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Homework + Project

 Homework 1: due Thursday November 6, 2014.

 Homework 2: available on website

 Homework 2 and 3: only required for UJF students
► Since course has less credits for ENSIMAG students

 Project:
► Select a paper from the website, or find your own.
► Due January 5th 2015.
► Possible to do in teams of 2 students
► Multiple people/groups can pick the same paper.



Summary of previous lecture

 Definition and properties of reproducing kernel Hilbert spaces.



Reproducing kernel Hilbert spaces

 Let X be a set and H a class of functions over X 

forming a Hilbert space with inner product 

 The function         is called a reproducing kernel of H if

► H contains all functions of the form

► For every x in X, and f in H, the reproducing property holds:

 If a reproducing kernel exists, then H is called a reproducing kernel 
Hilbert space.

H⊂RX

∀ x∈X : k x : t→K (x ,t )

K : X 2
→R

f (x)=〈 f , k x〉H

〈 . , .〉H



Reproducing kernel Hilbert spaces: example 1

 Let H be the class of linear functions over a real vector space X 

forming a Hilbert space with inner product 
 The function         is called a reproducing kernel of H if

► H contains all functions of the form

► For every x in X, and f in H, the reproducing property holds:

 If a reproducing kernel exists, then H is called a reproducing kernel 
Hilbert space.
► It this the case ?
► Yes, for the linear kernel:

H={f w : f w(x)=wT x}

∀ x∈X : K x : t→K (x ,t )

K : X 2
→R

f (x)=〈 f , K x 〉H

〈 f w , f v 〉H=wT v

K (x , t)=xT t



Reproducing kernel Hilbert spaces: example 2

 Let H be the class of all real functions over a finite set X of size n

forming a Hilbert space with inner product 
 The function         is called a reproducing kernel of H if

► H contains all functions of the form

► For every x in X, and f in H, the reproducing property holds:

 If a reproducing kernel exists, then H is called a reproducing kernel 
Hilbert space.
► It this the case ?
► Yes, for the identity kernel:

 As before [z]=1 if the expression z is true, zero otherwise.

H={f ∈Rn
}

∀ x∈X : K x : t→K (x ,t )

K : X 2
→R

f (x)=〈 f , K x 〉H

〈 f 1 , f 2〉H=∑x∈X
f 1(x) f 2(x)

K (x , t)=[x=t ]



Reproducing kernel Hilbert spaces: results

 Theorem: If H is an RKHS, then it has a unique reproducing kernel. 
Conversely, a function K can be the reproducing kernel of at most 
one RKHS.

 Therefore, we can talk of “the” kernel of an RKHS, and “the” RKHS 
of a kernel.

 Theorem: A function     is positive definite if and only if it is a 
reproducing kernel.

 Theorem (Aronszajn,1950): K is a positive definite kernel on the set 
X if and only if there exists a Hilbert space H and a mapping

such that for any x and x' in X:

K : X 2
→R

Φ : X→H

K (x , x ')=〈ϕ(x),ϕ(x ')〉H



Proof of Aronzsajn's theorem: first direction

 Suppose K is positive definite over a set X, 

then it is the reproducing kernel of a Hilbert space 

 Define the mapping                  as

 Then by the reproducing property 

we have:

Φ : X→H

〈ϕ(x) ,ϕ( y)〉H=〈k x , k y 〉H=k (x , y).

H⊂RX

∀ x∈X : ϕ(x)=k x=k (x , .)

∀(x , y)∈X 2

f (x)=〈 f , k x〉H



Proof of Aronzsajn's theorem: second direction

 Suppose there exists a Hilbert space             and a mapping

such that for any x and x' in X:

 Then we have that k is positive definite since

Φ : X→H

〈ϕ(x) ,ϕ( y)〉H=k (x , y).

H⊂RX

∑i=1

n

∑ j=1

n

αiα j k (xi , x j)=∑i=1

n

∑ j=1

n

αiα j 〈ϕ(xi) ,ϕ(x j)〉H

=∑i=1

n

αi 〈ϕ(xi) ,∑ j
α jϕ(x j)〉H

=〈∑i=1

n

αiϕ(xi) ,∑ j
α jϕ(x j)〉H

=∥∑i=1

n

αiϕ(xi)∥H≥0



Plan for this lecture

 Kernel trick
► Distance between points.
► Distance between sets and points.
► Data centering.

