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Convolutional Neural Networks

Short Introduction and Current Challenges
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Learning a predictive model

The goal is to learn a prediction function f : Rp → R given labeled
training data (xi, yi)i=1,...,n with xi in Rp, and yi in R:

min
f∈F

1

n

n∑

i=1

L(yi, f(xi))

︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.
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︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

What is specific to multilayer neural networks?

The “neural network” space F is explicitly parametrized by:

f(x) = σk(Wkσk–1(Wk–1 . . . σ2(W2σ1(W1x)) . . .)).

Linear operations are either unconstrained (fully connected) or share
parameters (e.g., convolutions).

Finding the optimal W1,W2, . . . ,Wk yields a non-convex
optimization problem in huge dimension.
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Convolutional Neural Networks

Picture from LeCun et al. [1998]

What are the main features of CNNs?

they capture compositional and multiscale structures in images;

they provide some invariance;

they model local stationarity of images at several scales;

they are state-of-the-art in many fields.
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Convolutional Neural Networks

The keywords: multi-scale, compositional, invariant, local features.
Picture from Y. LeCun’s tutorial:
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Convolutional Neural Networks

Picture from Olah et al. [2017]:
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Convolutional Neural Networks

Picture from Olah et al. [2017]:
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Convolutional Neural Networks: Challenges

What are current high-potential problems to solve?

1 lack of stability (see next slide).

2 learning with few labeled data.

3 learning with no supervision (see Tab. from Bojanowski and Joulin, 2017).
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Convolutional Neural Networks: Challenges

Illustration of instability. Picture from Kurakin et al. [2016].

Figure: Adversarial examples are generated by computer; then printed on paper;
a new picture taken on a smartphone fools the classifier.
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Convolutional Neural Networks: Challenges

min
f∈F

1

n

n∑

i=1

L(yi, f(xi))

︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

The issue of regularization

today, heuristics are used (DropOut, weight decay, early stopping)...

...but they are not sufficient.

how to control variations of prediction functions?

|f(x)− f(x′)| should be close if x and x′ are “similar”.

what does it mean for x and x′ to be “similar”?

what should be a good regularization function Ω?
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Invariance and Stability

from a Kernel Perspective
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Objectives

Deep convolutional signal representations

Are they stable to deformations?

How can we achieve invariance to transformation groups?

Do they preserve signal information?

Learning aspects

Building a functional space for CNNs (or similar objects).

Deriving a measure of model complexity.
Paradigm 3: Deep Kernel Machines

A quick zoom on convolutional neural networks

still involves the ERM problem

min
f2F

1

n

nX

i=1

L(yi, f(xi))

| {z }
empirical risk, data fit

+ �⌦(f)| {z }
regularization

.

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...
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A kernel perspective

Recipe

Map data x to high-dimensional space, Φ(x) in H (RKHS), with
Hilbertian geometry (projections, barycenters, angles, . . . , exist!).

predictive models f in H are linear forms in H: f(x) = 〈f,Φ(x)〉H.

Learning with a positive definite kernel K(x, x′) = 〈Φ(x),Φ(x′)〉H.

[Schölkopf and Smola, 2002, Shawe-Taylor and Cristianini, 2004]...
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Hilbertian geometry (projections, barycenters, angles, . . . , exist!).

predictive models f in H are linear forms in H: f(x) = 〈f,Φ(x)〉H.

Learning with a positive definite kernel K(x, x′) = 〈Φ(x),Φ(x′)〉H.

What is the relation with deep neural networks?

It is possible to design a RKHS H where a large class of deep neural
networks live [Mairal, 2016].

f(x) = σk(Wkσk–1(Wk–1 . . . σ2(W2σ1(W1x)) . . .)) = 〈f,Φ(x)〉H.

This is the construction of “convolutional kernel networks”.

[Schölkopf and Smola, 2002, Shawe-Taylor and Cristianini, 2004]...
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A kernel perspective

Recipe

Map data x to high-dimensional space, Φ(x) in H (RKHS), with
Hilbertian geometry (projections, barycenters, angles, . . . , exist!).

predictive models f in H are linear forms in H: f(x) = 〈f,Φ(x)〉H.

Learning with a positive definite kernel K(x, x′) = 〈Φ(x),Φ(x′)〉H.

Why do we care?

Φ(x) is related to the network architecture and is independent
of training data. Is it stable? Does it lose signal information?

f is a predictive model. Can we control its stability?

|f(x)− f(x′)| ≤ ‖f‖H‖Φ(x)− Φ(x′)‖H.

