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Homework + Project

® Homework 1: due Thursday November 6, 2014.
® Homework 2: available on website

® Homework 2 and 3: only required for UJF students
» Since course has less credits for ENSIMAG students

® Project:

» Select a paper from the website, or find your own.
> Due January 5" 2015.

> Possible to do in teams of 2 students

>  Multiple people/groups can pick the same paper.



Summary of previous lecture

® Definition and properties of reproducing kernel Hilbert spaces.



Reproducing kernel Hilbert spaces

® | et X be asetandH a class of functions over X

HcR
forming a Hilbert space with inner product ¢-,-)u

X

® The function K: X°- R is called a reproducing kernel of H if

> H contains all functions of the form
VxeX: k. t>K(x,t)
> For every x in X, and f in H, the reproducing property holds:

f(x>:<f:kx>H

® |f a reproducing kernel exists, then H is called a reproducing kernel
Hilbert space.



Reproducing kernel Hilbert spaces: example 1

® |Let H be the class of linear functions over a real vector space X
H={f, : f,(x)=w x]
forming a Hilbert space with inner product {(f,,f,)y=w' v
® The function K: X°-R is called a reproducing kernel of H if

> H contains all functions of the form
VxeX: K.: t>K(x,t)
> For every x in X, and f in H, the reproducing property holds:

f(x):<f’Kx>H

® |f areproducing kernel exists, then H is called a reproducing kernel
Hilbert space.

> It this the case ?
> Yes, for the linear kernel: K(x,t)=x"t



Reproducing kernel Hilbert spaces: example 2

® | et H be the class of all real functions over a finite set X of size n
H={feR"}
forming a Hilbert space with inner product <f1,f2>H=ZX€Xf1(X)f2(X)
® The function K: X°-R is called a reproducing kernel of H if

> H contains all functions of the form
VxeX: K.: t>K(x,t)
> For every x in X, and f in H, the reproducing property holds:

f(x):<f’Kx>H

® |f areproducing kernel exists, then H is called a reproducing kernel
Hilbert space.

> It this the case ?
> Yes, for the identity kernel: K(x,t)=[x=t]

o NS DETOrE [Z]=1 if the expression z is true, zero otherwise.
V42577, 3



Reproducing kernel Hilbert spaces: results

® Theorem: If His an RKHS, then it has a unique reproducing kernel.
Conversely, a function K can be the reproducing kernel of at most
one RKHS.

® Therefore, we can talk of “the” kernel of an RKHS, and “the” RKHS
of a kernel.

® Theorem: A function K: X’- R is positive definite if and only if it is a
reproducing kernel.

® Theorem (Aronszajn,1950): K is a positive definite kernel on the set
X if and only if there exists a Hilbert space H and a mapping ®: X->H

such that for any x and x' in X: K(x,x")=(@(x),p(x")),



Proof of Aronzsajn's theorem: first direction

® Suppose K is positive definite over a set X,
then it is the reproducing kernel of a Hilbert space H<R®

® Define the mapping ®: X->H as VxeX: ¢(x)=k,=k(x,.)

® Then by the reproducing property [ (x)={(f,kx
we have:

V(x,y)ex’

<cp(X>Jcp<y)>H:<kx3ky>H:k<X’y)‘



Proof of Aronzsajn's theorem: second direction

® Suppose there exists a Hilbert space HcR"and a mapping ®: X->H
such that for any x and x' in X: (¢(x),¢(y)),=k(x,y).

® Then we have that k is positive definite since

> 2 oak(xx)=2 > x),%(X;))y
=2 olo(x), 2 ap(x,

:<Z:‘:1 Otl-Cp(Xi),zj O‘j(P(XJ)>H
:HZ?:lO(i(P(Xi)HHZO



Plan for this lecture

Kernel trick
> Distance between points.
> Distance between sets and points.

> Data centering.
Considerations on the RKHS norm

> Rademacher complexity for RKHS balls.
> Function smoothness in RKHS.

> Representer theorem.
Supervised kernel methods

> Ridge regression.
> SVM.