 Considerations on the RKHS norm
► Rademacher complexity for RKHS balls. 
► Function smoothness in RKHS.
► Representer theorem.

 Supervised kernel methods
► Ridge regression.
► SVM.
► Logistic discriminant.

 Fisher kernels



The kernel trick

 Choosing a p.d. kernel K on a set X amounts to embedding the data 
in a Hilbert space: there exists a Hilbert space H and a mapping

such that for all x and x' in X

 This mapping might not be explicitly given, nor convenient to work 
with in practice, e.g. for very large or even infinite dimensions.

 The “trick” is to work implicitly in the feature space H by means of 
kernel evaluations.

k (x , x ' )=〈ϕ(x) ,ϕ(x ')〉H.

Φ : X→H



The kernel trick

 Any algorithm to process finite dimensional vectors that can be 
expressed only in terms of pairwise inner products can be applied to 
potentially infinite-dimensional vectors in the feature space of a p.d. 
kernel by replacing each inner product evaluation by a kernel 
evaluation.

 This statement is trivially true, since the kernel computes the inner 
product in the associated RKHS.

 The practical implications of this “trick” are important.

 Vectors in the feature space are only manipulated implicitly, through 
pairwise inner products, there is no need to explicitly represent any 
data in the feature space.



Example 1: computing distances in the feature space

 
d k (x , x ')=∥ϕ(x)−ϕ(x ' )∥H

2

=〈ϕ(x)−ϕ(x ' ) ,ϕ(x)−ϕ(x ' )〉H

=〈ϕ(x) ,ϕ(x)〉H+〈ϕ(x ') ,ϕ(x ' )〉H−2 〈ϕ(x) ,ϕ(x ')〉H

=k (x , x)+k (x ' , x ' )−2k (x , x ' )



Distance for the Gaussian kernel

 
 The Gaussian kernel with bandwidth 

sigma is given by

 In the feature space, all points are 
embedded on the unit sphere since

 The distance in the feature space 
between x and x' is given by

k (x , x ' )=exp (−∥x−x '∥2 /(2σ
2
))

d k (x , x ')=√2 [1−exp (−∥x−x '∥2
/(2σ2

))]

k (x , x)=∥ϕ(x)∥H
2
=1



Example 2: distance between a point and a set

 
 Let S be a finite set of points in X: 

 How to define and compute the similarity between any point x in X and 
the set S?

 The following is a simple approach:

► Map all points to the feature space 

► Summarize S by the barycenter of the points

► Define the distance between x and S as

d k (x ,S)=∥ϕ(x)−m∥H

m=
1
n
∑i=1

n
ϕ(x i)

S=(x1, ... , xn)



Example 2: distance between a point and a set

=∥ϕ(x)−
1
n
∑i=1

n
ϕ(x i)∥H

=√k (x , x)−2
n∑i=1

n

k (x , x i)+
1
n2∑i , j=1

n

k (xi , x j)

d k (x ,S)=∥ϕ(x)−m∥H



Uni-dimensional illustration

 
 Let S = {2,3}, plot f(x) = d(x,S).

Linear kernel Gaussian kernel, Gaussian kernel,

with σ=1 with σ=0.2



2D illustration

 
 Let S = { (1,1)', (1,2)', (2,2)' }, plot f(x) = d(x,S).

Linear kernel Gaussian kernel, Gaussian kernel,

with σ=1 with σ=0.2



Application to discrimination

 
 Consider a set of points from positive class P = { (1,1)', (1,2)' }
 And a set of points from the negative class N={ (1,3)', (2,2)' }
 Plot 

Linear kernel Gaussian kernel, Gaussian kernel,

with σ=1 with σ=0.2

=∥ϕ(x)−mP∥H
2
−∥ϕ(x)−mN∥H

2

=
2
n∑xi∈N

k (x , xi)−
2
n∑xi∈P

k (x , x i)+constant

f (x)=dk (x , P)
2
−d k (x , N )