‖f‖H controls both stability and generalization!
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A kernel perspective: digression about regularization

Assume we have an RKHS H for deep networks:

min
f∈H

1

n

n∑

i=1

L(yi, f(xi)) +
λ

2
‖f‖2H.

‖.‖H encourages smoothness and stability w.r.t. the geometry induced
by the kernel (which depends itself on the choice of architecture).

Problem

Multilayer kernels developed for deep networks are typically intractable.

One solution [Mairal, 2016]

do kernel approximations at each layer, which lead to non-standard
CNNs called convolutional kernel networks (CKNs).
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A kernel perspective: digression about regularization

Another point of view: consider a classical CNN parametrized by θ,
which live in the RKHS:

min
θ∈Rp

1

n

n∑

i=1

L(yi, fθ(xi)) +
λ

2
‖fθ‖2H.

This is different than CKNs since fθ admits a classical parametrization.

Problem

‖fθ‖H is intractable...

One solution [Bietti et al., 2019]

use approximations (lower- and upper-bounds), based on mathematical
properties of ‖.‖H.
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A signal processing perspective
plus a bit of harmonic analysis

consider images defined on a continuous domain Ω = Rd.

τ : Ω→ Ω: c1-diffeomorphism.

Lτx(u) = x(u− τ(u)): action operator.

much richer group of transformations than translations.

Invariance to Translations
Two dimensional group: R2

  Translations and Deformations

• Patterns are translated and deformed

[Mallat, 2012, Allassonnière, Amit, and Trouvé, 2007, Trouvé and Younes, 2005]...
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consider images defined on a continuous domain Ω = Rd.

τ : Ω→ Ω: c1-diffeomorphism.

Lτx(u) = x(u− τ(u)): action operator.

much richer group of transformations than translations.

Invariance to Translations
Two dimensional group: R2

  Translations and Deformations

• Patterns are translated and deformed

relation with deep convolutional representations

stability to deformations studied for wavelet-based scattering transform.

[Mallat, 2012, Bruna and Mallat, 2013, Sifre and Mallat, 2013]...
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A signal processing perspective
plus a bit of harmonic analysis

consider images defined on a continuous domain Ω = Rd.

τ : Ω→ Ω: c1-diffeomorphism.

Lτx(u) = x(u− τ(u)): action operator.

much richer group of transformations than translations.

Definition of stability

Representation Φ(·) is stable [Mallat, 2012] if:

‖Φ(Lτx)− Φ(x)‖ ≤ (C1‖∇τ‖∞ + C2‖τ‖∞)‖x‖.

‖∇τ‖∞ = supu ‖∇τ(u)‖ controls deformation.

‖τ‖∞ = supu |τ(u)| controls translation.

C2 → 0: translation invariance.
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Summary of our results

Multi-layer construction of the RKHS H
Contains CNNs with smooth homogeneous activations functions.

Signal representation

Signal preservation of the multi-layer kernel mapping Φ.

Conditions of non-trivial stability for Φ.

Constructions to achieve group invariance.

On learning

Bounds on the RKHS norm ‖.‖H to control stability and
generalization of a predictive model f .

|f(x)− f(x′)| ≤ ‖f‖H‖Φ(x)− Φ(x′)‖H.
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Outline

1 Construction of the multi-layer convolutional representation

2 Invariance and stability

3 Learning aspects: model complexity
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A generic deep convolutional representation

Initial map x0 in L2(Ω,H0)

x0 : Ω→ H0: continuous input signal

u ∈ Ω = Rd: location (d = 2 for images).

x0(u) ∈ H0: input value at location u (H0 = R3 for RGB images).

Building map xk in L2(Ω,Hk) from xk−1 in L2(Ω,Hk−1)

xk : Ω→ Hk: feature map at layer k

xk = AkMkPkxk−1.

Pk: patch extraction operator, extract small patch of feature map
xk−1 around each point u (Pkxk−1(u) is a patch centered at u).

Mk: non-linear mapping operator, maps each patch to a new
Hilbert space Hk with a pointwise non-linear function ϕk(·).

Ak: (linear) pooling operator at scale σk.
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A generic deep convolutional representation

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk :=AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Patch extraction operator Pk

Pkxk–1(u) := (v ∈ Sk 7→ xk–1(u+ v)) ∈ Pk = HSk
k–1.