> Logistic discriminant.
Fisher kernels



The kernel trick

® Choosing a p.d. kernel K on a set X amounts to embedding the data
In a Hilbert space: there exists a Hilbert space H and a mapping

b : X>H
such that for all x and x' in X

k(x,x")=(@(x),0(x"))y

® This mapping might not be explicitly given, nor convenient to work
with in practice, e.g. for very large or even infinite dimensions.

® The “trick” is to work implicitly in the feature space H by means of
kernel evaluations.



The kernel trick

® Any algorithm to process finite dimensional vectors that can be
expressed only in terms of pairwise inner products can be applied to
potentially infinite-dimensional vectors in the feature space of a p.d.
kernel by replacing each inner product evaluation by a kernel
evaluation.

® This statement is trivially true, since the kernel computes the inner
product in the associated RKHS.

® The practical implications of this “trick” are important.

® Vectors in the feature space are only manipulated implicitly, through
pairwise inner products, there is no need to explicitly represent any
data in the feature space.

V4
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Example 1: computing distances in the feature space

— s

d(xl,y d(x1)

1~ 7%0(x2)

d(x,x")=lo(x)—p(x")]f;
=(@(x)=(x"),0(x)—p(x")),
=(@(x),9(x))p+@(x'),@(x)y—2(p(x),p(x"))y

=k(x,x)+k(x",x")—2k(x,x")



Distance for the Gaussian kernel

® The Gaussian kernel with bandwidth
sigma is given by

k(x,x'):exp(—||x—x'||2/(202))

® In the feature space, all points are
embedded on the unit sphere since

k(x,x)=llp(x)[l;=1
>
X
® The distance in the feature space  °
between x and x' is given by

d (x,x '):\/Z[I—exp(—ﬂx—x'||2/(202))]

0.8 1.2

0.4




Example 2: distance between a point and a set

® LetS be a finite set of points in X: S=(x, ..., x,)

® How to define and compute the similarity between any point x in X and
the set S?

® The following is a simple approach:

> Map all points to the feature space

n

>~ Summarize S by the barycenter of the points m:lZ:__1 o(x,)
n <=

» Define the distance between x and S as

d,(x,S)=lle(x)—ml|,



Example 2: distance between a point and a set

9 \

O
d,(x,S)=|lo(x)—m|l,
1 n
=llo(x)==2.._, @lx)ll
z\/k(x x)—g i k(x x)+izn k(x;,x
s ’ n i=1 » n2 i,j=1 1270



Uni-dimensional illustration

® |etS ={2,3}, plotf(x) =d(x,S).

Linear kernel Gaussian kernel, Gaussian kernel,

with o=1 with 0=0.2
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° LetS={(1,1),(1,2), (2,2)}, plot f(x) = d(x,S).

i=

N

Linear kernel

N
/ N\
\ . |

2D illustration

—_——

Gaussian kernel,

with o=1

Gaussian kernel,

with 0=0.2



Application to discrimination

® Consider a set of points from positive class P = { (1,1), (1,2)' }
® And a set of points from the negative class N={ (1,3)', (2,2)' }
° Plot f(x)=d,(x,P)’—d,(x,N)’
:”(P(X)_mpnil _llcp(x)_mNHir
2

:% inEN k(x, xl.)—; inep k(x,x,)+constant

NEERtaE
S i \ i
NN “ 1]

Gaussian kernel, Gaussian kernel,

with o=1 with 0=0.2




Example 3: centering data in feature space

Let S be a set of n points in X.

Let K be the kernel matrix generated by the p.d. kernel k(.,.).

Let m be the barycenter in the feature space of the points in S.

How to compute the kernel matrix when the points are centered on m?

¢




Example 3: centering data in feature space

® Substitution of the barycenter gives
h(xiax‘j):<cp<xi>_m:(p(xj)_m>H
:<cp(Xi)scp(XAj>>H_<m’(p(xi)+(p(x_j)>H+<m:m>H
1

n 1 n
:k(xi’xj)_zzkzl (k<xi’xk)+k(xk’xj))+?Zk,lzl k(‘xk’XI)

® Or, in matrix notation we get
H=K-KU-UK+UKU=(I-U)K(I-U)
where for all i,j: o
UI’J:1/I’I T

@ o3 L
AY \
®

informatics, mathematics
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Plan for this lecture

Kernel trick
> Distance between points.
> Distance between sets and points.

