
Statistical Learning and Applications

Laurent Jacob

September 15, 2014

L. Jacob Statistical Learning September 15, 2014 1 / 61



Practical aspects

8 three hour classes.
Assessment: 2/3 project, 1/3 homeworks.
Projects: study article, either methods (implementation), or
theoretical. You are free to suggest articles, or pick one from the
website.
End of November: preliminary report (25% of the grade). January:
final (short) report.
3 homeworks along the semester, due within three weeks.
Website:
http://lear.inrialpes.fr/people/mairal/teaching/2014-2015/M2ENS/
Scribe: For each course, a duo of students commit to turn their notes
into latex format.
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Some references

Hastie, Tibshirani, Friedman. The Elements of Statistical Learning,
2001. (free online)
Theoretical statistics class by P. Bartlett:
http://www.stat.berkeley.edu/ bartlett/courses/2013spring-stat210b/.
Theoretical statistics class by S. Arlot and F. Bach (in French):
http://www.di.ens.fr/ arlot/2013orsay.htm.
Boyd and Vandenberghe. Convex Optimization, 2004. (free online)
The matrix cookbook.
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Outline of this class

1 A few examples.
2 Bias/variance trade-off and how to deal with it.
3 Supervised learning.
4 Unsupervised learning.
5 Statistical learning theory.
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Statistical learning and applications

This class is concerned with learning from data. Essentially:

Also: multi-class, regression, unsupervised...
We start with a few examples to make things concrete.
These examples highlight a general problem which we will discuss right
after.
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Part I

A few examples
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Recommender systems

Given a user and the movies he liked, what should he watch next?
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Web

Given a query what are the most relevant webpages?
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Natural language processing

Given a text, predict its topic.
Given an email, predict whether it is a spam.
Given a text, predict its translation in another language.
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Biological data in high dimension

Modern technologies in molecular biology provide descriptions of individuals
through thousands/millions of descriptors:

Gene expression (arrays, sequencing),
SNPs,
Methylations,
...

Potential to allow better understanding/prediction of complex phenomena.
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Tumor classification for prognosis

Given the expression of the genes in a new tumor, predict the
occurrence of a metastasis in the next 5 years.
Similarly: diagnosis.
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Molecule classification for drug design

Given a candidate molecule, is it active against a therapeutical target.
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Gene expression clustering

(from C. Perou’s website)

Are there groups of breast tumors with similar gene expression profile?
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Ancestral genome reconstruction

Decay of DNA molecules.
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Ancestral genome reconstruction

Does it make Jurassic Park unrealistic?
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Ancestral genome reconstruction

Actually it does. But given enough descendants, we can infer the genome
of extinct ancestors (black death, LUCA).
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Image inpainting

Complete an image with missing parts.
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Image inpainting

Estimation problem: predict each image patch, as a linear combination of
dictionary elements.
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Image inpainting
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Image inpainting
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Image up-scaling

Improve the quality of an image.
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Music recognition

Guess which tune is being played.
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Music recognition

Guess which tune is being tapped/hummed.
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Neuroscience

Collect fMRI data of people watching videos.
Reconstitute new video they are watching based on fMRI
measurements (“brain reading”).
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Learning with high dimensional data

Each of these examples involves complex objects/large numbers of
features for a restricted number of samples.
Intuitively, observing all these characteristics should allow us to predict
or understand complex mechanisms.
We now discuss why this wealth of features can cause trouble in
statistical learning.
Understanding this problem should give more perspective to the tools
we will present later.
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Part II

Overfitting, bias-variance tradeoff: what is the
problem?
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Short term

We start with an informal example.
We will formalize what we observe later.
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Bias-variance tradeoff: intuition
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We observe 10 couples (xi , yi ).
We want to estimate y from x .
Strategy: find f such that f (xi ) is close to yi .
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Find f as a line
min

f (x)=ax+b
‖Y − f (X )‖2
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Find f as a quadratic function

min
f (x)=ax+bx2

‖Y − f (X )‖2
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Find f as a polynomial of degree 10

min
f (x)=

∑10
j=1 ajx j

‖Y − f (X )‖2
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Bias-variance tradeoff: intuition
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Which function would you trust to predict y corresponding to x = 0.5?
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Bias-variance tradeoff: intuition
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Reminder: we aim at “finding f such that f (xi ) is close to yi ”.
With the polynomial of degree 10, f (xi )− yi = 0 for all 10 points.
There is something wrong with our objective.
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Bias-variance tradeoff: intuition
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More precisely:
If we allow any function f , we can find a lot of perfect solutions.
Our actual goal is to estimate y for new points x from the same
population :

