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Kaggle data challenge

 https://inclass.kaggle.com/c/advanced-learning-models-msiam

 After the deadline of the data challenge, you have to send by email
► a small report on what you did (in pdf format, 11pt, 2 pages A4 max)
► your source code (zip archive), with a simple script "start" (that may be called from 

Matlab, Python or R) which will reproduce your submission

 Rules
► At most 2 persons per team.
► You can submit results up to twice per day during the challenge.
► A leader board will be available during the challenge, which shows the best results 

per team, as measured on a subset of the test set. 
► A different part of the test set will be used after the challenge to evaluate the results.
► Registration has to be done with email addresses @grenoble-inp.fr or @e.ujf-

grenoble.fr

 The most important rule is: DO IT YOURSELF. The goal is to gain practical 
experience with the machine learning techniques involved.
► For this reason, the use of external machine learning libraries is forbidden. For 

instance, this includes, but is not limited to, libsvm, liblinear, scikit-learn, ...
► On the other hand, you are welcome to use general purpose libraries, such as for 

linear algebra or optimization 



Biological motivation

 Neuron is basic computational unit of the brain
► about 10^11 neurons in human brain 

 Simplified neuron model as linear threshold unit (McCulloch & Pitts, 1943)
► Firing rate of electrical spikes modeled as continuous output quantity 
► Multiplicative interaction of input and connection strength (weight)
► Multiple inputs accumulated in cell activation 
► Output is non linear function of activation 

 Basic component in neural circuits for complex tasks



Rosenblatt's Perceptron

 One of the earliest works on artificial neural networks
► First implementations in 1957 at Cornell University 
► Computational model of natural neural learning

► Weight vector w learned using special purpose machines 
► Associative units fixed by lack of learning rule at the time

wT
ϕ(x)

sign (wT
ϕ(x))



Rosenblatt's Perceptron

 One of the earliest works on artificial neural networks
► First implementations in 1957 at Cornell University 
► Computational model of natural neural learning

 Binary classification based on sign of generalized linear function 

20x20 pixel sensor Random wiring of associative units

sign(f (x))=sign(wT
ϕ(x))



Rosenblatt's Perceptron

 Objective function linear in score over misclassified patterns

 Perceptron learning via stochastic gradient descent

► Eta is the learning rate

Potentiometers as weights, adjusted by motors during learning

E(w)=−∑t i≠sign(f (xi))
t i f (xi)=∑i

max (0,−t i f (x i))

wn+1
=wn

+η× t iϕ(x i)× [ t i f (x i)<0 ]

t i∈ {−1,+1}



Perceptron convergence theorem

 If a correct solution w* exists, then the perceptron learning rule will converge to a 
correct solution in a finite number of iterations for any initial weight vector

 Assume input lives in L2 ball of radius M, and without loss of generality that 
► w* has unit L2 norm
► Some margin exists for the right solution

 After a weight update we have

 Moreover, since         for misclassified sample, we have 

 Thus after t updates we have

and therefore                                                         , in limit of large t:

 Since a(t) is upper bounded by construction by 1, the nr. of updates t must be limited. 

 For start at w=0, we have that
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Limitations of the Perceptron

 Perceptron convergence theorem (Rosenblatt, 1962) states that
► If training data is linearly separable, then learning algorithm will find a 

solution in a finite number of iterations
► Faster convergence for larger margin (at fixed data scale)

 If training data is linearly separable then the found solution will depend on the 
initialization and ordering of data in the updates

 If training data is not linearly separable, then the perceptron learning algorithm 
will not converge

 No direct multi-class extension

 No probabilistic output or confidence on classification



Relation to SVM and logistic regression

 Perceptron similar to SVM without the notion of margin
► Cost function is not a bound on the zero-one loss

 All are either based on linear function or generalized linear function by relying 
on pre-defined non-linear data transformation

f (x)=wT
ϕ(x)



Kernels to go beyond linear classification

 Representer theorem states that in all these cases optimal weight vector is 
linear combination of training data

 Kernel trick allows us to compute dot-products between (high-dimensional) 
embedding of the data 

 Classification function is linear in data representation given by kernel 
evaluations over the training data 

f (x)=wT
ϕ(x)=∑i

αi ⟨ϕ(xi) ,ϕ(x) ⟩

w=∑i
αiϕ(x i)

k (x i , x)=⟨ϕ(xi) ,ϕ(x) ⟩

f (x)=∑i
αik (x , x i)=α

T k(x ,.)



