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Part I

Overfitting, bias-variance tradeoff: what is the
problem?

Thanks to Laurent Jacob for sharing slides!
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Short term

We start with an informal example.
We will formalize what we observe later.
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Bias-variance tradeoff: intuition
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We observe 10 couples (xi , yi ).
We want to estimate y from x .
Our first strategy: find f such that f (xi ) is close to yi .
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Bias-variance tradeoff: intuition
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Find f as a line
min

f (x)=ax+b
�Y − f (X )�2
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Bias-variance tradeoff: intuition

●

●

●

●

●
●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Find f as a quadratic function

min
f (x)=ax2+bx+c

�Y − f (X )�2
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Bias-variance tradeoff: intuition
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Find f as a polynomial of degree 10

min
f (x)=

�10
j=0 aj x

j
�Y − f (X )�2
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Bias-variance tradeoff: intuition
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Which function would you trust to predict y corresponding to x = 0.5?
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Bias-variance tradeoff: intuition
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Reminder: we aim at “finding f such that f (xi ) is close to yi ”.
With the polynomial of degree 10, f (xi )− yi = 0 for all 10 points.
There is something wrong with our objective.
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Bias-variance tradeoff: intuition
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More precisely:
If we allow any function f , we can find a lot of perfect solutions for
the training data.
Our actual goal is to estimate y for new points x from the same
population :

min
f

E(X ,Y )�Y − f (X )�2
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Biais-variance tradeoff: intuition
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Even more precisely :
We did not take into account the fact that our 10 points are a
subsample from the population.
If we sample 10 new points from the same population, the complex
functions are likely to change more than the simple ones.
Consequence: these fonctions will probably generalize less well to the
rest of the population.
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Overfitting
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When the degree increases, the error �y − f (x)�2 over the 10
observations always decreases.
Over the rest of the population, the error decreases, then increases.
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When the degree increases, the error �y − f (x)�2 over the 10
observations always decreases.
Over the rest of the population, the error decreases, then increases.
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Overfitting
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This suggests the existence of a tradeoff between two types of errors:
Sets of functions which are too simple cannot contain functions which
explain the data well enough.
Sets of functions which are too rich may contain functions which are
too specific to the observed sample.
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Parenthesis: complexity vs dimension (1/3)

Our introductive examples had a large number of descriptors.
This case involves increasingly complex functions of a single variable.
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Parenthesis : complexity vs dimension (2/3)

In fact, the two notions are related: here in particular, the three
functions are linear in different representations.
Reminder (linear regression):
arg minθ∈Rp �Y − Xθ�2 = (X�X )−1X�Y (if X�X is invertible).
How can we use this fact to compute
arg minf (x)=�p

j=1 ai x
j �Y − f (X )�2?
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Parenthesis : complexity vs dimension (3/3)

We could have illustrated the same principle using linear functions
involving more and more variables.
Example : predicting a phenotype using the expression of an increasing
number of genes.
We sticked to polynomials, which allow for better visual
representations.
Along this class, the notion of complexity of a set of functions will
become more and more precise.
Complexity is what causes problems for inference, not just dimension.
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Second parenthesis : models

Until now, we did not need to introduce a model for the data, i.e., a
distribution over X × Y :

Data could come from any population.
The functions we used to predict y can be derived from particular
probabilistic models, but this is not necessary (they were in fact
historically introduced without a model).

The objective is not to criticize the use of models, but to show that
the tradeoff problem we introduced goes beyond probabilistic models.
We now show how using a model can give a better insight into the
problem.

J. Verbeek Advanced Learning Models December 10, 2015 13 / 41



A little more formally: biais-variance decomposition

We now assume that the data follow:

y = f (x) + ε, (1)

and E[ε] = 0.
Without loss of generality, we consider an estimator f̂ of f , which is a
function of training data D = (xi , yi )(i=1,...,n) sampled i.i.d. from (1)

Note: f̂ is a random function.
We consider the mean quadratic error E[(y − f̂ (x))2] incurred when
using f̂ to estimate for a given x the corresponding y sampled from
(1) independently from D.
Expectation is taken over D used to estimate f̂ , and ε = y − f (x).
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A little more formally: biais-variance decomposition

Proposition
Under the previous hypotheses,

E[(y − f̂ (x))2] =
�
E[f̂ (x)]− f (x)

�2
+ E

��
E[f̂ (x)]− f̂ (x)

�2
�

+ E[(y − f (x))2]

The first term is the squared bias of f̂ : the difference between its
mean (over the sample of D) and the true f .
The second term is the variance of f̂ : how much f̂ varies around its
average when the dataset D changes.
The third term is the Bayes error, and does not depend on the
estimator. The actual quantity of interest is the excess of risk
E[(y − f̂ (x))2]− E[(y − f (x))2].
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Back to our example
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Tradeoff between two types of error:
Sets of functions which are too simple cannot contain functions which
explain the data well enough:
these sets lead to estimators with a large bias.
Sets of functions which are too rich may contain functions which are
too specific to the observed sample:
these sets lead to estimators with a large variance.
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Tradeoff between two types of error:
Sets of functions which are too simple cannot contain functions which
explain the data well enough:
these sets lead to estimators with a large bias.
Sets of functions which are too rich may contain functions which are
too specific to the observed sample:
these sets lead to estimators with a large variance.
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Biais-variance decomposition: proof

Reminder (König-Huygens)

For any real random variable Z , E
�
(Z − E[Z ])2

�
= E[Z 2]− E[Z ]2

E[(y − f̂ (x))2] =E[y2 − 2y f̂ (x) + f̂ (x)2]
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Biais-variance decomposition: proof

Reminder (König-Huygens)

For any real random variable Z , E
�
(Z − E[Z ])2

�
= E[Z 2]− E[Z ]2

E[(y − f̂ (x))2] =E[y2 − 2y f̂ (x) + f̂ (x)2]

=E[y2]− E[2y f̂ (x)] + E[f̂ (x)2]

=E[y ]2 + E[(y − E[y ])2]

− 2E[y ]E[f̂ (x)]

+ E[f̂ (x)]2 + E[(f̂ (x)− E[f̂ (x)])2]
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E[(y − f̂ (x))2] =E[y2 − 2y f̂ (x) + f̂ (x)2]

=E[y2]− E[2y f̂ (x)] + E[f̂ (x)2]

=f (x)2 + E[(y − f (x))2]

− 2f (x)E[f̂ (x)]

+ E[f̂ (x)]2 + E[(f̂ (x)− E[f̂ (x)])2]
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Biais-variance decomposition: proof

Reminder (König-Huygens)

For any real random variable Z , E
�
(Z − E[Z ])2

�
= E[Z 2]− E[Z ]2

E[(y − f̂ (x))2] =E[y2 − 2y f̂ (x) + f̂ (x)2]

=E[y2]− E[2y f̂ (x)] + E[f̂ (x)2]

=f (x)2 + E[(y − f (x))2]

− 2f (x)E[f̂ (x)]

+ E[f̂ (x)]2 + E[(f̂ (x)− E[f̂ (x)])2]

=E[(y − f (x))2] + E[(f̂ (x)− E[f̂ (x)])2]

+
�
E[f̂ (x)]− f (x)

�2
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Biais-variance decomposition : perspective

E[(y − f̂ (x))2] =
�
E[f̂ (x)]− f (x)

�2
+ E

��
E[f̂ (x)]− f̂ (x)

�2
�

+ E[(y − f (x))2]

Using a (rather general) model, we managed to start formalizing the
tradeoff introduced with our example.
Decomposition valid for any x , thus also in expectation over
independent x .
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