2



Example 3: centering data in feature space

 
 Let S be a set of n points in X.
 Let K be the kernel matrix generated by the p.d. kernel k(.,.).
 Let m be the barycenter in the feature space of the points in S.
 How to compute the kernel matrix when the points are centered on m?

h(x , x ' )=〈ϕ(x)−m,ϕ(x ' )−m〉H



Example 3: centering data in feature space

 
 Substitution of the barycenter gives

 Or, in matrix notation we get

where for all i,j: 

h(x i , x j)=〈ϕ(x i)−m ,ϕ(x j)−m〉H
=〈ϕ(x i) ,ϕ(x j)〉H−〈m,ϕ(x i)+ϕ(x j)〉H+〈m,m〉H

=k (x i , x j)−
1
n
∑k=1

n

(k (xi , xk )+k (xk , x j))+
1

n2∑k ,l=1

n
k (xk , x l)

H=K−KU−UK+UKU=(I−U )K ( I−U )

U i , j=1 /n



Plan for this lecture

 Kernel trick
► Distance between points.
► Distance between sets and points.
► Data centering.

 Considerations on the RKHS norm
► Rademacher complexity for RKHS balls. 
► Function smoothness in RKHS.
► Representer theorem.

 Supervised kernel methods
► Ridge regression.
► SVM.
► Logistic discriminant.

 Fisher kernels



Recap of Rademacher complexity

 Definition of Rademacher complexity of a function class H over X
► Let be i.i.d. variables with

► Let          be i.i.d. variables

 Intuitively measures how well functions in H can align to noise.

 Rademacher complexity bounds the expected estimation error in the 
expected risk

► Average taken over training sets that generate our estimator

σ i , i=1,... , n

Radn(H )=EX ,σ [supf∈F B
∣
2
n∑i=1

n
σi f (x i)∣]

p(σi=+1)=p(σi=−1)=1 /2

x i∈X , i=1,... , n

E(xi , yi )1=1,. ..,n
[R( f̂ )−R* ]=(ming∈H R (g)−R*)+(R (f̂ )−ming∈H R (g))

≤(ming∈H R(g)−R*)+4 Radn(H )



Rademacher Complexity in RKHS balls

 Suppose X is endowed with a positive definite kernel k, and 
associated RKHS H.

 Consider the class of functions f in H in a ball of radius B in H.

 Rademacher complexity of this class can be upper bounded as

 Therefore, by plugging this into the general Rademacher risk bound, 
the Bayes regret of an estimator in this class can be bounded by

► First term is the bias term that decreases with B
► Second term is variance term that increases (linearly) with B.

Radn(FB)≤
2B√Ek (x , x)

√n

FB={f ∈H : ∥f∥H≤B}

E(xi , yi ), i=1,. .. , n [R( f̂ )−R* ]≤(ming∈FB
R(g)−R* )+4

2B√Ek (x , x)

√n



Rademacher Complexity in RKHS balls, proof (1/2)

Radn(FB)=EX ,σ [supf∈FB
∣
2
n∑i=1

n
σ i f (x i)∣]

=EX ,σ [supf∈FB
∣〈 f , 2

n∑i=1

n
σi k xi〉∣]

=EX ,σ [B∥2
n∑i=1

n
σ i k xi

∥]

≤EX ,σ [supf∈FB
∥f∥×∥

2
n∑i=1

n
σi k xi

∥]

=
2B
n

EX ,σ [√∥∑i=1

n
σi k xi

∥H
2 ]

≤
2B
n √EX ,σ [∥∑i=1

n

σ ik xi
∥H

2 ]
=

2B
n √EX ,σ [∑i , j=1

n

σiσ j k (x i , x j)]

By RKHS

By Cauchy-Schwarz

By Jensen's inquality



Rademacher Complexity in RKHS balls, proof (2/2)

 But for i.i.d. and uniform 

we have that   is one if i=j and zero otherwise. Therefore:

Radn(FB)≤
2B
n √EX ,σ [∑i , j=1

n

σ iσ j k (x i , x j)]

σ i∈{−1,+1}

E [σ iσ j ]

=
2B
n √EX [∑i , j=1

n

Eσ [σiσ j ] k (x i , x j)]

=
2B
n √EX [∑i=1

n

k (x i , x i)]

=
2B√EX [k (x , x)]

√n



Rademacher Complexity in RKHS balls

 Consider the class of functions f in H in a ball of radius B in H.

