
κ

{

gλ(κ)
△

= −1

2
κ⊤κ− κ⊤y s.t. ‖X⊤κ‖∞ ≤ λ

}

. (dual)

ε-approximate solution

w is a ε-approximate solution when there exists a dual variable κ s.t.

δλ(w,κ) = fλ(w)− gλ(κ) ≤ εfλ(w).

ε-approximate path

A path P : λ 7→ w(λ) is an approximate path if it always contains
ε-approximate solutions.

(see Giesen et al. [2010] for generic results)
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Approximate Complexity

ε-approximate solution

w satisfies APPROXλ(ε) when there exists a dual variable κ s.t.

δλ(w,κ) = fλ(w)− gλ(κ) ≤ εfλ(w).

ε-approximate path

A path P : λ 7→ w(λ) is an approximate path if it always contains
ε-approximate solutions.

(see Giesen et al. [2010] for generic results)
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Approximate Complexity

Optimality conditions

w in R
p is a solution of (1) if and only if for all j in {1, . . . , p},

xj⊤(y − Xw) = λ sign(wj) if wj 6= 0,

|xj⊤(y − Xw)| ≤ λ otherwise.
(exact)
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Approximate Complexity

(ε1, ε2)-approximate optimality conditions

w in R
p satisfies OPTλ(ε1, ε2) if and only if for all j in {1, . . . , p},

λ(1− ε2) ≤ xj⊤(y − Xw) sign(wj) ≤ λ(1 + ε1) if wj 6= 0,

|xj⊤(y − Xw)| ≤ λ(1 + ε1) otherwise.

Relations between OPTλ and APPROXλ

APPROXλ(0) =⇒ OPTλ(0, 0)

=⇒ OPT
λ(1−

√
(ε)

(
√

(ε)/(1−√
ε),−

√

(ε)/(1−√
ε))

=⇒ APPROXλ(1−√
ε)(ε)

Proposition - approximate analysis

there exists an ε-approximate path with at most
⌈
log(λ∞/λ1)√

ε

⌉

segments.
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Approximate Homotopy

Recipe - main ideas/features

Maintain OPTλ(ε/2, ε/2) instead of OPTλ(0, 0);

Make steps in λ greater than or equal to λ(1− θ
√
ε);

When the kinks are too close to each other, make a large step and
use a first-order method instead;

Between λ∞ and λ1, the number of iterations is upper-bounded by⌈
log(λ∞/λ1)

θ
√
ε

⌉

.

Julien Mairal Complexity Analysis of the Lasso Regularization Path 65/67



Conclusion

A few messages

Despite an exponential complexity, the homotopy algorithms
remains extremely powerful in practice;

the main issue of the homotopy algorithm might be its numerical
stability;

when one does not care about precision, the worst-case complexity
of the path can significantly reduce.
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Advertisement SPAMS toolbox (open-source)

C++ interfaced with Matlab, R, Python.

proximal gradient methods for ℓ0, ℓ1, elastic-net, fused-Lasso,
group-Lasso, tree group-Lasso, tree-ℓ0, sparse group Lasso,
overlapping group Lasso...

...for square, logistic, multi-class logistic loss functions.

handles sparse matrices, provides duality gaps.

fast implementations of OMP and LARS - homotopy.

dictionary learning and matrix factorization (NMF, sparse PCA).

coordinate descent, block coordinate descent algorithms.

fast projections onto some convex sets.

Try it! http://www.di.ens.fr/willow/SPAMS/
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Basic convex optimization tools: subgradients

α

(g) Smooth case

α

(h) Non-smooth case

Figure : Gradients and subgradients for smooth and non-smooth functions.

∂f (α)
△

= {κ ∈ R
p | f (α) + κ⊤(α′ −α) ≤ f (α′) for all α′ ∈ R

p}.
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Basic convex optimization tools: subgradients
Some nice properties

∂f (α) = {g} iff f differentiable at α and g = ∇f (α).

many calculus rules: ∂(γf + µg) = γ∂f + µ∂g for γ, µ > 0.

for more details, see Boyd and Vandenberghe [2004], Bertsekas [1999],
Borwein and Lewis [2006] and S. Boyd’s course at Stanford.

Optimality conditions

For g : Rp → R convex,

g differentiable: α⋆ minimizes g iff ∇g(α⋆) = 0.

g nondifferentiable: α⋆ minimizes g iff 0 ∈ ∂g(α⋆).

Careful: the concept of subgradient requires a function to be
above its tangents. It does only make sense for convex functions!
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Basic convex optimization tools: dual-norm

Definition

Let κ be in R
p,

‖κ‖∗ △

= max
α∈Rp :‖α‖≤1

α⊤κ.

Exercises

‖α‖∗∗ = ‖α‖ (true in finite dimension)

ℓ2 is dual to itself.

ℓ1 and ℓ∞ are dual to each other.

ℓq and ℓ′q are dual to each other if 1
q
+ 1

q′
= 1.

similar relations for spectral norms on matrices.

∂‖α‖ = {κ ∈ R
p s.t. ‖κ‖∗ ≤ 1 and κ⊤α = ‖α‖}.
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Optimality conditions

Let f : Rp → R be convex differentiable and ‖.‖ be any norm.

min
α∈Rp

f (α) + λ‖α‖.

α is solution if and only if

0 ∈ ∂(f (α) + λ‖α‖) = ∇f (α) + λ∂‖α‖

Since ∂‖α‖ = {κ ∈ R
p s.t. ‖κ‖∗ ≤ 1 and κ⊤α = ‖α‖},

General optimality conditions:

‖∇f (α)‖∗ ≤ λ and −∇f (α)⊤α = λ‖α‖.
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Convex Duality

Strong Duality

α⋆

α κ

κ⋆

f (α), primal

g(κ), dual

b

b

b

b

Strong duality means that maxκ g(κ) = minα f (α)
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Convex Duality

Duality Gaps

α̃

α

κ̃

κ

f (α), primal

g(κ), dual

b

b

b

b
δ(α̃, κ̃)

Strong duality means that maxκ g(κ) = minα f (α)

The duality gap guarantees us that 0 ≤ f (α̃)− f (α⋆) ≤ δ(α̃, κ̃).
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