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

Sk: patch shape, e.g. box.

Pk is linear, and preserves the norm: ‖Pkxk–1‖ = ‖xk–1‖.
Norm of a map: ‖x‖2 =

∫
Ω ‖x(u)‖2du <∞ for x in L2(Ω,H).

Julien Mairal Invariance and stability of DL 22/43



Non-linear pointwise mapping operator Mk

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk.

xk–1 : Ω → Hk–1

Pkxk–1(v) ∈ Pk

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk
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Non-linear pointwise mapping operator Mk

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk.

ϕk : Pk → Hk pointwise non-linearity on patches.

We assume non-expansivity

‖ϕk(z)‖ ≤ ‖z‖ and ‖ϕk(z)− ϕk(z′)‖ ≤ ‖z − z′‖.

Mk then satisfies, for x, x′ ∈ L2(Ω,Pk)

‖Mkx‖ ≤ ‖x‖ and ‖Mkx−Mkx
′‖ ≤ ‖x− x′‖.
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ϕk from kernels

Kernel mapping of homogeneous dot-product kernels:

Kk(z, z
′) = ‖z‖‖z′‖κk

( 〈z, z′〉
‖z‖‖z′‖

)
= 〈ϕk(z), ϕk(z′)〉.

κk(u) =
∑∞

j=0 bju
j with bj ≥ 0, κk(1) = 1.

‖ϕk(z)‖ = Kk(z, z)
1/2 = ‖z‖ (norm preservation).

‖ϕk(z)− ϕk(z′)‖ ≤ ‖z − z′‖ if κ′k(1) ≤ 1 (non-expansiveness).

Examples

κexp(〈z, z′〉) = e〈z,z
′〉−1 = e−

1
2
‖z−z′‖2 (if ‖z‖ = ‖z′‖ = 1).

κinv-poly(〈z, z′〉) = 1
2−〈z,z′〉 .

[Schoenberg, 1942, Scholkopf, 1997, Smola et al., 2001, Cho and Saul, 2010, Zhang

et al., 2016, 2017, Daniely et al., 2016, Bach, 2017, Mairal, 2016]...
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =

∫

Rd

hσk(u− v)MkPkxk–1(v)dv ∈ Hk.

xk–1 : Ω → Hk–1

MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =

∫

Rd

hσk(u− v)MkPkxk–1(v)dv ∈ Hk.

hσk : pooling filter at scale σk.

hσk(u) := σ−dk h(u/σk) with h(u) Gaussian.

linear, non-expansive operator: ‖Ak‖ ≤ 1 (operator norm).
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Recap: Pk, Mk, Ak

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk
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Multilayer construction

Assumption on x0

x0 is typically a discrete signal aquired with physical device.

Natural assumption: x0 = A0x, with x the original continuous
signal, A0 local integrator with scale σ0 (anti-aliasing).

Multilayer representation

Φn(x) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x0 ∈ L2(Ω,Hn).

Sk, σk grow exponentially in practice (i.e., fixed with subsampling).

Prediction layer

e.g., linear f(x) = 〈w,Φn(x)〉.
“linear kernel” K(x, x′) = 〈Φn(x),Φn(x′)〉 =

∫
Ω〈xn(u), x′n(u)〉du.
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Outline

1 Construction of the multi-layer convolutional representation

2 Invariance and stability

3 Learning aspects: model complexity
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Invariance, definitions

τ : Ω→ Ω: C1-diffeomorphism with Ω = Rd.

Lτx(u) = x(u− τ(u)): action operator.

Much richer group of transformations than translations.

Invariance to Translations
Two dimensional group: R2

  Translations and Deformations

• Patterns are translated and deformed

[Mallat, 2012, Bruna and Mallat, 2013, Sifre and Mallat, 2013]...
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τ : Ω→ Ω: C1-diffeomorphism with Ω = Rd.

Lτx(u) = x(u− τ(u)): action operator.

Much richer group of transformations than translations.

Definition of stability

Representation Φ(·) is stable [Mallat, 2012] if:

‖Φ(Lτx)− Φ(x)‖ ≤ (C1‖∇τ‖∞ + C2‖τ‖∞)‖x‖.

‖∇τ‖∞ = supu ‖∇τ(u)‖ controls deformation.

‖τ‖∞ = supu |τ(u)| controls translation.

C2 → 0: translation invariance.

[Mallat, 2012, Bruna and Mallat, 2013, Sifre and Mallat, 2013]...