 The Rademacher complexity of this class can be upper bounded as

 Therefore, by plugging this into the general Rademacher risk bound, 
the Bayes regret of an estimator in this class can be bounded by

 For different choices of B find estimator by minimizing empirical risk

► Or equivalently for different lambda

Radn(FB)≤
2B√Ek (x , x)

√n

FB={f ∈H : ∥f∥H≤B}

E(xi , yi ), i=1,. .. , n [R( f̂ )−R* ]≤(ming∈FB
R(g)−R* )+4

2B√Ek (x , x)

√n

f̂=argminf∈FB

1
n
∑i=1

n
L( y , f (x i))

f̂=argminf∈H λ
1
2
∥f∥H

2
+

1
n
∑i=1

n
L( y , f (x i))



Smoothness of functions in RKHS

 Let f be a function in a RKHS H with associated kernel k over X

 Consider the difference in function evaluations for two points x and 
x' in X

 The RKHS norm of f gives the Lipschitz constant of f, for the metric 

 In particular for we have

∣f (x)−f (x ')∣=∣〈f ,ϕ(x )〉−〈 f ,ϕ(x ')〉∣

=∣〈f ,ϕ(x)−ϕ(x ' )〉∣

≤∥f∥H×∥ϕ(x)−ϕ(x ' )∥H

d k (x , x ')=∥ϕ(x)−ϕ(x ' )∥H

f=∑i=1

n
αik (x i , .)

∥f∥H
2
=〈∑i=1

n
αi k(x i , .) ,∑i=1

n
αik (xi , .)〉H=∑i , j

αiα jk (x i , x j)=α
T K α



Representer Theorem

 Let k be a positive definite kernel over X, and let H be the RKHS 
associated with k. Let 
►                       with 
►                           Be a function that is strictly increasing in its last 

variable

 Then the solution f* of the problem

has the form

x1, ... , xn∈X

Ψ : Rn+1 → R

min f∈H Ψ(f (x1) , ... , f (xn) ,∥f∥H)

f *
=∑i=1

n
αik (x i , .)

S={x1, ... , xn}



Proof Representer Theorem (1/2)

 Let       be the subspace of H spanned by 

 Since        is a finite dimensional subspace of H we can decompose 
any function in H with respect to this subspace by orthogonal 
projection

with                 and 

f=f S+f ⊥

f ⊥⊥H S

H S

H S
={f∈H : f (x)=∑i=1

N
αik (x , x i) ,(α1, ... ,αn)∈R

n
}

k ( . , x i) , x i∈S

H S

f S∈H
S



Proof Representer Theorem (2/2)

 Since H is a RKHS it holds that
and therefore

 By Pythagoras theorem in H we have that

 Therefore, we have that 

with equality if and only if 

 Hence f* is necessarily in 

∥f∥H
2
=∥f S∥H

2
+∥f ⊥∥H

2

∀ i=1,. .. ,n : f ⊥ (xi)=〈 f ⊥ , k ( . , x i)〉=0

H S

∀ i=1,. .. ,n : f (x i)=f S(xi)

Ψ(f (x1) , ... , f (xn) ,∥f∥)≥Ψ(f S(x1) , ... , f S(xn) ,∥f S∥)

∥f ⊥∥H=0



Representer Theorem

 The representer theorem has an important consequence for us.

 Consider any penalized empirical risk minimization method,
where the penalty is in terms of the RKHS norm of f:

 Then the solution has the form

f̂=argminf∈H ∑i=1

n
L( y i , f (x i))+λΩ(∥f∥H )

f̂=∑i=1

n
αik (x i , .)



Plan for this lecture

 Kernel trick
► Distance between points.
► Distance between sets and points.
► Data centering.

 Considerations on the RKHS norm
► Rademacher complexity for RKHS balls. 
► Function smoothness in RKHS.
► Representer theorem.

 Supervised kernel methods
► Ridge regression.
► SVM.
► Logistic discriminant.