min
f

E(X ,Y )‖Y − f (X )‖2
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Biais-variance tradeoff: intuition
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Even more precisely :
We did not take into account the fact that our 10 points are a
subsample from the population.
If we sample 10 new points from the same population, the complex
functions are likely to change more than the simple ones.
Consequence: these fonctions will probably generalize less well to the
rest of the population.
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Overfitting
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When the degree increases, the error ‖y − f (x)‖2 over the 10
observations always decreases.
Over the rest of the population, the error decreases, then increases.
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When the degree increases, the error ‖y − f (x)‖2 over the 10
observations always decreases.
Over the rest of the population, the error decreases, then increases.
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Overfitting
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This suggests the existence of a tradeoff between two types of errors:
Sets of functions which are too simple cannot contain functions which
explain the data well enough.
Sets of functions which are too rich may contain functions which are
too specific to the observed sample.
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This suggests the existence of a tradeoff between two types of errors:

Sets of functions which are too simple cannot contain functions which
explain the data well enough.
Sets of functions which are too rich may contain functions which are
too specific to the observed sample.
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Parenthesis: complexity vs dimension (1/3)

Our introductive examples had a large number of descriptors.
This case involves increasingly complex functions of a single variable.
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Parenthesis : complexity vs dimension (2/3)

In fact, the two notions are related: here in particular, the three
functions are linear in different representations.
Reminder (linear regression):
argminθ∈Rp ‖Y − Xθ‖2 = (X>X )−1X>Y (if X>X is invertible).
How can we use this fact to compute
argminf (x)=

∑p
j=1 aix j ‖Y − f (X )‖2?
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Parenthesis : complexity vs dimension (3/3)

We could have illustrated the same principle using linear functions
involving more and more variables.
Example : predicting a phenotype using the expression of an increasing
number of genes.
We sticked to polynomials, which allow for better visual
representations.
Along this class, the notion of complexity of a set of functions will
become more and more precise.
Complexity is what causes problems for inference, not just dimension.
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Second parenthesis : models

Until now, we did not need to introduce a model for the data, i.e., a
distribution over X × Y :

Data could come from any population.
The functions we used to predict y can be derived from particular
probabilistic models, but this is not necessary (they were in fact
historically introduced without a model).

The objective is not to criticize the use of models, but to show that
the tradeoff problem we introduced goes beyond probabilistic models.
We now show how using a model can give a better insight into the
problem.
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A little more formally: biais-variance decomposition

We now assume that the data follow:

y = f (x) + ε, (1)

and E[ε] = 0.
Without loss of generality, we consider an estimator f̂ of f , fonction
function of the data D = (xi , yi )(i=1,...,n) generated under (1) (so
don’t forget: f̂ is a random quantity).
We consider the mean quadratic error E[(y − f̂ (x))2] incurred when
using f̂ to estimate y from x , generated under (1) but independent
from D.
Expectation is taken over the (n + 1) (x, y) pairs : n to build f̂ , plus
the one over which we compute the error.
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A little more formally: biais-variance decomposition

Proposition
Under the previous hypotheses,

E[(y − f̂ (x))2] =
(
E[f̂ (x)]− f (x)

)2
+ E

[(
E[f̂ (x)]− f̂ (x)

)2
]

+ E[(y − f (x))2]

The first term is the squared bias of f̂ : the difference between its
mean (over the sample of D) and the true f .
The second term is the variance of f̂ : how much f̂ varies around its
average when the data change.
The third term is the Bayes error, and does not depend on the
estimator. The actual quantity of interest is the excess of risk
E[(y − f̂ (x))2]− E[(y − f (x))2].
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Back to our example
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Tradeoff between two types of error:
Sets of functions which are too simple cannot contain functions which
explain the data well enough:
these sets lead to estimators with a large bias.
Sets of functions which are too rich may contain functions which are
too specific to the observed sample:
these sets lead to estimators with a large variance.
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Biais-variance decomposition: proof

Reminder (König-Huygens)