Julien Mairal Invariance and stability of DL 30/43



Warmup: translation invariance

Representation

Φn(x)
M
= AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1A0x.

How to achieve translation invariance?

Translation: Lcx(u) = x(u− c).

Equivariance - all operators commute with Lc: �Lc = Lc�.

‖Φn(Lcx)− Φn(x)‖ = ‖LcΦn(x)− Φn(x)‖
≤ ‖LcAn −An‖ · ‖MnPnΦn–1(x)‖
≤ ‖LcAn −An‖‖x‖.

Mallat [2012]: ‖LτAn −An‖ ≤ C2
σn
‖τ‖∞ (operator norm).

Scale σn of the last layer controls translation invariance.
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Stability to deformations

Representation

Φn(x)
M
= AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1A0x.

How to achieve stability to deformations?

Patch extraction Pk and pooling Ak do not commute with Lτ !

‖‖ ≤ C1‖∇τ‖∞ [from Mallat, 2012].

But: [Pk, Lτ ] is unstable at high frequencies!

Adapt to current layer resolution, patch size controlled by σk–1:

‖[PkAk–1, Lτ ]‖ ≤ C1,κ‖∇τ‖∞ sup
u∈Sk

|u| ≤ κσk–1

C1,κ grows as κd+1 =⇒ more stable with small patches
(e.g., 3x3, VGG et al.).
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Stability to deformations: final result

Theorem

If ‖∇τ‖∞ ≤ 1/2,

‖Φn(Lτx)− Φn(x)‖ ≤
(
C1,κ (n+ 1) ‖∇τ‖∞ +

C2

σn
‖τ‖∞

)
‖x‖.

translation invariance: large σn.

stability: small patch sizes.

signal preservation: subsampling factor ≈ patch size.

=⇒ needs several layers.

requires additional discussion to make stability non-trivial.

related work on stability [Wiatowski and Bölcskei, 2017]
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Beyond the translation group

Can we achieve invariance to other groups?

Group action: Lgx(u) = x(g−1u) (e.g., rotations, reflections).

Feature maps x(u) defined on u ∈ G (G: locally compact group).

Recipe: Equivariant inner layers + global pooling in last layer

Patch extraction:

Px(u) = (x(uv))v∈S .

Non-linear mapping: equivariant because pointwise!

Pooling (µ: left-invariant Haar measure):

Ax(u) =

∫

G
x(uv)h(v)dµ(v) =

∫

G
x(v)h(u−1v)dµ(v).

related work [Sifre and Mallat, 2013, Cohen and Welling, 2016, Raj et al., 2016]...
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Group invariance and stability

Previous construction is similar to Cohen and Welling [2016] for CNNs.

A case of interest: the roto-translation group

G = R2 o SO(2) (mix of translations and rotations).

Stability with respect to the translation group.

Global invariance to rotations (only global pooling at final layer).

Inner layers: only pool on translation group.
Last layer: global pooling on rotations.
Cohen and Welling [2016]: pooling on rotations in inner layers hurts
performance on Rotated MNIST

Julien Mairal Invariance and stability of DL 35/43



Discretization and signal preservation: example in 1D

Discrete signal x̄k in `2(Z, H̄k) vs continuous ones xk in L2(R,Hk).

x̄k: subsampling factor sk after pooling with scale σk ≈ sk:

x̄k[n] = ĀkM̄kP̄kx̄k–1[nsk].

Claim: We can recover x̄k−1 from x̄k if factor sk ≤ patch size.

How? Recover patches with linear functions (contained in H̄k)

〈fw, M̄kP̄kx̄k−1(u)〉 = fw(P̄kx̄k−1(u)) = 〈w, P̄kx̄k−1(u)〉,

and
P̄kx̄k−1(u) =

∑

w∈B
〈fw, M̄kP̄kx̄k−1(u)〉w.

Warning: no claim that recovery is practical and/or stable.
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Discretization and signal preservation: example in 1D

x̄k−1

P̄kx̄k−1(u) ∈ Pk

M̄kP̄kx̄k−1

dot-product kernel

ĀkM̄kP̄kx̄k−1

linear pooling

downsampling

x̄k

recovery with linear measurements

Ākx̄k−1

deconvolution

x̄k−1
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Outline

1 Construction of the multi-layer convolutional representation

2 Invariance and stability

3 Learning aspects: model complexity
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RKHS of patch kernels Kk

Kk(z, z
′) = ‖z‖‖z′‖κ

( 〈z, z′〉
‖z‖‖z′‖

)
, κ(u) =

∞∑

j=0

bju
j .