Limitation of kernels

 Classification based on weighted “similarity” to training samples
► Design of kernel based on domain knowledge and experimentation

► Some kernels are data adaptive, for example the Fisher kernel
► Still kernel is designed before and separately from classifier training

 Number of free variables grows linearly in the size of the training data 
► Unless a finite dimensional explicit embedding is available
► Sometimes kernel PCA is used to obtain such a explicit embedding

 Alternatively: fix the number of “basis functions” in advance
► Choose a family of non-linear basis functions
► Learn the parameters, together with those of linear function 

f (x)=∑i
αik (x , x i)=α

T k(x ,.)

f (x)=∑i
αiϕi(x ;θi)

ϕ(x)



Feed-forward neural networks

 Define outputs of one layer as scalar non-linearity of linear function of input

 Known as “multi-layer perceptron”
► Perceptron has a step non-linearity of linear function
► Typically other non-linearities are used in practice

z j=h(∑i
x iwij

(1)
)

yk=σ(∑ j
z jw jk

(2)
)



Feed-forward neural networks

 If “hidden layer” activation function is taken to be linear than a single-layer 
linear model is obtained

 Two-layer networks can uniformly approximate any continuous function on a 
compact input domain to arbitrary accuracy provided the network has a 
sufficiently large number of hidden units
► Holds for many non-linearities, but not for polynomials



Classification over binary inputs

 Consider simple case with binary units
► Inputs and activations are all +1 or -1
► Total number of inputs is 2D

► Classification problem into two classes

 Use a hidden unit for each positive sample x
m

► Activation is +1 if and only if input is x
m

 Let output implement an “or” over hidden units

 Problem: may need exponential number of 
hidden units

y=sign (∑m=1

M
zm+M−1)

wmi=xmi

zm=sign(∑i=1

D
wmi xi−D+1)



Feed-forward neural networks

 Architecture can be generalized 
► More than two layers of computation
► Skip-connections from previous layers

 Feed-forward nets are restricted to directed acyclic graphs of connections
► Ensures that output can be computed from the input in a single feed-

forward pass from the input to the output

 Main issues:
► Network architecture design

 Nr nodes, layers, non-linearities, 
► Learn the optimal parameters

 Non-convex optimization



An example: multi-class classifiction

 One output score for each target class 

 Multi-class logistic regression loss
► Define probability of classes by softmax over scores
► Maximize log-probability of correct class

 Precisely as before, only difference is that we are now learning the data 
transformation concurrently with the classifier

p( y=c∣x)=
exp yc

∑k
exp y k

 Representation learning in 
discriminative and coherent manner

 Fisher kernel also data adaptive but not 
discriminative and task dependent

 More generally, we can choose a loss 
function for the problem of interest and 
optimize all network parameters w.r.t. 
this objective (regression, metric 
learning, ...)



Activation functions

 Unit step function, used in original Perceptron
► Discontinuous, not possible to propagate error

 Sigmoid function: Smooth step function
► Gradients saturate except in transition regime
► Hyperbolic tangent: same but zero-centered instead

 Rectified linear unit (ReLU): Clips negative values to zero
► One-sided saturation only, very cheap to compute

 Max-out: max of two linear functions
► Similar as ReLU 
► No constant regimes at all



Training feed-forward neural network

 Non-convex optimization problem in general (or at least in useful cases)
► Typically number of weights is (very) large (millions in vision applications)
► Seems that many different local minima exist with similar quality

 Regularization 
► L2 regularization: sum of squares of weights
► “Drop-out”: deactivate random subset of weights in each iteration

 Similar to using many networks with less weights (shared among them)