> Data centering.
Considerations on the RKHS norm

> Rademacher complexity for RKHS balls.
> Function smoothness in RKHS.

> Representer theorem.
Supervised kernel methods

> Ridge regression.
> SVM.

> Logistic discriminant.
Fisher kernels



Recap of Rademacher complexity

® Definition of Rademacher complexity of a function class H over X
> Leto,, 1=1,...,nbe i.i.d. variables with p(0i=+1):p(0i:—1): 1/2

» Let x,€X, i=1,...,n bei.i.d. variables

= Z?:l Oif(xi)|

n

Radn<H):EX,0 SupfeFB

® |ntuitively measures how well functions in H can align to noise.

® Rademacher complexity bounds the expected estimation error in the
expected risk

E<Xi’y1')1=1,...,n[R (f) T R*

A

:(mingeHR (g)—R*)+(R (f)_mingEHR (g>)
s(mingEHR(g)—R*)+4 Rad,(H)

> Average taken over training sets that generate our estimator




V4

Rademacher Complexity in RKHS balls

Suppose X is endowed with a positive definite kernel k, and
associated RKHS H.

Consider the class of functions f in H in a ball of radius B in H.
F,={feH : |f|l;<B]

Rademacher complexity of this class can be upper bounded as

2BVEk(x,x)
Vn

Therefore, by plugging this into the general Rademacher risk bound,
the Bayes regret of an estimator in this class can be bounded by

Rad, (Fg)<

A

E R(f)=R’|<[min,.; R(g)—R |+4 2BVEK(x,x)

Jn
» First term is the bias term that decreases with B
> Second term is variance term that increases (linearly) with B.

*

xi,yi),i:1,...,n

informatics g”mathematics



Rademacher Complexity in RKHS balls, proof (1/2)

12X oif(x)

Rad,(F,)=E, ;

:EX,O SuprF |<f Zl 1 1 x>] By RKHS

- =3 Oikx,lll By Cauchy-Schwarz
o

£, |BIZX ok ||]
WX ok,

ST\/EX o ||zl O ||H By Jensen's inquality

2B n
. :_\/EX,G_ZI',]‘ 100 k(‘xl)xj)

_EX ,O




Rademacher Complexity in RKHS balls, proof (2/2)

 Butforiid. and uniform o.€{—1,+1}

we have that E 0,0 is one if i=] and zero otherwise. Therefore:

Rad,,( \/EXO
2B\/E

_2B. /g |
n

_2BYE,|k(x,x)
- Vn

lj_ 0;0; k(xl,xj)

O[Oioj]k(xl,xj)

Zi,jzl
2k

k l’ 1




Rademacher Complexity in RKHS balls

® (Consider the class of functions f in H in a ball of radius B in H.
FB:{fEH . ||f||HSB}

® The Rademacher complexity of this class can be upper bounded as
2BVEk(x,x)
Vn

® Therefore, by plugging this into the general Rademacher risk bound,
the Bayes regret of an estimator in this class can be bounded by

k(x,x
E 2B\/E\/E( )

® For different choices of B find estimator by minimizing empirical risk

Rad, (F,)<

A

R(f)-R’|<[min,., R(g)—R'|+4

xi,yi),i:1,...,n

A

f=argmin, . %Z; L(y.f(x,))

> Or equivalently for different lambda

A

, 1 1 o
- | f=argmin,_y 7\§||f||§{+zzi:1L(y,f<Xi))



Smoothness of functions in RKHS

Let f be a function in a RKHS H with associated kernel k over X

Consider the difference in function evaluations for two points x and
X'in X

f(x)=f(x")I=Kfolx))=(f,o(x'))]
(fro(x)—p(x'))]
<IIfll %l (x)—cp(x")

H

The RKHS norm of f gives the Lipschitz constant of f, for the metric
d; (x,x")=|lo(x)—o(x")ll,

In particular for fzz; ocik(xi,.) we have

||f||12{:<zl:1 aik(xi’°>’zi:1aik(Xf")>H:Zi,j OLI-OLJ-k(Xl-,Xj)ZOLTKOL



Representer Theorem

® |etk be a positive definite kernel over X, and let H be the RKHS
associated with k. Let

> S={X, o, X, ) with X, .o, X, €X

» W: R™ 5 R Be a function that is strictly increasing in its last
variable

® Then the solution f* of the problem

min, ey W(F(x,), s (), ]

has the form

f*:Z:‘:l ok(x;,.)