What does the RKHS contain?

RKHS contains homogeneous functions:

f : z 7→ ‖z‖σ(〈g, z〉/‖z‖).

Smooth activations: σ(u) =
∑∞

j=0 aju
j with aj ≥ 0.

Norm: ‖f‖2Hk
≤ C2

σ(‖g‖2) =
∑∞

j=0

a2j
bj
‖g‖2 <∞.

Homogeneous version of [Zhang et al., 2016, 2017]

Julien Mairal Invariance and stability of DL 39/43



RKHS of patch kernels Kk

Kk(z, z
′) = ‖z‖‖z′‖κ

( 〈z, z′〉
‖z‖‖z′‖

)
, κ(u) =

∞∑

j=0

bju
j .

What does the RKHS contain?

RKHS contains homogeneous functions:

f : z 7→ ‖z‖σ(〈g, z〉/‖z‖).

Smooth activations: σ(u) =
∑∞

j=0 aju
j with aj ≥ 0.

Norm: ‖f‖2Hk
≤ C2

σ(‖g‖2) =
∑∞

j=0

a2j
bj
‖g‖2 <∞.

Homogeneous version of [Zhang et al., 2016, 2017]

Julien Mairal Invariance and stability of DL 39/43



RKHS of patch kernels Kk

Kk(z, z
′) = ‖z‖‖z′‖κ

( 〈z, z′〉
‖z‖‖z′‖

)
, κ(u) =

∞∑

j=0

bju
j .

What does the RKHS contain?

RKHS contains homogeneous functions:

f : z 7→ ‖z‖σ(〈g, z〉/‖z‖).

Smooth activations: σ(u) =
∑∞

j=0 aju
j with aj ≥ 0.

Norm: ‖f‖2Hk
≤ C2

σ(‖g‖2) =
∑∞

j=0

a2j
bj
‖g‖2 <∞.

Homogeneous version of [Zhang et al., 2016, 2017]

Julien Mairal Invariance and stability of DL 39/43



RKHS of patch kernels Kk

Examples:

σ(u) = u (linear): C2
σ(λ2) = O(λ2).

σ(u) = up (polynomial): C2
σ(λ2) = O(λ2p).

σ ≈ sin, sigmoid, smooth ReLU: C2
σ(λ2) = O(ecλ

2
).

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

f(x
)

f : x (x)
ReLU
sReLU

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

f(x
)

f : x |x| (wx/|x|)
ReLU, w=1
sReLU, w = 0
sReLU, w = 0.5
sReLU, w = 1
sReLU, w = 2
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Constructing a CNN in the RKHS HK
Some CNNs live in the RKHS: “linearization” principle

f(x) = σk(Wkσk–1(Wk–1 . . . σ2(W2σ1(W1x)) . . .)) = 〈f,Φ(x)〉H.

Consider a CNN with filters W ij
k (u), u ∈ Sk.

k: layer;
i: index of filter;
j: index of input channel.

“Smooth homogeneous” activations σ.

The CNN can be constructed hierarchically in HK.

Norm:

‖fσ‖2 ≤ ‖Wn+1‖22 C2
σ(‖Wn‖22 C2

σ(‖Wn–1‖22 C2
σ(. . . ))).

Linear layers: product of spectral norms.
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k: layer;
i: index of filter;
j: index of input channel.
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Link with generalization

Direct application of classical generalization bounds

Simple bound on Rademacher complexity for linear/kernel methods:

FB = {f ∈ HK, ‖f‖ ≤ B} =⇒ RadN (FB) ≤ O
(
BR√
N

)
.

Leads to margin bound O(‖f̂N‖R/γ
√
N) for a learned CNN f̂N

with margin (confidence) γ > 0.

Related to recent generalization bounds for neural networks based
on product of spectral norms [e.g., Bartlett et al., 2017,
Neyshabur et al., 2018].

[see, e.g., Boucheron et al., 2005, Shalev-Shwartz and Ben-David, 2014]...
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Deep convolutional representations: conclusions

Study of generic properties of signal representation

Deformation stability with small patches, adapted to resolution.

Signal preservation when subsampling ≤ patch size.

Group invariance by changing patch extraction and pooling.

Applies to learned models

Same quantity ‖f‖ controls stability and generalization.