 Training using simple gradient descend techniques
► Stochastic gradient descend for large datasets (large N)
► Estimate gradient of loss terms by averaging over a relatively small 

number of samples

1
N
∑i=1

N
L(f (x i) , y i ;W )+λΩ(W )



Training the network: forward propagation

 Forward propagation from input nodes to output nodes
► Accumulate inputs into weighted sum
► Apply scalar non-linear activation function f 

 Use Pre(j) to denote all nodes feeding into j

a j=∑i∈Pre ( j)
wij x i

x j=f (a j)



Training the network: backward propagation

 Input aggregation and activation

 Partial derivative of loss w.r.t. input

 Partial derivative w.r.t. learnable weights

 Gradient of weights between two layers 
given by outer-product of x and g 

g j=
∂ L
∂a j

∂ L
∂w ij

=
∂ L
∂a j

∂a j

∂wij

=g j x i

a j=∑i∈Pre ( j)
wij x i

x j=f (a j)

x i
w ij



Training the network: backward propagation

 Backward propagation of loss gradient from output nodes to input nodes
► Application of chainrule of derivatives

 Accumulate gradients from downstream nodes
► Post(i) denotes all nodes that i feeds into
► Matrix-vector product

 Multiply with derivative of local activation
► Point-wise multiplications 

gi=
∂ x i
∂ai

∂ L
∂ xi

=f ' (ai)∑ j∈Post (i)
wij g j

gi=
∂ L
∂ai

a j=∑i∈Pre ( j)
wij x i

x j=f (a j)

∂ L
∂ x i
=∑ j∈Post (i)

∂a j

∂ x i

∂ L
∂a j

=∑ j∈Post (i)
wij g j



Training the network: forward and backward propagation

 Special case for Rectified Linear Unit (ReLU) activations

 Sub-gradient is step function

 Sum gradients from downstream nodes

► Set to zero if in ReLU zero-regime 
► Compute sum only for active units 

f (a)=max (0,a)

f ' (a)={0 ifa≤0
1 otherwise

gi={ 0 if ai≤0

∑ j∈Post (i)
w ij g j otherwise



Convolutional neural networks

 Local connections: motivation from findings in early vision
► Simple cells detect local features
► Complex cells pool simple cells in retinotopic region

 Convolutions: motivated by translation invariance
► Same processing should be useful in different image regions



Convolutional neural networks

 Hidden units form another “image” or “response map” 
► Contain result of convolution (linear funcion of local inputs)
► Followed by non-linearity

 Different convolutions can be computed “in parallel” 
► Gives a “stack” of response maps
► Similarly, convolutional filters “read” across different maps
► Input may also be multi-channel, e.g. RGB image



Convolutional neural networks

 “Deep” multi-layer architectures

 “Receptive field” is area in original image impacting a certain unit
► Receptive field size grows linearly over layers 
► If we use a convolutional filter of size w x w, then each layer the receptive 

field increases by (w-1) 

 Later layers can capture more complex patterns over larger areas



Convolutional neural networks

 Sub-sampling layers reduce the resolution of output map (typically factor 2)

 Pool responses from previous output
► Max pooling: retain max over receptive field
► (Weighted) Average pooling
► Simply drop some pixels, i.e. compute last convolution with certain “stride”

 Receptive field size grows exponentially in number of subsampling layers
► Only few layers are needed to capture long-range patterns



Convolutional neural networks

 Convolutional and subsampling layers typically followed by several “fully 
connected” layers, i.e. standard multi-layer network

 Assembles all local information into global representation that is mapped to 
response variables

 Softmax over outputs to generate distribution over image class label



Relation to “fully connected” neural networks

 Hidden units 
► Spatially organized: output of convolution filter at certain position
► Local connectivity: depend only on small fraction of input units

 Connection weights
► Same filter weights used for a complete output map
► Massive weight sharing: nr. of parameters does not grow in output size



Convolutional neural network architectures

 Convolutional layers: local features along scale and abstraction hierarchy
► Convolutions: number of filters, and filter sizes
► Nonlinearity
► Subsampling: scale factor, and pooling function

 Fully connected layers: assemble local features into global interpretation
► Multi-layer perceptron 

Handwritten digit recognition network.  LeCun, Bottou, Bengio, Haffner, Proceedings IEEE, 1998



Convolutional neural network architectures

 Similar architectures as digit recognition network
► ReLU activations instead of hyperbolic tangent
► Deeper: e.g. 19 layers in Simonyan & Zisserman, ICLR 2015
► Wider: More filters per layer: hundreds instead of tens
► Wider: thousands of nodes in fully connect layers
► Number of parameters: around 60 million (!)