Proof Representer Theorem (1/2)
® Let H° be the subspace of H spanned by k(.,x ),xlES

i

H°=|(feH : f(x)zzlilocl.k(x,xl.),(ocl’...,ocn)ER"}

. S . - . . .
® Since H" is a finite dimensional subspace of H we can decompose
any function in H with respect to this subspace by orthogonal

projection f:f5+fL

with f,€H® and f, LH’



Proof Representer Theorem (2/2)

® SinceHisaRKHSitholdsthat V._. : f (x,)={(f,,k(.,x,))=0
and therefore o

vizl,...,n: f(xi):f5<xi)
* By Pythagoras theorem in H we have that  ||f||5=Ifsl[5+]If |5

® Therefore, we have that
W(f (X)), eos (XM= (f (%)), ens f 5 (X, ), I 1)
with equality if and only if ||f ,||;=0

* Hence f* is necessarily in H>



Representer Theorem

® The representer theorem has an important consequence for us.

® Consider any penalized empirical risk minimization method,
where the penalty is in terms of the RKHS norm of f:

f:argminfeH Z;l L(yi’f(xi))-l-}\‘g(”f”H)

® Then the solution has the form



Plan for this lecture

Kernel trick
> Distance between points.
> Distance between sets and points.

> Data centering.
Considerations on the RKHS norm

> Rademacher complexity for RKHS balls.
> Function smoothness in RKHS.

> Representer theorem.
Supervised kernel methods

> Ridge regression.
> SVM.

> Logistic discriminant.
Fisher kernels



Regression

® LetS be asetof npointsin X: S=(x, ..., x,)
® With each element we have an associated target value in R (yl,“' ,yn)

® Our goal is to find a function f to predicty by f(x), f : X=R

4

ling 1




Penalized least-squares regression

® |etus use the L2 loss to quantify the error of f with respect to y:
L(f(x),y)=(y—f(x))

® Fix a set of functions H that is the RKHS of a p.d. kernel k on X.
® \We estimate f by minimizing the penalized empirical risk:

A

: 1 ~on
f:argmlnfGH Ezizl L<f<xl)’yl)+)\‘||f||i1

® This regularization has two effects:

> It prevents overfitting by penalizing non-smooth f, and bounds the
Rademacher complexity

> By the representer theorem, it simplifies the solution to functions
that are given by a linear combination of kernel evaluations:

Fx)=2, oK (x,%)



Dual formulation

F(x)=2, oK (x;,x)

® |et us now redefine the minimization problem in terms of the alpha's.
® Let K be the kernel matrix for the points in S, and oc=(oc1,...,ocn)€R”
® Then we can write

A

(%), f (x,)
® Moreover, the squared norm of f can be expressed as
Iflli=0' Ka

® Therefore, the problem is equivalent to

"“Ka

argmin__ .

l(Koc—y)T(Koc—y)+kocTKoc
n



Dual formulation

l(Koc—y)T(Koc—y)+7xocTKoc

argmin
n

€R"

® Since this is a convex and differentiable function of alpha, its minimum
can be found by setting the gradient w.r.t. alpha to zero.

%K(Ka—y)+2xKa:0

K(Koa—y+nho)=0
K((K+n?»[)oc—y)=0

® Thus, the kernel (in the sense of zero projection) of K should contain

(K+nhI)a—y



Dual formulation

® Since K is symmetric, it can be diagonalized in an orthonormal basis,
K=VDV'

and the kernel Ker(K) corresponds to the subspace with zero on the
diagonal in D, and
Ker (K )LIm(K)
® This basis remains the same for K(K+AnI| "
since VDV'|VDV +AnI| =VD(D+AnI| 'V’

which has diagonal elements of d;
d.+nh

® The problem is thus equivalent to
(K+nAI)a—y€eKer(K)

a—(K+nhI) ' yeKer(K)
T | a=(K+nhI)'y+e, withKe=0



Dual formulation

® However,if o'=a+e, with Ke=0

then If=f'll;; =(a—a') K(a—a')=0

and therefore, f=f'.

