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Part I: Gradient-based optimization
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Basics of gradient-based optimization

Smooth vs non-smooth

(a) smooth (b) non-smooth

An important quantity to quantify smoothness is the Lipschitz constant of the gradient:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

If f is twice differentiable, L may be chosen as the largest eigenvalue of the Hessian ∇2f .
This is an upper-bound on the function curvature.
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Basics of gradient-based optimization

Convex vs non-convex

(a) non-convex (b) convex (c) strongly-convex

An important quantity to quantify convexity is the strong-convexity constant

f(x) ≥ f(y) +∇f(y)>(x− y) +
µ

2
‖x− y‖2,

If f is twice differentiable, µ may be chosen as the smallest eigenvalue of the Hessian
∇2f . This is a lower-bound on the function curvature.
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Basics of gradient-based optimization
Convex Functions

Why do we care about convexity?

x

f(x)

x⋆

b

b

b
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Basics of gradient-based optimization
Convex Functions

Local observations give information about the global optimum

x

f(x)

x⋆

b

b

b

∇f(x) = 0 is a necessary and sufficient optimality condition for differentiable convex
functions;
it is often easy to upper-bound f(x)− f?.
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Basics of gradient-based optimization

If f is convex and smooth

x⋆

x

f(x)

b

b

b

b
x0

f(x) ≥ f(x0) +∇f(x0)>(x− x0)︸ ︷︷ ︸
linear approximation

;

if f is non-smooth, a similar inequality holds for subgradients.
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Basics of gradient-based optimization

If ∇f is L-Lipschitz continuous (f does not need to be convex)

x⋆

x

f(x)g(x)

b

b

b

bb

b

x0x1

f(x) ≤ g(x) = f(x0) +∇f(x0)>(x− x0)︸ ︷︷ ︸
linear approximation

+L
2 ‖x− x0‖22;
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x⋆

x

f(x)g(x)
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bb
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x0x1

f(x) ≤ g(x) = f(x0) +∇f(x0)>(x− x0)︸ ︷︷ ︸
linear approximation

+L
2 ‖x− x0‖22;

g(x) = Cx0 + L
2 ‖x0 − (1/L)∇f(x0)− x‖22.
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Basics of gradient-based optimization

If ∇f is L-Lipschitz continuous (f does not need to be convex)

x⋆

x

f(x)g(x)

b

b

b

bb

b

x0x1

f(x) ≤ g(x) = f(x0) +∇f(x0)>(x− x0)︸ ︷︷ ︸
linear approximation

+L
2 ‖x− x0‖22;

x1 = x0 − 1
L∇f(x0) (gradient descent step).
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Basics of gradient-based optimization
Gradient descent algorithm

Assume that f is convex and L-smooth (∇f is L-Lipschitz).

Theorem

Consider the algorithm

xt ← xt−1 − 1
L∇f(xt−1).

Then,

f(xt)− f? ≤
L‖x0 − x?‖22

2t
.

How to prove this?

Read Nesterov’s book! [Nesterov, 2004].
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Proof (1/2)
Proof of the main inequality for smooth functions

We want to show that for all x and z,

f(x) ≤ f(z) +∇f(z)>(x− z) + L

2
‖x− z‖22.

By using Taylor’s theorem with integral form,

f(x)− f(z) =
∫ 1

0

∇f(tx+ (1− t)z)>(x− z)dt.

Then,

f(x)−f(z)−∇f(z)>(x−z) =
∫ 1

0

(∇f(tx+(1−t)z)−∇f(z))>(x−z)dt

≤
∫ 1

0

|(∇f(tx+(1−t)z)−∇f(z))>(x−z)|dt

≤
∫ 1

0

‖∇f(tx+(1−t)z)−∇f(z)‖2‖x−z‖2dt (C.-S.)