 Fisher kernels



Regression

 
 Let S be a set of n points in X:

 With each element we have an associated target value in R

 Our goal is to find a function f to predict y by f(x), 

S=(x1, ... , xn)

( y1, ... , y n)

f : X→R



Penalized least-squares regression

 Let us use the L2 loss to quantify the error of f with respect to y:

 Fix a set of functions H that is the RKHS of a p.d. kernel k on X.
 We estimate f by minimizing the penalized empirical risk:

 This regularization has two effects: 
► It prevents overfitting by penalizing non-smooth f, and bounds the 

Rademacher complexity
► By the representer theorem, it simplifies the solution to functions 

that are given by a linear combination of kernel evaluations:

L(f (x) , y)=( y−f (x))2

f̂=argmin f∈H {1n∑i=1

n
L(f (x i) , y i)+λ∥f∥H

2 }

f̂ (x)=∑i=1

n
αiK (x i , x)



Dual formulation

 Let us now redefine the minimization problem in terms of the alpha's.
 Let K be the kernel matrix for the points in S, and 
 Then we can write 

 Moreover, the squared norm of f can be expressed as 

 Therefore, the problem is equivalent to

α=(α1, ... ,αn)∈R
n

argmin
α∈Rn {1n (K α−y)T (K α− y)+λαT K α}

( f̂ (x1) , ... , f̂ (xn))
T
=K α

∥f̂∥H
2
=α

T K α

f̂ (x)=∑i=1

n
αiK (x i , x)



Dual formulation

 Since this is a convex and differentiable function of alpha, its minimum 
can be found by setting the gradient w.r.t. alpha to zero.

 Thus, the kernel (in the sense of zero projection) of K should contain 

argmin
α∈Rn {1n (K α−y)T (K α− y)+λαT K α}

2
n
K (K α− y)+2λK α=0

K (K α− y+n λα)=0

K ((K+nλ I )α− y )=0

(K+n λ I )α− y



Dual formulation

 Since K is symmetric, it can be diagonalized in an orthonormal basis,

and the kernel Ker(K) corresponds to the subspace with zero on the 
diagonal in D, and 

 This basis remains the same for 

since

which has diagonal elements of 

 The problem is thus equivalent to 

Ker (K )⊥Im(K )

(K+n λ I )α− y∈Ker (K )

K (K+λ n I )−1

K=VDV T

VDV T (VDV T+λ n I )
−1
=VD (D+λ n I )−1V T

dii

dii+nλ

α−(K+n λ I )−1 y∈Ker (K )

α=(K+n λ I )−1 y+ϵ , with K ϵ=0



Dual formulation

 However, if 

then

and therefore, f=f'.

 Therefore, the solution to the original problem is therefore given by

with 

 Note that when lambda goes to zero, the method converges to the 
classical unregularized least-squares solution. When lambda goes to 
infinity then the solution converges to f=0.

α '=α+ϵ , with K ϵ=0

∥f−f '∥H
2 =(α−α ')T K (α−α ')=0

α=(K+n λ I )−1 y

f̂ (x)=∑i=1

n
αiK (x i , x)



Example solutions for different regularization values



Plan for this lecture

 Kernel trick
► Distance between points.
► Distance between sets and points.
► Data centering.

 Considerations on the RKHS norm
► Rademacher complexity for RKHS balls. 
► Function smoothness in RKHS.
► Representer theorem.

 Supervised kernel methods
► Ridge regression.
► SVM.
► Logistic discriminant.

 Fisher kernels



Support vector machines revisited

 Quality of classification function measured using hinge-loss 

 Recall: convex and piecewise linear upper bound on zero/one loss.
► Zero if point on the correct side of the margin
► Otherwise given by absolute difference from score at margin

L( y i , f (x i))=max (0,1− y i f (xi))



Support vector machines: optimization problem

 Quality of classification function measured using hinge-loss 

 Regularization with the norm of f in RKHS associated with kernel k.

 Estimator given by minimizing penalized empirical risk over f in H

 This is a convex, but not differentiable objective function. 