Krizhevsky & Hinton, NIPS 2012, Winning model ImageNet 2012 challenge



Convolutional neural network architectures

 Similar architectures for general object recognition a decade later

 More training data
► 1.2 millions of 1000 classes for ImageNet challenge
► 200 million faces in Schroff et al, CVPR 2015

 GPU-based implementations
► Massively parallel computation of convolutions
► Krizhevsky & Hinton, 2012: six days of training on two GPUs 

Krizhevsky & Hinton, NIPS 2012, Winning model ImageNet 2012 challenge



Understanding convolutional neural network activations

 Architecture consists of 
► 5 convolutional layers
► 2 fully connected layers

 Visualization of patches that yield maximum response for certain units
► We will look at each of the 5 convolutional layers

Krizhevsky & Hinton, NIPS 2012, Winning model ImageNet 2012 challenge



Understanding convolutional neural network activations

 Patches generating highest response for a selection of convolutional filters, 
and reconstruction of these patches based on network weights
► Zeiler and Fergus, ECCV 2014

 Layer 1: simple edges and color detectors 

 Layer 2: corners, center-surround, ...



Understanding convolutional neural network activations

 Layer 3: textures, object parts



Understanding convolutional neural network activations

 Layer 4: complex textures and object parts
► Invariance for backgrouns: suppression in reconstruction



Understanding convolutional neural network activations

 Layer 5: complex textures and object parts



Understanding convolutional neural network activations

 Regions with max response for Conv-5 filters with positive weights for cats, 
negative weights for cats, and positive for sheep and person
► Girshick et al., CVPR 2014



Convolutional neural networks for other tasks

 Object category localization

 Semantic segmentation



CNNs for object category localization

 Apply CNN image classification model to image sub-windows 
► For each window decide if it represents yes/no a “car”, “sheep”, ...

 Map detection windows to 224 x 224 image to fit CNN model

 Unreasonably many image regions to consider if applied in naive manner

R-CNN, Girshick et al., CVPR 2014



How to avoid exhaustive sliding window search

 Branch-and-bound techniques 



Search: restricted scanning of bounding box space

 Selective search method [Uijlings et al., IJCV, 2013]
► Unsupervised multi-resolution hierarchical segmentation
► Detections proposals generated as bounding box of segments
► 1500 windows per image suffice to cover over 95% of true objects 

with sufficient accuracy



CNNs for object category localization

 Apply CNN image classification model to image sub-windows 
► For each window decide if it represents yes/no a “car”, “sheep”, ...

 Unreasonably many image regions to consider if applied in naive manner
► Use detection proposal mechanism
► Based on low-level image contours propose a (few) thousand windows

R-CNN, Girshick et al., CVPR 2014



CNNs for object category localization

 Too little training data to learn CNN from scratch
► Only few hundred objects instances labeled with bounding box 
► Pre-train on ImageNet classification problem: Krizhevsky model
► Replace last classification layer with classification over N categories + 

background
► Update CNN weights for classification of detection proposals



CNNs for object category localization

 Comparison with state of the art non-CNN models 
► Object detection is correct if window has intersection/union with ground-

truth window of at least 50%

 Significant increase in performance of 10 points mean-average-precision 
(mAP)



Efficient object category localization with CNN

 R-CNN recomputes convolutions many times across overlapping regions

 Instead: compute convolutional part across image once

 For each window: 
► Pool convolutional features using max-pooling into fixed-size 

representation
► Fully connected layers computed per window
► Output multiple binary classifications