“higher capacity” is needed to discriminate small deformations.

Questions:

Better regularization?

How does SGD control capacity in CNNs?

What about networks with no pooling layers? ResNet?

Julien Mairal Invariance and stability of DL 43/43



Deep convolutional representations: conclusions

Study of generic properties of signal representation

Deformation stability with small patches, adapted to resolution.

Signal preservation when subsampling ≤ patch size.

Group invariance by changing patch extraction and pooling.

Applies to learned models

Same quantity ‖f‖ controls stability and generalization.

“higher capacity” is needed to discriminate small deformations.

Questions:

Better regularization?

How does SGD control capacity in CNNs?

What about networks with no pooling layers? ResNet?

Julien Mairal Invariance and stability of DL 43/43



Deep convolutional representations: conclusions

Study of generic properties of signal representation

Deformation stability with small patches, adapted to resolution.

Signal preservation when subsampling ≤ patch size.

Group invariance by changing patch extraction and pooling.

Applies to learned models

Same quantity ‖f‖ controls stability and generalization.

“higher capacity” is needed to discriminate small deformations.

Questions:

Better regularization?

How does SGD control capacity in CNNs?

What about networks with no pooling layers? ResNet?

Julien Mairal Invariance and stability of DL 43/43



References I
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ϕk from kernel approximations: CKNs [Mairal, 2016]

Approximate ϕk(z) by projection (Nyström approximation) on

F = Span(ϕk(z1), . . . , ϕk(zp)).

Hilbert space H

F

ϕ(x)

ϕ(x′)

Figure: Nyström approximation.

[Williams and Seeger, 2001, Smola and Schölkopf, 2000, Zhang et al., 2008]...
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ϕk from kernel approximations: CKNs [Mairal, 2016]

Approximate ϕk(z) by projection (Nyström approximation) on

F = Span(ϕk(z1), . . . , ϕk(zp)).

Leads to tractable, p-dimensional representation ψk(z).

Norm is preserved, and projection is non-expansive:

‖ψk(z)− ψk(z′)‖ = ‖Πkϕk(z)−Πkϕk(z
′)‖

≤ ‖ϕk(z)− ϕk(z′)‖ ≤ ‖z − z′‖.

Anchor points z1, . . . , zp (≈ filters) can be learned from data
(K-means or backprop).

[Williams and Seeger, 2001, Smola and Schölkopf, 2000, Zhang et al., 2008]...

Julien Mairal Invariance and stability of DL 49/43



ϕk from kernel approximations: CKNs [Mairal, 2016]

Convolutional kernel networks in practice.

I0

x

x′

kernel trick

projection on F1

M1

ψ1(x)

ψ1(x
′)

I1
linear pooling

Hilbert space H1

F1

ϕ1(x)

ϕ1(x
′)
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Discussion

norm of ‖Φ(x)‖ is of the same order (or close enough) to ‖x‖.
the kernel representation is non-expansive but not contractive

sup
x,x′∈L2(Ω,H0)

‖Φ(x)− Φ(x′)‖
‖x− x′‖ = 1.
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A kernel perspective: digression about regularization

Another point of view: consider a classical CNN parametrized by θ,
which live in the RKHS:

min
θ∈Rp

1

n

n∑

i=1

L(yi, fθ(xi)) +
λ

2
‖fθ‖2H.

Upper-bounds

‖f‖H ≤ ω(‖Ak‖, ‖Ak–1‖, . . . , ‖A1‖) (spectral norms) .

Lower-bounds

‖f‖H = sup
‖u‖H≤1

〈f, u〉H ≥ sup
u∈U
〈f, u〉H for U ⊆ BH(1).
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A kernel perspective: digression about regularization

adversarial penalty

U = {Φ(x+ δ)− Φ(x) : x ∈ X , ‖δ‖2 ≤ 1}
⇒ ‖f‖2δ = sup

x∈X ,‖δ‖2≤1
f(x+ δ)− f(x).

gradient penalty

U =

{
Φ(x)− Φ(y)

‖x− y‖2
: x, y ∈ X

}
⇒ ‖∇f‖ = sup

x∈X
‖∇f(x)‖2.

deformation stability penalty

U = {Φ(Lτx)− Φ(x) : x ∈ X , τ}
⇒ ‖f‖2τ = sup

x∈X
τ small deformation

f(Lτx)− f(x).

use CKN kernel approximations (work in progress).

see [Bietti et al., 2019] and references therein
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