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Part |

Overtitting, bias-variance tradeoff: what is the

problem?

Thanks to Laurent Jacob for sharing slides!
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Short term

@ We start with an informal example.

@ We will formalize what we observe later.
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Bias-variance tradeoff: intuition
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@ We observe 10 couples (x;, y;i).
@ We want to estimate y from x.

o Our first strategy: find f such that f(x;) is close to y;.
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Bias-variance tradeoff: intuition
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Find f as a line

i Y — £(X)|I?
rogminp 1Y~ I
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Bias-variance tradeoff: intuition

-0.2

Find f as a quadratic function

min 1Y — £(X)]|?
f(x)=ax?+bx+c
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Bias-variance tradeoff: intuition
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Find f as a polynomial of degree 10

min Y — f(X)H2
f(x)=>"712 ajx!
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Bias-variance tradeoff: intuition
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Which function would you trust to predict y corresponding to x = 0.57
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Bias-variance tradeoff: intuition

@ Reminder: we aim at “finding f such that f(x;) is close to y;".
e With the polynomial of degree 10, f(x;) — y; = 0 for all 10 points.

@ There is something wrong with our objective.
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Bias-variance tradeoff: intuition

More precisely:

e If we allow any function f, we can find a lot of perfect solutions for
the training data.

@ Our actual goal is to estimate y for new points x from the same

population :
min Ex,v) || Y = F(X)II7
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Biais-variance tradeoff: intuition

Even more precisely :

@ We did not take into account the fact that our 10 points are a
subsample from the population.

@ If we sample 10 new points from the same population, the complex
functions are likely to change more than the simple ones.

@ Consequence: these fonctions will probably generalize less well to the
rest of the population.
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Overfitting

Erreur
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Degré du polynébme

@ When the degree increases, the error ||y — f(x)||? over the 10
observations always decreases.
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Overfitting

Erreur
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—— Erreur sur le reste de la population
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Degré du polynébme

@ When the degree increases, the error ||y — f(x)||? over the 10
observations always decreases.
@ Over the rest of the population, the error decreases, then increases.
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This suggests the existence of a tradeoff between two types of errors:

@ Sets of functions which are too simple cannot contain functions which
explain the data well enough.
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Overfitting
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This suggests the existence of a tradeoff between two types of errors:

@ Sets of functions which are too simple cannot contain functions which
explain the data well enough.

@ Sets of functions which are too rich may contain functions which are
too specific to the observed sample.
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Parenthesis: complexity vs dimension (1/3)

@ Our introductive examples had a large number of descriptors.

@ This case involves increasingly complex functions of a single variable.
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Parenthesis : complexity vs dimension (2/3)

@ In fact, the two notions are related: here in particular, the three
functions are linear in different representations.

@ Reminder (linear regression):
arg mingcge || Y — X0||? = (X" X)7IXTY (if X' X is invertible).

@ How can we use this fact to compute
argming =y o [|Y = F(X)[|°7
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Parenthesis : complexity vs dimension (3/3)

@ We could have illustrated the same principle using linear functions
involving more and more variables.

@ Example : predicting a phenotype using the expression of an increasing
number of genes.

@ We sticked to polynomials, which allow for better visual
representations.

@ Along this class, the notion of complexity of a set of functions will
become more and more precise.

@ Complexity is what causes problems for inference, not just dimension.
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Second parenthesis : models

@ Until now, we did not need to introduce a model for the data, i.e., a
distribution over X x ) :

e Data could come from any population.
e The functions we used to predict y can be derived from particular

probabilistic models, but this is not necessary (they were in fact
historically introduced without a model).

@ The objective is not to criticize the use of models, but to show that
the tradeoff problem we introduced goes beyond probabilistic models.