L( y i , f (x i))=max (0,1− y i f (xi))

f̂=argminf∈H {1n∑i=1

n
L(f (x i) , y i)+λ∥f∥H

2 }



Support vector machines: reformulated optimization 

 Re-formulate as a constrained problem using slack variables 

 Rewrite the constraints as a conjunction of linear constraints:

f̂=argmin f∈H ,ξ∈Rn {1n∑i=1

n
ξi+λ∥f∥H

2 }
subject to: ξi≥L(f (x i) , y i)

f̂=argmin f∈H ,ξ∈Rn {1n∑i=1

n
ξi+λ∥f∥H

2 }
subject to: ξi≥0 and ξi≥1− y i f (xi)

L( y i , f (x i))=max (0,1− y i f (xi))



Support vector machines: reformulated optimization 

 By the representer theorem we have that

 Rewrite problem in terms of alpha's

 This is a standard quadratic program, with 2n variables and 
constraints. Standard QP solvers are suitable for n < 10^4 roughly.

 Highly efficient specific SVM solvers available for much larger 
problems, in particular for linear SVM case.

f̂ (x)=∑i=1

n
αiK (x i , x)

f̂=argmin
α∈Rn ,ξ∈Rn {1n∑i=1

n
ξi+λα

T K α}
subject to: ξi≥0 and y i∑ j

α j k (x i , x j)+ξi−1≥0



Support vector machines: reformulated optimization 

 Finally, let us change the notation slightly, from 

 To the form

 The “cost parameter” C has a natural interpretation in the final 
solution of the optimization problem.

f̂=argmin
α∈Rn ,ξ∈Rn {1n∑i=1

n
ξi+λα

T K α}
subject to: ξi≥0 and y i∑ j

α j k (x i , x j)+ξi−1≥0

f̂=argmin
α∈Rn ,ξ∈R n {C∑i=1

n
ξi+

1
2
α

T K α}
subject to: ξi≥0 and y i∑ j

α j k (x i , x j)+ξi−1≥0

C=1 /(2n λ)



Support vector machines: Lagrangian

 We introduce Langrange multipliers for the inequality constraints.
 Define the Langrangian of the problem as

 The Lagrangian can be written in matrix-vector notation as

 Where Y is the diagonal matrix with 

L(α ,ξ ,μ , ν)=C∑i=1

n
ξi+

1
2
αT K α

−∑i=1

n
μi ( y i∑ j

α jk (x i , x j)+ξi−1)−∑i=1

n
νiξi

L(α ,ξ ,μ , ν)=C ξT 1+
1
2
α

T K α−μTY K α−μT
ξ+μ

T 1−νT ξ

=ξ
T
(C1−μ−ν)+μT 1+

1
2
α

T K α−μTY K α

Y ii= y i



Support vector machines: Lagrangian

 The Lagrangian is convex quadratic in alpha, and is therefore 
minimized when gradient is zero, similar to regression case

 Lagrangian is linear in xi. Minimum equal to minus infinity, except 
when gradient with respect to xi is zero:

∇ ξL=CI−μ−ν=0

μ+ν=C I

L(α ,ξ ,μ , ν)=ξT (C1−μ−ν)+μT 1+
1
2
αT K α−μTY K α

∇αL=K α−KY μ=K (α−Y μ)=0

α=Y μ



Support vector machines: Lagrangian

 We obtain the Lagrange dual function as

 Plugging in the optimal alpha we get 

 Adding the minimization over xi we get

q(μ , ν)=infα ,ξL(α ,ξ ,μ , ν)

q(μ ,ν)=infα L(α ,ξ ,μ , ν)={μ
T 1−

1
2
μTYKY μ : if ν+μ=1C

−∞ : otherwise }

L(α ,ξ ,μ , ν)=ξT (C1−μ−ν)+μT 1+
1
2
αT K α−μTY K α

infα L(α ,ξ ,μ ,ν)=ξ
T (C1−μ−ν)+μT 1−

1
2
μTY K Y μ

α=Y μ



Support vector machines: dual problem

 The dual problem consists in maximizing the dual function q, for 
non-negative Lagrange multipliers:

 

 Clearly, for the solution we have
 And thus:
 Therefore, the dual problem is equivalent to 

maxμ , νq(μ , ν)
subject to: μ≥0, ν≥0

q(μ ,ν)=infα L(α ,ξ ,μ , ν)={μ
T 1−

1
2
μTYKY μ : if ν+μ=1C

−∞ : otherwise }

ν=1C−μ≥0

μ≤1C

max0≤μ≤1C {μT 1−
1
2
μT YKY μ}



Support vector machines: dual problem

 Once the dual problem is solved, we can use it to obtain the 
corresponding alpha vector by     and equivalently