≤
∫ 1

0

Lt‖x−z‖22dt =
L

2
‖x−z‖22.
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Proof (2/2)
Proof of the theorem

We have shown that for all x,

f(x) ≤ gt(x) = f(xt−1) +∇f(xt−1)
>(x− xt−1) +

L

2
‖x− xt−1‖22.

gt is minimized by xt; it can be rewritten gt(x) = gt(xt) +
L
2
‖x− xt‖22. Then,
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L

2
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L

2
‖x? − x0‖22.
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(green) - (red) - (blue) - telescopic sum
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Basics of gradient-based optimization

If ∇f is L-Lipschitz continuous and f µ-strongly convex

x⋆

x

f(x)

b

b

b

b
x0

f(x) ≤ f(x0) +∇f(x0)>(x− x0) + L
2 ‖x− x0‖22;

f(x) ≥ f(x0) +∇f(x0)>(x− x0) + µ
2‖x− x0‖22;
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Basics of gradient-based optimization

Proposition

When f is µ-strongly convex and L-smooth, the gradient descent algorithm with step-size
1/L produces iterates such that

f(xt)− f? ≤
(

1− µ

L

)t L‖x0 − x?‖22
2

.

We call that a linear convergence rate.

Remarks

if f is twice differentiable, L and µ represent the larget and smallest eigenvalues of the
Hessian, respectively.

L/µ is called the condition number.

Julien Mairal Principles of Gradient-Based Optimization 12/38



Basics of gradient-based optimization
Picture from F. Bach
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Proof

We start from a (blue) inequality from the previous proof

f(xt) ≤ f(xt−1) +∇f(xt−1)
>(x? − xt−1) +

L

2
‖x? − xt−1‖22 −

L

2
‖x? − xt‖22

≤ f? + L− µ
2
‖x? − xt−1‖22 −

L

2
‖x? − xt‖22.

In addition, blue! f(xt) ≥ f? + µ
2
‖xt − x?‖22, and thus

‖x? − xt‖22 ≤
L− µ
L+ µ

‖x? − xt−1‖22

≤
(
1− µ

L

)
‖x? − xt−1‖22.

Finally, green! f(xt) ≤ f? +∇f(x?)>(xt − x?) + L
2
‖xt − x?‖2 with ∇f(x?) = 0:

f(xt)− f?≤
L

2
‖xt − x?‖22 ≤

(
1− µ

L

)t L‖x? − x0‖22
2

It is all about green and blue.
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Basics of gradient-based optimization: composite problems

A composite optimization problem consists of minimizing the sum of a smooth and
non-smooth function

min
x∈Rp

{f(x) = f0(x) + ψ(x)} ,
where f0 is L-smooth and ψ is convex but not necessarily smooth.

Example

A popular choice is ψ(x) = ‖x‖1, which induces sparsity.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimiza-
tion with sparsity-inducing penalties. Foundations and Trends in
Machine Learning, 4(1). 2012.
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Basics of gradient-based optimization: composite problems

Remark: with stepsize 1/L, gradient descent may be interpreted as iteratively minimizing a
tight upper-bound:

f(x)
gt(x)

b

b

xt−1

xt f(x) ≤ gt(x)

Figure: At each step, we update xt ∈ arg minx∈Rp gt(x)
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Basics of gradient-based optimization: composite problems
An important inequality for composite functions

If ∇f0 is L-Lipschitz continuous

x⋆

x

f(x) = f0(x) + ψ(x)g(x)

b

b

bb

b

x0x1

f(x) ≤ f0(x0) +∇f0(x0)>(x− x0) + L
2 ‖x− x0‖22 + ψ(x);

x1 minimizes g.
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Basics of gradient-based optimization: composite problems

Gradient descent for minimizing f consists of

xt ← arg min
x∈Rp

gt(x) ⇐⇒ xt ← xt−1 −
1

L
∇f(xt−1).

The proximal gradient method for minimizing f = f0 + ψ consists of

xt ← arg min
x∈Rp

gt(x),

which is equivalent to

xt ← arg min
x∈Rp

1

2

∥∥∥∥xt−1 −
1

L
∇f0(xt−1)− x

∥∥∥∥2

2

+
1

L
ψ(x).

It requires computing efficiently the proximal operator of ψ.

y 7→ arg min
x∈Rp

1

2
‖y − x‖22 + ψ(x).
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Basics of gradient-based optimization: composite problems

Remarks

also known as forward-backward algorithm;

same convergence rates as GD - same proofs;

there exists line search schemes to automatically tune L;

proximal operator can be computed for many interesting functions.