® Therefore, the solution to the original problem is therefore given by
f(x)zzizl (x‘iK(Xi’X>

a=(K+nAI) 'y

with

® Note that when lambda goes to zero, the method converges to the
classical unregularized least-squares solution. When lambda goes to
infinity then the solution converges to f=0.

informatics g”mathematics



Example solutions for different regularization values

4 I | I I I I I I

| | | A N B |

3 ; ; ; ; | ; ;
pu -2 -1 0 1 2 3 4 5 6 7

: informatics g”mathematics




Plan for this lecture

Kernel trick
> Distance between points.
> Distance between sets and points.

> Data centering.
Considerations on the RKHS norm

> Rademacher complexity for RKHS balls.
> Function smoothness in RKHS.

> Representer theorem.
Supervised kernel methods

> Ridge regression.
> SVM.

> Logistic discriminant.
Fisher kernels



Support vector machines revisited

® Quality of classification function measured using hinge-loss

L(yi:f(xi)):max(oal_yif(xi))
® Recall: convex and piecewise linear upper bound on zero/one loss.

» Zero if point on the correct side of the margin
» Otherwise given by absolute difference from score at margin

3.5

- --zero—one loss
—hinge loss |




Support vector machines: optimization problem

® Quality of classification function measured using hinge-loss
L()’i:f(Xi)):max(O:l_yz'f(xi))

® Regularization with the norm of f in RKHS associated with kernel k.
® Estimator given by minimizing penalized empirical risk over fin H
A 1 n

f=argmin,, | =2, L(f(x,),y,)+MIfI

n

® This is a convex, but not differentiable objective function.



Support vector machines: reformulated optimization

® Re-formulate as a constrained problem using slack variables

1 n
;Zizl §1+}\'”f”i{
subject to: E>L(f(x;),y;)

A

f= argmin, _, .. p

® Rewrite the constraints as a conjunction of linear constraints:

LY sl

subject to: ;>0 and %iZI_yif<Xi) 3.5 - - -zero—one loss

3 —hinge loss

A

f= argmin,_, .. p




Support vector machines: reformulated optimization

® By the representer theorem we have that

f(x>:Z?:1 o, K (x;,x)

® Rewrite problem in terms of alpha's

f —argmin 1 '.1_ E+ha Ka
g =1 Si

aER",EER" n

subject to: ;>0 and yiz,ocjk(xi,xj)+§i—120

J

® This is a standard quadratic program, with 2n variables and
constraints. Standard QP solvers are suitable for n < 10*4 roughly.

® Highly efficient specific SVM solvers available for much larger
problems, in particular for linear SVM case.



Support vector machines: reformulated optimization

®* Finally, let us change the notation slightly, from

A

f =argmin

1 T
Ez;ﬂgﬁka_Ka

0€ER",EER"

subject to: ;>0 and yiz,ocjk(xi,xj)+§i—120

J

® To the form

A

n
f:argmmaeRn’EeRn [Czi:1§i+—o¢ Ka

subject to: §,>0 and yiz o k(x,x)+E—1=0

i

® The “cost parameter” C has a natural interpretation in the final
solution of the optimization problem.