 Therefore, we conclude that 
 By complementary slackness, for the solution we have 

 Equivalently, in terms of alpha we have

μ(YK α+ξ−1)=0
νξ=0

max0≤μ≤1C {μT 1−
1
2
μT YKY μ}

α=Y μ μ=Y α

0≤ y iαi≤C

α(YK α+ξ−1)=0
(C1−Y α)ξ=0



Support vector machines: dual problem

 If        then by the second constraint   , and by feasibility we 
therefore conclude that 

► Thus, points with            are on the correct side of the margin.

 If     then both constraints are active for the i-th point. 
Which means that         and thus that
► Thus these points are on the margin.

 If           then the second constraint is not active,               while 
the first one is:
► Thus these points are on the wrong side of the margin

αi=0

y i∑ j=1

n
α j K ij= y i f (x i)≥1

α(YK α+ξ−1)=0
(C1−Y α)ξ=0

ξ i=0

0< y iαi<C
ξ i=0 y i∑ j=1

n
α j K ij= y i f (x i)=1

αi=C

αi=0

ξ i≥0
y i f (xi)=1−ξ≤1



Support vector machines: geometric interpretation



Support vector machines: geometric interpretation

αi=0

αi=0

αi=0

αi=0

αi=0

αi=0

αi=0

y iαi=C

y iαi=C

y iαi=C

0< y iαi<C

0< y iαi<C

0< y iαi<C

0< y iαi<C



Support vector machines

 The data points with non-zero alpha are called the support vectors.

 Only support vectors are relevant for the classification of new data:

► SV is the set of support vectors

 Depending on the problem, the solution can be sparse in alpha.
► Leads to fast algorithms to identify the subset of non-zero alphas.
► Makes classification of new points fast, since only a small 

number of kernel evaluations is needed.

f (x )=∑i=1

n
αik (x i , x)=∑i∈SV

αi k (x i , x)



Plan for this lecture

 Kernel trick
► Distance between points.
► Distance between sets and points.
► Data centering.

 Considerations on the RKHS norm
► Rademacher complexity for RKHS balls. 
► Function smoothness in RKHS.
► Representer theorem.

 Supervised kernel methods
► Ridge regression.
► SVM.
► Logistic discriminant.

 Fisher kernels



Kernel multi-class logistic discriminant

 Map score functions to class probabilities with soft-max

 Loss function given by negative log-likelihood

 Consider class of functions in H which is the RKHS of a p.d. kernel k.

 Estimate the score functions by penalized empirical risk minimization

 By trivial extension of the representer theorem, we have that for the 
optimal score functions

p( y=c∣x)=
exp(f c(x))

∑c '=1

C
exp(f c '(x))

L( y , {f c(x)})=−ln p( y∣x)=−f y (x)+ ln∑c=1

C
exp(f c(x))

min{f c∈H } λ
1
2
∑c=1

C
∥f c∥H

2 +∑i=1

n
L( y i , {f k (x i)})

f c(x)=∑i=1

n
αic k (xi , x)



Kernel multi-class logistic discriminant

 We can now rewrite the optimization problem in terms of the alphas.
 Let us define

and 

 Now consider the score function of class c for a training point

 Now consider the optimization problem w.r.t. alpha 

► Where we expanded the loss function as

min
{αc∈Rn }

λ
1
2
∑c=1

C
αc

T K αc+∑i=1

n
ln∑c '=1

C
exp(αc '

T k i)−∑i=1

n
α yi

T k i

αc=(α1c , ... ,αnc)
T∈Rn

min{f c∈H } λ
1
2
∑c=1

C
∥f c∥H

2 +∑i=1

n
L( y i , {f c(x i)})

f c(xi)=∑ j=1

n
α jc k (x j , x i)=αc

T k i

k i=(k (x i , x1) , ... , k (x i , xn))
T
∈Rn

L( y i ,{f c (x i)})=−f yi
(x i)+ln∑c=1

C
exp(f c(xi))



Kernel multi-class logistic discriminant

 Consider the gradient w.r.t. the alphas

 Let us define the n x C matrix that collects all alphas 

► Where 

and
► Note that P depends on A ! 