SPP-net, He et al., ECCV 2014



Efficient object category localization with CNN

 Refinement: Compute convolutional filters at multiple scales
► For given window use scale at which window has roughly size 224x224

 Similar performance as explicit window rescaling, and re-computing 
convolutional filters

 Speedup of about 2 orders of magnitude



Convolutional neural networks for other tasks

 Object category localization

 Semantic segmentation



Application to semantic segmentation

 Assign each pixel to an object or background category
► Consider running CNN on small image patch to determine its category
► Train by optimizing per-pixel classification loss

 Similar to SPP-net: avoid wasteful re-computation of convolutional filters
► Compute convolutional layers once per image
► Here all local image patches are at the same scale
► Many more local regions: dense, at every pixel

Long et al., CVPR 2015



Application to semantic segmentation

 Interpret fully connected layers as 1x1 sized convolutions
► Function of features in previous layer, but only at own position
► Still same function is applied at all positions

 Five sub-sampling layers reduce the resolution of output map by factor 32



Application to semantic segmentation

 Idea 1: up-sampling via bi-linear interpolation, gives blurry predictions

 Idea 2: weighted sum of response maps at different resolutions
► Up-sampling of coarser level with (with learned upsampling) mask 
► Train all layers in integrated manner

 Train first at coarse level to initialize network with finer resolutions

Long et al., CVPR 2015



Application to semantic segmentation

 Results obtained at different resolutions
► Detail better preserved at finer resolutions



Application to semantic segmentation

 Further improvements 
possible using conditional 
random field (CRF) models 

 Beyond independent 
prediction of individual 
pixel labels

 Zheng et al., ICCV 2015



Summary feed-forward neural networks

 Construction of complex functions with circuits of simple building blocks 
► Linear function of previous layers
► Scalar non-linearity

 Learning via back-propagation of error gradient throughout network
► Need directed acyclic graph 

 Convolutional neural networks (CNNs) extremely useful for image data
► State-of-the-art results in a wide variety of computer vision tasks
► Spatial invariance of processing (also useful for video, audio, ...)
► Stages of aggregation of local features into more complex patterns
► Same weights shared for many units organized in response maps 

 Applications for object localization and semantic segmentation
► Local classification at level of detection windows or pixels
► Computation of low-level convolutions can be shared across regions



Modeling sequential data

 So far we mostly considered “one-to-one” prediction tasks
► Classification: one image to one class label, which digit is displayed 0...9
► Regression: one image to one scalar, how old is this person?

 Many prediction problems have a sequential nature to them 
► Either in input, in output, or both
► Both may vary in length from one example to another



Modeling sequential data

 Image captioning
► Input: an image
► Output: natural language description



Modeling sequential data

 Image captioning
► Input: a sentence
► Output: user rating



Modeling sequential data

 Translation of a sentence into another language



Modeling sequential data

 Part of speech tagging
► Input: a sentence
► Output: a part of speech tag for each word



Modeling sequential data

 We could also use an order k Markov chains over either input, output, or both
► Would result in a “memory” of k time steps only

 The hidden layer allows to build up a representation of the sequence as a 
whole over time



Recurrent neural networks

 Recurrent computation of hidden units from one time step to the next
► Time-invariant recurrence makes it applicable to arbitrarily long sequences

 Similar ideas of parameter sharing used in 
► (Hidden) Markov models for arbitrarily long sequences
► Across space in convolutional neural networks



Recurrent neural networks

 Basic example for many-to-many prediction
► Hidden state computed from current input and previous hidden state
► Output is computed from current hidden state

zt=f z (W zx x
t+W zz z

t−1)

y t=f y(W yz z
t)

x t

y t

zt



Recurrent neural network diagrams

 Two graphical representations are used

“Unfolded” flow diagram Recurrent flow diagram

 Unfolded representation shows that we still have an acyclic directed graph
► Size of the graph (horizontally) is variable, given by sequence length
► Weights are shared across horizontal replications