C=1/(2nA)



Support vector machines: Lagrangian

® We introduce Langrange multipliers for the inequality constraints.
® Define the Langrangian of the problem as

L(a,%,u,v):CZ:’:l %ﬁ%aTKoc

_Z?zl Mi(yz'zj ajk(xi’xj)+§i_1)_2?:1 V&,

® The Lagrangian can be written in matrix-vector notation as

L(a,a,u,v>=C§T1+§aTKoc—uTYKoc—uTszl—vT%
=§T(C1—u—v)+uT1+%ocTKoc—uTYKoc

® Where Y is the diagonal matrix with Y ;=Y,



Support vector machines: Lagrangian

L(oc,%,u,v):?;T(Cl—M—v)+MT1+%aTKoc—MTYKoc

® The Lagrangian is convex quadratic in alpha, and is therefore
minimized when gradient is zero, similar to regression case

V., L=Ko—KYu=K(a—Yu)=0
a=Yu

® |agrangian is linear in xi. Minimum equal to minus infinity, except
when gradient with respect to xi is zero:

u+v=ClI



Support vector machines: Lagrangian

L(oc,%,u,v):?;T(Cl—M—v)+MT1+%aTKoc—MTYKoc

® \We obtain the Lagrange dual function as
q(w,v)=inf, .L(a,&,u,V)
® Plugging in the optimal alpha a=Y u we get

inf, L(ct, 8,0, v) =€ (CL—p—v)+u 1= W Y KV

® Adding the minimization over xi we get

ry_ L7 o _
g(u,v)=inf, L(a,&,u,v)=" 1750 YKYu = if v+u=IC

— o0 - otherwise



Support vector machines: dual problem

ro_L.r o _
g(w,v)=inf, L(a,E,u,v)={" 17w YKYu if v+#u=1C

— 00 - otherwise

® The dual problem consists in maximizing the dual function q, for
non-negative Lagrange multipliers:

max, ,q(u,v)

subject to: u=0, v=0

® C(Clearly, for the solution we have v=1C—u>=0
® Andthus: u=<i1C

® Therefore, the dual problem is equivalent to

Max,. . ,c [MT1—%MT YKY u



Support vector machines: dual problem

Max, ., .c [MTl—%MTYKYM}

® Once the dual problem is solved, we can use it to obtain the
corresponding alpha vector by ao=Y u and equivalently u=Y a

® Therefore, we conclude that 0<y.o.<C
® By complementary slackness, for the solution we have
u(YKa+&—1)=0

vE=0

® Equivalently, in terms of alpha we have

a(YK o+E—1)=0
(C1-Ya)E=0



Support vector machines: dual problem
a(YK a+E—1)=0
(C1-Ya)E=0
® If a,=0 then by the second constraint =0, and by feasibility we

therefore conclude that n
Yi ijl o Kij:yif (Xi)z 1

> Thus, points with o..=0 are on the correct side of the margin.

* If O<y.a,<C then both constraints are active for the i-th point.
Which means that £ =0 and thus that " _ _
. =0 . yz’ijl O(jKij_yif<Xi)_]‘
> Thus these points are on the margin.

® If a,=C then the second constraint is not active, £>0 while
the first one is: y;f (x,)=1—E=<1
> Thus these points are on the wrong side of the margin



Support vector machines: geometric interpretation

O O
O O O
O ®
o
O
®
® o
®
.O




Support vector machines: geometric interpretation




Support vector machines

® The data points with non-zero alpha are called the support vectors.

® Only support vectors are relevant for the classification of new data:

f(X)=Z?:1 aik(xi,x)zziesv aik<xi’x>

» SV is the set of support vectors

® Depending on the problem, the solution can be sparse in alpha.
» Leads to fast algorithms to identify the subset of non-zero alphas.

> Makes classification of new points fast, since only a small
number of kernel evaluations is needed.



Plan for this lecture

Kernel trick
> Distance between points.
> Distance between sets and points.

> Data centering.
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Kernel multi-class logistic discriminant

® Map score functions to class probabilities with soft-max

p(y=clx)=—ZPUcx))

2 exp(fe(x))

® | oss function given by negative log-likelihood

L(y,[f(x)])==In p(y|x)=—f,(x)+In > _ exp(f.(x))

® Consider class of functions in H which is the RKHS of a p.d. kernel k.