∇αc
=λ K αc+∑i=1

n
p( y=c∣x i)k i−∑i : yi=c

k i

min
{αc∈Rn }

λ
1
2
∑c=1

C
αc

T K αc+∑i=1

n
ln∑c '=1

C
exp(αc '

T k i)−∑i=1

n
α yi

T k i

=λ K αc+∑i=1

n

( p( y=c∣x i)−[ y i=c ])k i

A=(α1 , ... ,αc)

∇ A=λ K A+K (Ỹ−P)=K (λ A+Ỹ−P)

Ỹ ic=[ y i=c ]
P ic=p( y=c∣x i)



Plan for this lecture

 Kernel trick
► Distance between points.
► Distance between sets and points.
► Data centering.

 Considerations on the RKHS norm
► Rademacher complexity for RKHS balls. 
► Function smoothness in RKHS.
► Representer theorem.

 Supervised kernel methods
► Ridge regression.
► SVM.
► Logistic discriminant.

 Fisher kernels



Fisher kernels

 Proposed by Jaakkola & Haussler, “Exploiting generative models in 
discriminative classifiers”,In Advances in Neural Information Processing 
Systems 11, 1998.

 Motivated by the need to represent variably sized objects in a vector space, 
such as sequences, sets, trees, graphs, etc., such that they become 
amenable to be used with linear classifiers, and other data analysis tools 

 A generic method to define kernels over arbitrary data types based on 
generative statistical models.

p( x ;θ) , x∈X , θ∈RD



Fisher kernels

 Given a generative data model 

 Represent data x in X by means of the gradient of the data log-likelihood, or 
“Fisher score”:

 Define a kernel over X by taking the scaled inner product between the Fisher 
score vectors: 

 Where F is the Fisher information matrix F:

 Note 1: The Fisher kernel is a positive definite kernel.

 Note 2: The Fisher kernel is invariant for reparametrization of the model.

g ( x)=∇θ ln p( x) ,

g (x)∈RD

p( x ;θ) , x∈X , θ∈RD

k (x , y)=g ( x)T F−1 g ( y)

F=E X [g (x)g (x)
T ]



Fisher kernels – relation to generative classification

 Suppose we make use of generative model for classification via Bayes' rule
► Where x is the data to be classified, and y is the discrete class label

and

 Classification with the Fisher kernel is at least as powerful as using the Fisher 
kernel obtained using the marginal distribution p(x) on X.

 This becomes useful when the class conditional models are poorly estimated, 
either due to bias or variance type of errors.

 In practice often used without class-conditional models, but direct generative 
model for the marginal distribution on X.

p( y∣x)= p( x∣y) p( y)/ p( x) ,

p( x)=∑k=1

K
p( y=k ) p(x∣y=k )

p( x∣y)= p(x ;θy) ,

p( y=k )=πk=
exp(αk )

∑k '=1

K
exp(αk ' )



Fisher kernels – relation to generative classification

 Consider the Fisher score vector with respect to the marginal distribution on X

 In particular for the alpha that model the class prior probabilities we have

∇θ ln p(x)=
1

p( x)
∇θ∑k=1

K
p(x , y=k )

=
1

p( x)
∑k=1

K
p( x , y=k )∇θ ln p(x , y=k )

=∑k=1

K
p( y=k∣x) [∇θ ln p( y=k )+∇θ ln p(x∣y=k ) ]

∂ ln p( x)
∂αk

= p( y=k∣x)−πk



Fisher kernels – relation to generative classification

 Let the weight vector for the k-th class to be zero, except for the position that 
corresponds to  the alpha of the k-th class where it is one. And let the bias 
term for the k-th class be equal to the prior probability of that class, then

 Thus the Fisher kernel based classifier can implement classification via 
Bayes' rule, and generalizes it to other functions.

∂ ln p( x)
∂αk

= p( y=k∣x)−πk

f k ( x)=wk
T g ( x)+bk= p( y=k∣x)