 Gradient computation via back-propagation still works
► Referred to as “back-propagation through time” (Pearlmutter, 1989)

x t

y t

zt

x t

y t

zt

W zx

W zz

W yz



Recurrent neural network diagrams

 Deterministic feed-forward network from inputs to outputs

 Predictive model over output sequence is obtained by defining a distribution 
over outputs given y

 For example in translation: probability of word number t is given via softmax

zt=f z(W zx x
t+W zz z

t−1)

y t=f y(W yz z
t)

p(wt=dog)=
exp y dog

t

∑v=1

V
exp y v

t



More topologies: “deep” recurrent networks

 Instead of a recurrence across a single hidden layer, consider a recurrence 
across a multi-layer architecture

 It's our friend: the feed-forward network

x t

ht

zt

y t

x t

y t

zt

x t

ht

zt

y t

x t

ht

zt

y t

x t

ht

zt

y t

x t

ht

zt

y t



More topologies: multi-dimensional recurrent networks

 Instead of a recurrence across a single (time) axis, consider a recurrence 
across a multi-dimensional grid

 For example: axis aligned directed edges 
► Each node receives input from predecessors, one for each dimension

x3,1 x3,3x3,2

x2,1 x2,3x2,2

x1,1 x1,3x1,2

x3,1 x3,3x3,2

x2,1 x2,3x2,2

x1,1 x1,3x1,2



More topologies: bidirectional recurrent neural networks

 Two recurrences, one in each direction
► Aggregate output from both nets at each time step

 Contextual representation at each time step
► Both left and right context are take into account

 Possible on given input sequences of arbitrary length
► Not on output sequence, since it needs to be predicted/generated



More topologies: output feedback loops

 Example of an image captioning system

 Hidden state evolution is deterministic non-linear dynamical system 
► Output at time t independently drawn given state at time t
► Cannot ensure sequential coherency on output: will generate gibberish



More topologies: output feedback loops

 Example of an image captioning system

 Stochastic non-linear dynamical system over joint (state, output) pair
► State at time t dependent on all previous outputs
► Output at time t therefore also, no limit on order of the Markov chain
► Enforces sequential coherency, generates proper sentences



More topologies: output feedback loops



Output generation from RNN with output feedback

 Sample from distribution on next output conditioned on input and prev. input
► Deterministic state evolution given previous outputs, and input

 Beam search for approximate maximum likelihood output sequence
► Expand best k partial output sequence at current time step to k |V|
► Keep best k for next iteration
► Terminate paths upon “STOP” symbol, or after T steps
► Report max likelihood sequence among k

p( y t∣y1,. .. , y t−1 , x)



Gated recurrent units

 General feed-forward networks (incl. recurrent and conv. nets) based on
► linear function of previous nodes
► Point-wise non-linearity

 Input and previous state always “write” on the state in the same manner
► Limits capacity to capture long-range dependencies (Hochreiter 91, 

Bengio '94)



Long short-term memory (LSTM) cells 

 Introduced by Hochreiter & Schmidhuber (Neural Computation, 1997)

 LSTM defines a dynamical system on hidden state h and a “memory cell” c 

 Involves a number of additional processing elements



Long short-term memory (LSTM) cells 

 Introduced by Hochreiter & Schmidhuber (Neural Computation, 1997)

 LSTM defines a dynamical system on hidden state h and a “memory cell” c 

 Involves a number of additional processing elements
► Forget gate: f



Long short-term memory (LSTM) cells 

 Introduced by Hochreiter & Schmidhuber (Neural Computation, 1997)

 LSTM defines a dynamical system on hidden state h and a “memory cell” c 

 Involves a number of additional processing elements
► Input gate: i
► Input modulator: ~C



Long short-term memory (LSTM) cells 

 Introduced by Hochreiter & Schmidhuber (Neural Computation, 1997)

 LSTM defines a dynamical system on hidden state h and a “memory cell” c 

 Involves a number of additional processing elements
► Memory cell update



Long short-term memory (LSTM) cells 

 Introduced by Hochreiter & Schmidhuber (Neural Computation, 1997)