The case of `1

The proximal operator of λ‖.‖1 is the soft-thresholding operator

x[j] = sign(y[j])(|y[j]| − λ)+.

The resulting algorithm is called iterative soft-thresholding.

[Nowak and Figueiredo, 2001, Daubechies et al., 2004, Combettes and Wajs, 2006, Beck and
Teboulle, 2009, Wright et al., 2009, Nesterov, 2013]...
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Accelerated gradient descent methods

Nesterov introduced in the 80’s an acceleration scheme for the gradient descent algorithm.

Generalization to the composite setting: FISTA

xt ← arg min
x∈Rp

1

2

∥∥∥∥x− (yt−1 −
1

L
∇f0(yt−1)

)∥∥∥∥2

2

+
1

L
ψ(x);

Find αt > 0 s.t. α2
t = (1− αt)α2

t−1 +
µ

L
αt;

yt ← xt + βt(xt − xt−1) with βt =
αt−1(1− αt−1)

α2
t−1 + αt

.

f(xt)− f? = O(1/t2) for convex problems;

f(xt)− f? = O((1−
√
µ/L)t) for µ-strongly convex problems;

Acceleration works in many practical cases.

see [Beck and Teboulle, 2009, Nesterov, 1983, 2004, 2013]
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What do we mean by “acceleration”?

Complexity analysis

The complexity to guarantee f(xt)− f? ≤ ε, is given below

µ > 0 µ = 0

ISTA O
(
L
µ log

(
1
ε

))
O
(
L
ε

)
FISTA O

(√
L
µ log

(
1
ε

))
O

(√
L
ε

)

Remarks

the rate of FISTA is optimal for a “first-order local black box” [Nesterov, 2004].

for non-convex problems, acceleration often works in practice, but is poorly understood
from a theoretical perspective (local convexity? convexity along trajectories?
saddle-point escape?).
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How does “acceleration” work?

Unfortunately, the literature does not provide any simple geometric explanation...

but they
are a few obvious facts and a mechanism introduced by Nesterov, called “estimate
sequence”.

Obvious facts

Simple gradient descent steps are “blind” to the past iterates, and are based on a
purely local model of the objective.

Accelerated methods usually involve an extrapolation step yt = xt + βt(xt − xt−1)
with βt in (0, 1).

Nesterov interprets acceleration as relying on a better model of the objective called
estimate sequence.
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How does “acceleration” work?

Definition of estimate sequence [Nesterov].

A pair of sequences (ϕt)t≥0 and (λt)t≥0, with λt ≥ 0 and ϕt : Rp → R, is called an
estimate sequence of function f if λt → 0 and

for any x ∈ Rp and all t ≥ 0, ϕt(x)− f(x) ≤ λt(ϕ0(x)− f(x)).

In addition, if for some sequence (xt)t≥0 we have

f(xt) ≤ ϕ?t
M
= min

x∈Rp
ϕt(x),

then
f(xt)− f? ≤ λt(ϕ0(x?)− f?),

where x? is a minimizer of f .
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How does “acceleration” work?

In summary, we need two properties

1 ϕt(x) ≤ (1− λt)f(x) + λtϕ0(x);

2 f(xt) ≤ ϕ?t
M
= minx∈Rp ϕt(x).

Remarks

ϕt is neither an upper-bound, nor a lower-bound;

Finding the right estimate sequence is often nontrivial.
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1 ϕt(x) ≤ (1− λt)f(x) + λtϕ0(x);

2 f(xt) ≤ ϕ?t
M
= minx∈Rp ϕt(x).

How to build an estimate sequence?

Define ϕt recursively

ϕt(x)
M
= (1− αt)ϕt−1(x) + αtdt(x),

where dt is a lower-bound, e.g., if f is smooth,

dt(x)
M
= f(yt) +∇f(yt)

>(x− yt) +
µ

2
‖x− yt‖22,

Then, work hard to choose αt as large as possible, and yt and xt such that property 2 holds.
Subsequently, λt =

∏t
t=1(1− αt).
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Part II: Stochastic optimization

and variance reduction
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Stochastic optimization

Figure: Adaline, [Widrow and Hoff, 1960]: A physical device that performs least square regression
using stochastic gradient descent.
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Problems considered in this part

Minimization of (large) finite sums

min
x∈Rp

{
f(x) =

1

n

n∑
i=1

fi(x) + ψ(x)

}
.