@ We now show how using a model can give a better insight into the
problem.
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A little more formally: biais-variance decomposition

@ We now assume that the data follow:
y = f(x) +e¢, (1)

and E[e] = 0.
o Without loss of generality, we consider an estimator f of £, which is a
function of training data D = (xj, yi)(i=1,....n) sampled i.i.d. from (1)
o Note: f is a random function.

o We consider the mean quadratic error E[(y — f(x))?] incurred when
using f to estimate for a given x the corresponding y sampled from
(1) independently from D.

o Expectation is taken over D used to estimate 7, and ¢ = y — f(x).
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A little more formally: biais-variance decomposition

Under the previous hypotheses,

Elly — ()] = (EF(0)] — 7)) +E [(E[’? (- (X)ﬂ

+E[(y — f(x))’]

o The first term is the squared bias of f: the difference between its
mean (over the sample of D) and the true f.

o The second term is the variance of f: how much f varies around its
average when the dataset D changes.

@ The third term is the Bayes error, and does not depend on the
estimator. The actual quantity of interest is the excess of risk

E[(y — F(x))’] = El(y — f(x))°]

J. Verbeek Advanced Learning Models December 10, 2015 15 / 41



Back to our example
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Tradeoff between two types of error:

@ Sets of functions which are too simple cannot contain functions which
explain the data well enough:
these sets lead to estimators with a large bias.
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Back to our example
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Tradeoff between two types of error:

@ Sets of functions which are too simple cannot contain functions which
explain the data well enough:
these sets lead to estimators with a large bias.

@ Sets of functions which are too rich may contain functions which are
too specific to the observed sample:
these sets lead to estimators with a large variance.
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Biais-variance decomposition: proof

Reminder (Konig-Huygens)
For any real random variable Z, E [(Z — E[Z])ﬂ = E[Z°] - E[Z]?

E[(y — (x))?] =Ely* — 2y7(x) + (x)°]
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Biais-variance decomposition: proof

Reminder (Konig-Huygens)
For any real random variable Z, E [(Z — E[Z])ﬂ = E[Z°] - E[Z]?

E[(y — £(x))*] =E[y* — 2yf(x) + F(x)’
—E[y?] — E[2yf(x)] + E[f(x)?]
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Biais-variance decomposition: proof

Reminder (Konig-Huygens)

For any real random variable Z, E [(Z — E[Z])ﬂ = E[Z°] - E[Z]?

El(y — f(x))?] =E[y* — 2yf(x) + f(x)?]
=E[y°] — E[2y7(x)] + E[f(x)°]
=E[y]* + E[(y — E[y])*]
— 2E[y]E[f(x)]
+ E[f(x)]> + E[(f(x) — E[f(x)])°]
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Biais-variance decomposition: proof

Reminder (Konig-Huygens)
For any real random variable Z, E [(Z _ E[Z])Z} — E[7?] — E[Z]?

E[(y — 7(x))?] =Ely* — 2y (x) + (x)’]
=E[y*] — E[2y (x)] + E[f(x)’]
=f(x)* + E[(y — f(x))’]
— 2 (x)E[f (x)]
+ E[F ()] + E[(F(x) — E[f(x)])’]
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Biais-variance decomposition: proof

Reminder (Konig-Huygens)

For any real random variable Z, E [(Z — E[Z])ﬂ = E[Z?] — E[Z]?

E[(y — #(x))’] =Ely* — 2yf(x) + f(x)?]
=E[y?] — E[2yf(x)] + E[f(x)?]
=f(x)* + E[(y — f(x))]
— 2f (x)E[f (x)]
+ E[f(x)]* + E[(F(x) — E[f(x)])]
=E[(y — £(x))’] + E[(f(x) — E[(x)])’]

+ (EIFC] — ())
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Biais-variance decomposition : perspective

E[(y — f(x))?] = (E[f(x)] — f(x))2 + E [(E[ﬁ(x)] - F(X))zl

+E[(y — f(x))’]

@ Using a (rather general) model, we managed to start formalizing the
tradeoff introduced with our example.

@ Decomposition valid for any x, thus also in expectation over
independent x.
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