For any real random variable Z , E
[
(Z − E[Z ])2

]
= E[Z 2]− E[Z ]2

E[(y − f̂ (x))2] =E[y2 − 2y f̂ (x) + f̂ (x)2]

=E[y2]− E[2y f̂ (x)] + E[f̂ (x)2]

=E[y ]2 + E[(y − E[y ])2]

− 2E[y ]E[f̂ (x)]

+ E[f̂ (x)]2 + E[(f̂ (x)− E[f̂ (x)])2]
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Biais-variance decomposition : perspective

Using a (rather general) model, we managed to start formalizing the
tradeoff introduced with our example.
We now generalize this formalization.
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A little more generally : structural risk minimization

We now suppose more generally that the observations are sampled
from a joint distribution P(x , y).
This does not necessarily mean that we assume a particular
probabilistic model: given a deterministic set of couples (x , y), P can
be their empirical distribution.
We also consider a loss function

L : Y × Y → R

L(y , y ′) quantifies the cost of the error made by predicting y ′ when
the true value is y .
Special case (our example): L(y , y ′) = (y − y ′)2.
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A little more generally : structural risk minimization

We look for an estimator f : X → Y minimizing

R(f ) =
∫
X×Y

L(y , f (x))dP = E[L(y , f (x))]. (2)

R is the risk of f : the average cost of using f to predict y from x over the
joint distribution.
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A little more generally : structural risk minimization

In practice, we cannot compute R(f ) because the distribution P is
unknown.
We therefore use a training set (D in the previous example) to
estimate R , for example through the empirical risk:

R̂(f ) =
1
n

n∑
i=1

L(yi , f (xi )). (3)

Empirical risk minimization : choose f minimizing R̂ .
We saw in our example that minimizing the empirical risk was not
enough to obtain a low risk R
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A little more generally : structural risk minimization

More generally, we can minimize the risk over a function space H
(polynomials of a certain degree in our example).
If R∗ is the Bayes risk, we can decompose the Bayes regret :

R(f )− R∗ =
(

R(f )− inf
g∈H

R(g)
)
+

(
inf

g∈H
R(g)− R∗

)
. (4)

The second term is the approximation error: the smallest excess of risk
we can reach using a function of H.
This is a bias term, which does not depend on the data but only on
the size of H.
The first term is the excess of risk of f with respect to the best
function in H.
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A little more generally : structural risk minimization

We consider f̂ obtained by minimization of the empirical risk over H:

f̂ ∈ argmin
g∈H

R̂(g)

We want to bound the excess of risk R(f̂ )− infg∈H R(g) ≥ 0
This term (estimation error) can be decomposed:

R(f̂ )− inf
g∈H

R(g) ∆
=R(f̂ )− R(f ∗H)

=R(f̂ )− R̂(f̂ )

+ R̂(f̂ )− R̂(f ∗H)

+ R̂(f ∗H)− R(f ∗H).
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A little more generally : structural risk minimization

R(f̂ )− inf
g∈H

R(g) =R(f̂ )− R(f ∗H)

=R(f̂ )− R̂(f̂ )

+ R̂(f̂ )− R̂(f ∗H)

+ R̂(f ∗H)− R(f ∗H).

Reminder :
R is the population risk, R̂ the empirical risk, an estimator.
f̂ is the estimator minimizing R̂ over H, f ∗H the one obtained by
minimizing R over H.
We therefore estimate at two levels: the function f and the risk R.

L. Jacob Statistical Learning September 15, 2014 45 / 61



A little more generally : structural risk minimization

R(f̂ )− inf
g∈H

R(g) = R(f̂ )− R̂(f̂ )

+ R̂(f̂ )− R̂(f ∗H)

+ R̂(f ∗H)− R(f ∗H).

The first term is the difference between the true risk and the
estimated risk, for our estimator of f .
This is a complex object to study. Statistical learning theory
(Vapnik and Chervonenkis) aims at bounding this quantity as a
function of n and the complexity of H.
The second term is nonpositive by construction.
The third one is easier to control as it involves a deterministic function
and the law of large numbers applies.
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A little more generally : structural risk minimization

We can however bound the first term:

R(f̂ )− R̂(f̂ ) ≤ sup
f ∈H

∣∣∣∣∣E[L(y , f (x))]− 1
n

n∑
i=1

L(yi , f (xi ))