 LSTM defines a dynamical system on hidden state h and a “memory cell” c 

 Involves a number of additional processing elements
► Output gate: o
► Hidden state update



Gated Recurrent Unit cells 

 GRU is simpler model than LSTM (Cho et al., Empirical Methods in Natural 
Language Processing, 2014)

 Involves a number of additional processing elements
► Forget gate: z
► Read gate: r



Examples of character-level LSTM language model

 Hidden layer consists of LSTM cells

 Input: 1-of-k coding of previous character in sequence

 Training objective: log-probability of next character given past sequence

Examples taken from Andrej Karpathy



Examples of character-level LSTM language model

 Training data: all Paul Graham essays, about 1 million characters

 Random sample from the trained model:

"The surprised in investors weren't going to raise money. I'm not the company 
with the time there are all interesting quickly, don't have to get off the same 
programmers. There's a super-angel round fundraising, why do you can do. If 
you have a different physical investment are become in people who reduced 
in a startup with the way to argument the acquirer could see them just that 
you're also the founders will part of users' affords that and an alternation to 
the idea. [2] Don't work at first member to see the way kids will seem in 
advance of a bad successful startup. And if you have to act the big company 
too."

 Model learned to spell words, as well as long range grammatical dependecies



Examples of character-level LSTM language model

 Training data: all of Shakespeak (4.4 MB)

 Random sample from the trained model:

PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

 Specific style structure is also captured by the model



Examples of character-level LSTM language model

 Training data: linux source code (474 MB)

 Very long range dependencies on bracket structure
/*
 * Increment the size file of the new incorrect UI_FILTER group information
 * of the size generatively.
 */
static int indicate_policy(void)
{
  int error;
  if (fd == MARN_EPT) {
    /*
     * The kernel blank will coeld it to userspace.
     */
    if (ss->segment < mem_total)
      unblock_graph_and_set_blocked();
    else
      ret = 1;
    goto bail;
  }
  segaddr = in_SB(in.addr);
  selector = seg / 16;
  setup_works = true;
  for (i = 0; i < blocks; i++) {
    seq = buf[i++];
    bpf = bd->bd.next + i * search;
    if (fd) {
      current = blocked;
    }
  }
  rw->name = "Getjbbregs";
  bprm_self_clearl(&iv->version);
  regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECONDS << 12;
  return segtable;
}



Modeling sequential data

 Translation of a sentence into another language



Encoder-decoder machine translation

 Read source sentence with encoder (Sutskever et al., NIPS 2014)
► Reading input in reverse yields better result: more short dependencies

 Generate target sentence with decoder RNN  (LSTM, GRU, …)
► Uses a different set of parameters
► Uses output feedback to ensure output coherency

encoder decoder



Encoder-decoder machine translation

 Encoder and decoder can be learned on multiple language pairs in parallel
► (English to French) and (German to French) use same decoder
► (English to French) and (English to German) use same encoder

 PCA projection of LSTM state after reading several phrases 
► Word order very important for meaning, captured in state clusters

encoder decoder



Summary of recurrent networks

 “Unfolding” recurrent networks allows to recognize them as feedforward 
networks with weight-sharing across recurrent connections

 Recurrent networks are powerful tools to model sequential data
► Sequential input and/or sequential output
► Input and output sequence may be aligned or not

 Recurrent networks over a 1-dimensional time axes may be generalized
► To multidimensional structures  data on input or output
► To encoder-decoder networks
► Deep recurrent networks

 Recurrent networks with a gating mechanism are found to be much stronger 
in practice for tasks with long-range dependencies: LSTM and GRU
► Gates can be thought of as internal to the recurrent unit
► Does not change the unfolded graph topology: remains feedforward

 Impressive results on natural language processing tasks, including
► Image captioning
► Machine translation



Further reading

 “Pattern Recognition and Machine Learning”

Chris Bishop. 

Springer, 2006.

 “Deep Learning”

Ian Goodfellow, Yoshua Bengio, Aaron Courville. 

MIT Press, in preparation.

http://www.deeplearningbook.org/
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