Minimization of expectations with infinite data

min
x∈Rp

{f(x) = Ez[`(x, z)] + ψ(x)} .

The finite-sum problem corresponds to the empirical risk minimization problem, whereas the
second one corresponds to the expected cost.
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The stochastic gradient descent algorithm

Consider now the minimization of an expectation

min
x∈Rp

f(x) = Ez[`(x, z)],

To simplify, we assume that for all z, x 7→ `(x, z) is differentiable.

Algorithm

At iteration t,

Randomly draw one example zt from the training set;

Update the current iterate

xt ← xt−1 − ηt∇ft(xt−1) with ft(x) = `(x, zt).

Perform online averaging of the iterates (optional)

x̃t ← (1− γt)x̃t−1 + γtxt.
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The stochastic gradient descent algorithm

There are various learning rates strategies (constant, varying step-sizes), and averaging
strategies. Depending on the problem assumptions and choice of ηt, γt, classical
convergence rates may be obtained:

f(x̃t)− f? = O(1/
√
t) for convex problems;

f(x̃t)− f? = O(1/t) for strongly-convex ones;

Remarks

The convergence rates are not great, but the complexity per-iteration is small (1
gradient evaluation for minimizing an empirical risk versus n for the batch algorithm).

When the amount of data is infinite, the method minimizes the expected risk (which
is what we want).

Due to Robbins and Monro [1951].

[Nemirovski, Juditsky, Lan, and Shapiro, 2009, Moulines and Bach, 2011]...
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The stochastic gradient descent algorithm

What theory tells us

first use a constant step-size: the objective function value decreases quickly (as full
GD) until it oscillates.

then, use a decreasing step size and start averaging.

What practice “seems” to tell us

for deep networks, reducing twice the learning rate by 10 every x epochs seems ok.

use a mini batch (cheap parallelization), but not too large?

use Nesterov/Heavy-ball’s extrapolation?

use an adaptive learning rate strategy? (see next slide)

averaging? or not?

solutions tend to have small norm: implicit regularization?

Practice changes every year. Beware of big inductive claims.
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The stochastic gradient descent algorithm
Inspired by Jamie Soel’s presentation at NIPS’2018

SGD:
xt = xt−1 − ηt∇ft(xt−1).

Heavy-Ball momentum:

xt = xt−1 − ηt∇ft(xt−1) + βt(xt−1 − xt−2).

Nesterov’s extrapolation:

xt = xt−1 − ηt∇ft(xt−1 + βt(xt−1 − xt−2)) + βt(xt−1 − xt−2).

AdaGrad [Duchi et al., 2011]

xt = xt−1 − ηtH−1
t ∇ft(xt−1).

Adam [Kingma and Ba, 2014]:

xt = xt−1 − ηtH−1
t ∇ft(xt−1) + βtH

−1
t Ht−1(xt−1 − xt−2).
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Back to finite sums

Consider now the case of interest:

min
x∈Rp

1

n

n∑
i=1

fi(x),

Question

Can we do as well as SGD in terms of cost per iteration, while enjoying a fast (linear)
convergence rate like (accelerated or not) gradient descent?

For n = 1, no!

The rates are optimal for a “first-order local black box” [Nesterov, 2004].

For n ≥ 1, yes! We need to design algorithms

whose per-iteration computational complexity is smaller than n;

whose convergence rate may be worse than FISTA....

...but with a better expected computational complexity.
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Incremental gradient descent methods

min
x∈Rp

{
f(x) =

1

n

n∑
i=1

fi(x)

}
.

Several randomized algorithms are designed with one ∇fi computed per iteration, with fast
convergence rates, e.g., SAG [Schmidt et al., 2013]:

xk ← xk−1 −
γ

Ln

n∑
i=1

yki with yki =

{ ∇fi(xk−1) if i = ik
yk−1
i otherwise

.

See also SVRG, SAGA, SDCA, MISO, Finito...
Some of these algorithms perform updates of the form

xk ← xk−1 − ηkgk with E[gk] = ∇f(xk−1),

but gk has lower variance than in SGD.

