Machine Learning with Kernel Methods

Julien Mairal (Inria)

Jean-Philippe Vert (Institut Curie, Mines ParisTech)
History of the course

A large part of the course material is due to Jean-Philippe Vert, who gave the course from 2004 to 2015 and who is on sabbatical at UC Berkeley in 2016.

- Along the years, the course has become more and more exhaustive and the slides are probably one of the best reference available on kernels.
- This is a course with a fairly large amount of math, but still accessible to computer scientists who have heard what is a Hilbert space (at least once in their life).
Starting point: what we know is how to solve
Or
But real data is often more complicated...
Main goal of this course

- Extend well-understood, linear statistical learning techniques to real-world, complicated, structured, high-dimensional data (images, texts, time series, graphs, distributions, permutations...)

![Graph with points scattered around a line]

![Images of various data types: images, graphs, distributions, permutations]
A concrete supervised learning problem

Regularized empirical risk formulation

The goal is to learn a **prediction function** $f : \mathcal{X} \rightarrow \mathcal{Y}$ given labeled training data $(x_i \in \mathcal{X}, y_i \in \mathcal{Y})_{i=1,...,n}$:

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \lambda \Omega(f).$$

- **empirical risk, data fit**
- **regularization**
A concrete supervised learning problem

Unfortunately, linear models often perform poorly unless the problem features are well-engineered or the problem is very simple.

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \underbrace{\lambda \Omega(f)}_{\text{regularization}}.$$

\[\text{empirical risk, data fit} \]

First approach to work with a non-linear functional space \mathcal{F}

- The “deep learning” space \mathcal{F} is parametrized:

$$f(x) = \sigma_k(A_k \sigma_{k-1}(A_{k-1} \ldots \sigma_2(A_2 \sigma_1(A_1 x)) \ldots)).$$

- Finding the optimal A_1, A_2, \ldots, A_k yields an (intractable) \textbf{non-convex} optimization problem in \textbf{huge dimension}.
A concrete supervised learning problem

What are the main limitations of neural networks?

- Poor theoretical understanding.
- They require cumbersome hyper-parameter tuning.
- They are hard to regularize.

Despite these shortcomings, they have had an enormous success, thanks to large amounts of labeled data, computational power and engineering.
A concrete supervised learning problem

\[
\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \lambda \Omega(f).
\]

Second approach based on kernels

- Works with possibly infinite-dimensional functional spaces \(\mathcal{F} \);
- Works with non-vectorial structured data sets \(\mathcal{X} \) such as graphs;
- Regularization is natural and easy.

Current limitations (and open research topics)

- Lack of scalability with \(n \) (traditionally \(O(n^2) \));
- Lack of adaptivity to data and task.
Organization of the course

Content

1. Present the **basic theory** of kernel methods.
2. Develop a working knowledge of **kernel engineering** for specific data and applications (graphs, biological sequences, images).
3. Introduce **open research topics** related to kernels such as large-scale learning with kernels and “deep kernel learning”.

Practical

- Course homepage with slides, schedules, homework’s etc...: http://lear.inrialpes.fr/people/mairal/teaching/2015-2016/MVA/.
- Evaluation: 50% homework + 50% data challenge.