∣∣∣∣∣ ,
and since this quantity also bounds the third term, we get

R(f̂ )− inf
g∈H

R(g) ≤ 2 sup
f ∈H

∣∣∣∣∣E[L(y , f (x))]− 1
n

n∑
i=1

L(yi , f (xi ))

∣∣∣∣∣ .
This bound of the estimation error suggests that it corresponds to a
variance term, which increases with the size of H.
The more complex H is, the more likely it is to contain a function for
which the empirical risk and the population risk are very different.
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A little more generally : structural risk minimization

We can make this notion of size more precise by introducing the
Rademacher complexity of H:

Definition
Let εi , i = 1, . . . , n i.i.d such that P(εi = 1) = P(εi = −1) = 1/2,
Zi , i = 1, . . . , n i.i.d data and H a space of functions defined over this
data, then

R(H) = Eεn1 ,Zn
1

[
sup
f ∈H

∣∣∣∣∣1n
n∑

i=1

εi f (Zi )

∣∣∣∣∣
]

is the Rademacher complexity of H.

Intuition: R measures the capacity of H to provide functions which align
with noise.
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is the Rademacher complexity of H.

This complexity increases with the size of H and decreases with the size n
of the sample.
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A little more generally : structural risk minimization

We can bound the mean estimation error in terms of the Rademacher
complexity of H.

Proposition

E(x ,y)n1
sup
f ∈H

∣∣∣∣∣E(x ,y)[L(y , f (x))]−
1
n

n∑
i=1

L(yi , f (xi ))

∣∣∣∣∣ ≤ 2R(H).

Therefore,

E(x ,y)n1

[
R(f̂ )− R∗

]
≤
(
min
g∈H

R(g)− R∗
)
+ 4R(H).
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Therefore

E(x ,y)n1

[
R(f̂ )− R∗

]
≤
(
min
g∈H

R(g)− R∗
)
+ 4R(H),

This result illustrates a little more generally the bias variance tradeoff
for risk minimization.
It makes explicit the link between complexity and sample size: lots of
points are needed to estimate in large H (otherwise R(H) is large).
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ERM consistency and SRM

Therefore

E(x ,y)n1

[
R(f̂ )− R∗

]
≤
(
min
g∈H

R(g)− R∗
)
+ 4R(H),

Concretely, this analysis is at the core of two major elements of statistical
learning (Vapnik and Chervonenkis, late 60’s):

It is used in learning theory to establish consistency of empirical risk
minimization: only families with bounded complexity allow to learn by
ERM (are consistent).
It also suggests a strategy to design estimators: build small
classes H which we think contain good approximations.
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A little more generally : structural risk minimization

E(x ,y)n1

[
R(f̂ )− R∗

]
≤
(
min
g∈H

R(g)− R∗
)
+ 4R(H),

Practical procedure proposed by Vapnik and Chervonenkis: structural risk
minimization:

1 Define nested function sets of increasing complexity.
2 Minimize the empirical risk over each family.
3 Choose the solution giving the best generalization performances.
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A little more generally : structural risk minimization

Structural risk minimization:
1 Define nested function sets of increasing complexity.
2 Minimize the empirical risk over each family.
3 Choose the solution giving the best generalization performances.

We will study practical instances of this strategy later in this class.
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A little more generally : structural risk minimization

Proof of the previous bound (inspired from Peter Bartlett’s slides)

E(x ,y)n1
sup
f ∈H

∣∣∣∣∣E(x ,y)[L(y , f (x))]−
1
n

n∑
i=1

L(yi , f (xi ))

∣∣∣∣∣

= E(x ,y)n1
sup
f ∈H

∣∣∣∣∣E(x ′,y ′)n1

[
1
n

n∑
i=1

L(y ′i , f (x
′
i ))

]
− 1

n

n∑
i=1

L(yi , f (xi ))

∣∣∣∣∣
= E(x ,y)n1

sup
f ∈H

∣∣∣∣∣E(x ′,y ′)n1

[
1
n

n∑
i=1

L(y ′i , f (x
′
i ))−

1
n

n∑
i=1

L(yi , f (xi ))

]∣∣∣∣∣
= E(x ,y)n1

sup
f ∈H

∣∣∣∣∣E(x ′,y ′)n1

[
1
n

n∑
i=1

L(y ′i , f (x
′
i ))− L(yi , f (xi ))