® Estimate the score functions by penalized empirical risk minimization

Min ¢ ) K%Zil ||fc||?{+27:1 L<yi’{fk(xi)})

® By trivial extension of the representer theorem, we have that for the
optimal score functions

folx)=20, orck(x,,x)



Kernel multi-class logistic discriminant

ming .ty 2 Il 2 Ly ()

® \We can now rewrite the optimization problem in terms of the alphas.
* Letus define a.=(a,,...,a ) €R"

and ki:(k<xi’xl) k(X x )TERn

i?2“'n

® Now consider the score function of class c for a training point

fc(xi): ZFI ajck(xj’xi):achi
® Now consider the optimization problem w.r.t. alpha
C n C n
ming )\'%Zczl a. Ko+, )  explank)—D, ok,

> Where we expanded the loss function as

Llyu(f.(x))=—f, (x)+In > _ exp(f.(x,)



Kernel multi-class logistic discriminant
min ?\lzc o Ko +Zn lnz:C ex (och)—Zn o, k
[, €R"] 2 c=1 C c i=1 =1 PlA. K; =1 Syl

® (Consider the gradient w.r.t. the alphas

V=rKa+2, ply=cx)k—2, _k
=1Ka+Y,_ [p(y=clx)-[y=c]Jk,

* Let us define the n x C matrix that collects all alphas A=(a.,,..., )
V,=AKA+K(Y—-P)=K(MLA+Y—-P)

> Where Y _=[y.=c]

and P, =p(y=clx,)
> Note that P depends on A'!



Plan for this lecture

Kernel trick
> Distance between points.
> Distance between sets and points.

> Data centering.
Considerations on the RKHS norm

> Rademacher complexity for RKHS balls.
> Function smoothness in RKHS.

> Representer theorem.
Supervised kernel methods

> Ridge regression.
> SVM.

> Logistic discriminant.
Fisher kernels



Fisher kernels

e Proposed by Jaakkola & Haussler, “Exploiting generative models in
discriminative classifiers”,In Advances in Neural Information Processing
Systems 11, 1998.

® Motivated by the need to represent variably sized objects in a vector space,
such as sequences, sets, trees, graphs, etc., such that they become
amenable to be used with linear classifiers, and other data analysis tools

® A generic method to define kernels over arbitrary data types based on
generative statistical models.

p(x;0), xeX, 6eR”

informatics g”mathematics
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Fisher kernels

® Given a generative data model
p(x;0), x€X, 6€R”
® Represent data x in X by means of the gradient of the data log-likelihood, or
“Fisher score™.
g(x)=V,ln p(x),
g(x)€R”

® Define a kernel over X by taking the scaled inner product between the Fisher
score vectors:

k(x,y)=g(x)'Fg(y)

® \Where F is the Fisher information matrix F:

F=E,|g(x)g(x)"]

® Note 1: The Fisher kernel is a positive definite kernel.

® Note 2: The Fisher kernel is invariant for reparametrization of the model.
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2

Fisher kernels - relation to generative classification

Suppose we make use of generative model for classification via Bayes' rule
»  Where x is the data to be classified, and y is the discrete class label

p(yIX)f(p(XIy)p(y)/p(X),
p(x)=2. _ ply=k)p(x|ly=k)
and
p(xly)=p(x;0,),
exp(“k)

T K
Zk’:l exp (o ')

Classification with the Fisher kernel is at least as powerful as using the Fisher
kernel obtained using the marginal distribution p(x) on X.

This becomes useful when the class conditional models are poorly estimated,
either due to bias or variance type of errors.

In practice often used without class-conditional models, but direct generative
model for the marginal distribution on X.
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Fisher kernels - relation to generative classification

® Consider the Fisher score vector with respect to the marginal distribution on X

V@lnp Vezk , P X Y= k
:p(lx)Z,ilp<x,y=k)Velnp(x,y=k>

=3" ply=k|x)|V,In p(y=k)+V,In p(x|y=k)|

® |n particular for the alpha that model the class prior probabilities we have

oln p(x)

o, = Ply=klx)-




Fisher kernels - relation to generative classification

oln p(x)

oo, =p(y:k|x)—nk

® | et the weight vector for the k-th class to be zero, except for the position that
corresponds to the alpha of the k-th class where it is one. And let the bias
term for the k-th class be equal to the prior probability of that class, then

fk(X)=ng(X)+bk=P(y:k|X)

® Thus the Fisher kernel based classifier can implement classification via
Bayes' rule, and generalizes it to other functions.