[Schmidt et al., 2013, Xiao and Zhang, 2014, Defazio et al., 2014a,b, Shalev-Shwartz and Zhang,
2012, Mairal, 2015, Zhang and Xiao, 2015]
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Incremental gradient descent methods

These methods achieve low (worst-case) complexity in expectation. The number of
gradients evaluations to ensure E[f(xk)− f?] ≤ ε is

µ > 0

FISTA O
(
n
√

L
µ log

(
1
ε

))
SVRG, SAG, SAGA, SDCA, MISO, Finito O

(
max

(
n, L̄µ

)
log
(

1
ε

))

Julien Mairal Principles of Gradient-Based Optimization 34/38



Incremental gradient descent methods

These methods achieve low (worst-case) complexity in expectation. The number of
gradients evaluations to ensure E[f(xk)− f?] ≤ ε is

µ > 0

FISTA O
(
n
√

L
µ log

(
1
ε

))
SVRG, SAG, SAGA, SDCA, MISO, Finito O

(
max

(
n, L̄µ

)
log
(

1
ε

))
Main features vs. stochastic gradient descent

Same complexity per-iteration (but higher memory footprint).

Faster convergence (exploit the finite-sum structure).

Less parameter tuning than SGD.

Some variants are compatible with a composite term ψ.

SVRG is better than FISTA if n ≥
√
L/µ.
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Important remarks

When fi(x) = `(z>i x), the memory footprint is O(n) otherwise O(dn), except for
SVRG (O(d)).

Some algorithms require an estimate of µ;

L̄ is the average (or max) of the Lipschitz constants of the ∇fi’s.

The L for fista is the Lipschitz constant of ∇f : L ≤ L̄.
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Incremental gradient descent methods
inspired from F. Bach’s slides.

Variance reduction

Consider two random variables X,Y and define

Z = X − Y + E[Y ].

Then,

E[Z] = E[X]

Var(Z) = Var(X) + Var(Y )− 2cov(X,Y ).

The variance of Z may be smaller if X and Y are positively correlated.

Why is it useful for stochastic optimization?

step-sizes for SGD have to decrease to ensure convergence.

with variance reduction, one may use larger constant step-sizes.
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Incremental gradient descent methods

SVRG

xt = xt−1 − γ (∇fit(xt−1)−∇fit(y) +∇f(y)) ,

where y is updated every epoch and E[∇fit(y)|Ft−1] = ∇f(y).

SAGA

xt = xt−1 − γ
(
∇fit(xt−1)− yt−1

it
+ 1

n

∑n
i=1 y

t−1
i

)
,

where E[yt−1
it
|Ft−1] = 1

n

∑n
i=1 y

t−1
i and yti =

{
∇fi(xt−1) if i = it
yt−1
i otherwise.

MISO/Finito: for n ≥ L/µ, same form as SAGA but

1
n

∑n
i=1 y

t−1
i = −µxt−1 and yti =

{
∇fi(xt−1)− µxt−1 if i = it
yt−1
i otherwise.
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Can we do even better for large finite sums?

Without vs with acceleration

µ > 0

FISTA O
(
n
√

L
µ log

(
1
ε

))
SVRG, SAG, SAGA, SDCA, MISO, Finito O

(
max

(
n, L̄µ

)
log
(

1
ε

))
Accelerated versions Õ

(
max

(
n,
√
n L̄µ

)
log
(

1
ε

))
Acceleration for specific algorithms [Shalev-Shwartz and Zhang, 2014, Lan, 2015,
Allen-Zhu, 2016].

Generic acceleration: Catalyst [Lin, Mairal, and Harchaoui, 2015].

see [Agarwal and Bottou, 2015] for discussions about optimality.

SVRG is better than FISTA if n ≥
√
L/µ.

AccSVRG is better than SVRG if n ≤ L/µ.
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if n is huge (one-pass learning): use SGD!
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Questions about incremental methods

Do they work in practice?

for convex objectives

on training error: huge improvements over well-tuned SGD.
on test error: less clear (not worse than SGD).
much easier to use than SGD.

for non-convex objectives: nothing clear yet.

When is acceleration useful?

when the problem is badly conditioned (L/µ large).

when the amount of data is large, but not too large (such that one-pass un-regularized
SGD does not work).
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