]∣∣∣∣∣
≤ E(x ,y)n1

E(x ′,y ′)n1

[
sup
f ∈H

∣∣∣∣∣1n
n∑

i=1

L(y ′i , f (x
′
i ))− L(yi , f (xi ))

∣∣∣∣∣
]
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A little more generally : structural risk minimization

We now introduce εi , i = 1, . . . , n ∈ {−1, 1}. Notice that

E sup
f ∈H

∣∣∣∣∣1n
n∑

i=1

L(y ′i , f (x
′
i ))− L(yi , f (xi ))

∣∣∣∣∣
= E sup

f ∈H

∣∣∣∣∣1n
n∑

i=1

εi
(
L(y ′i , f (x

′
i ))− L(yi , f (xi ))

)∣∣∣∣∣ ,
since the data is i.i.d, switching the two terms does not affect the
distribution of the sup.
The equality holds for any choice of εi , so we can take the expectation over
a uniform i.i.d choice.
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A little more generally : structural risk minimization

Finally,

E sup
f ∈H

∣∣∣∣∣1n
n∑

i=1

εi
(
L(y ′i , f (x

′
i ))− L(yi , f (xi ))

)∣∣∣∣∣
≤ E sup

f ∈H

∣∣∣∣∣1n
n∑

i=1

εiL(y ′i , f (x
′
i ))

∣∣∣∣∣+ E sup
f ∈H

∣∣∣∣∣1n
n∑

i=1

εiL(yi , f (xi ))

∣∣∣∣∣
= 2E sup

f ∈H

∣∣∣∣∣1n
n∑

i=1

εiL(yi , f (xi ))

∣∣∣∣∣ = 2R(H).

This proof technique is called symmetrization.
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More intuition about the complexity of a set of functions:
VC dimension

In practice, we sometimes use VC dimension of a set of functions to
bound the Rademacher complexity.
We restrict ourselves to the sets H of binary valued functions (useful
for classification).
We say a set Z = (Z1, . . . ,Zn) is shattered by H if
Card {f (Z1), . . . , f (Zn)|f ∈ H} = 2n.
Interpretation: we can find an f ∈ H assigning 0 to any subset of Z
and 1 to its complement.
The VC dimension ν(H) of H is the largest integer n such that there
exists a set (Z1, . . . ,Zn) shattered by H.
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More intuition about the complexity of a set of functions:
VC dimension

We extend the VC dimension to real valued functions by thresholding
functions at 0.
Linear functions in p dimensions: HL = {fθ(x) = sign(θ>x), θ ∈ Rp}.
Includes linear functions and polynomials in our introduction.
We can show that ν(HL) = p.
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More intuition about the complexity of a set of functions:
VC dimension

Proof of ν(HL) ≥ p: we build a set of p points in p dimensions
shattered by a function of HL. Let Ep be the canonical basis of Rp.
For any set y ∈ {0, 1}p and any i = 1, . . . , n, fθ(ei ) = yi by choosing
θi = yi .
Proof of ν(HL) < p + 1: no set of p + 1 points in p dimensions can
be shattered by a linear function.
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More intuition about the complexity of a set of functions:
VC dimension

Let x1, . . . , xp+1 ∈ Rp. One of the points can necessarily be written as
a linear combination of the p others.

Without loss of generality, let us write xp+1 =
∑p

i=1 αixi and
fθ(xp+1) =

∑p
i=1 αiθ

>xi .
Let y = (sign(α1), . . . , sign(αp),−1), and assume there exists θ ∈ Rp

such that sign(θ>xi ) = yi , i = 1, . . . , p.
Then necessarily sign(θ>xp+1) = sign(

∑p
i=1 αiθ

>xi ) = 1 since
sign(θ>xi ) = sign(αi ), i = 1, . . . , p.
y can therefore not be obtained by any function of HL, and no set of
p + 1 vectors in Rp is shattered by HL.
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Summary

We saw how the risk could generally be decomposed as a term of
bias/approximation and a term of variance/estimation.
This decomposition highlights the tradeoff that needs to be dealt with
in inference. This tradeoff is related to the complexity of the set of
functions under consideration:

Sets too simple lead to a large approximation error.
Sets too large lead to a large estimation error.

We defined this notion of complexity more precisely (Rademacher,
VC), and saw it also depended on the number of samples.
These ideas are crucial in modern applications, where we sometimes
have few samples in high dimension.
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