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Biological motivation

 Neuron is basic computational unit of the brain
► about 10^11 neurons in human brain 

 Simplified neuron model as linear threshold unit (McCulloch & Pitts, 1943)
► Firing rate of electrical spikes modeled as continuous output quantity 
► Multiplicative interaction of input and connection strength (weight)
► Multiple inputs accumulated in cell activation 
► Output is non linear function of activation 

 Basic component in neural circuits for complex tasks



Rosenblatt's Perceptron

20x20 pixel sensor Random wiring of associative units



Rosenblatt's Perceptron

 Objective function linear in score over misclassified patterns

 Perceptron learning via stochastic gradient descent

► Eta is the learning rate

Potentiometers as weights, adjusted by motors during learning

E(w)=−∑t i≠sign(f (xi))
t i f (xi)=∑i

max (0,−t i f (x i))

wn+1
=wn

+η× t iϕ(x i)× [ t i f (x i)<0 ]

t i∈ {−1,+1}



Perceptron convergence theorem

 If a correct solution w* exists, then the perceptron learning rule will converge to a 
correct solution in a finite number of iterations for any initial weight vector

 Assume input lives in L2 ball of radius M, and without loss of generality that 
► w* has unit L2 norm
► Some margin exists for the right solution

 After a weight update we have

 Moreover, since         for misclassified sample, we have 

 Thus after t updates we have

and therefore                                                         , in limit of large t:

 Since a(t) is upper bounded by construction by 1, the nr. of updates t must be limited. 

 For start at w=0, we have that

w '=w+ yx ⟨w∗ ,w ' ⟩=⟨w∗ ,w ⟩+ y ⟨w∗ , x⟩>⟨w∗ ,w ⟩+δ

y ⟨w∗ , x ⟩>δ

⟨w' ,w ' ⟩=⟨w ,w⟩+2 y ⟨w , x ⟩+⟨x , x⟩
<⟨w ,w ⟩+⟨x , x⟩
<⟨w ,w ⟩+M

y ⟨w , x⟩<0

⟨w∗ ,w ' ⟩>⟨w∗ ,w ⟩+ t δ
⟨w' ,w ' ⟩<⟨w ,w ⟩+ tM

a(t)> δ
√M

√ta(t )=
⟨w∗ ,w(t )⟩

√⟨w(t ),w(t )⟩
>
⟨w∗ ,w⟩+t δ

√⟨w ,w ⟩+tM

t≤
M

δ
2



Limitations of the Perceptron

 Perceptron convergence theorem (Rosenblatt, 1962) states that
► If training data is linearly separable, then learning algorithm will find a 

solution in a finite number of iterations
► Faster convergence for larger margin (at fixed data scale)

 If training data is linearly separable then the found solution will depend on the 
initialization and ordering of data in the updates

 If training data is not linearly separable, then the perceptron learning algorithm 
will not converge

 No direct multi-class extension

 No probabilistic output or confidence on classification



Relation to SVM and logistic regression

 Perceptron loss similar to hinge loss without the notion of margin
► Cost function is not a bound on the zero-one loss

 All are either based on linear function or generalized linear function by relying 
on pre-defined non-linear data transformation

f (x)=wT
ϕ(x)



Kernels to go beyond linear classification

 Representer theorem states that in all these cases optimal weight vector is 
linear combination of training data

 Kernel trick allows us to compute dot-products between (high-dimensional) 
embedding of the data 

 Classification function is linear in data representation given by kernel 
evaluations over the training data 

f (x)=wT
ϕ(x)=∑i

αi ⟨ϕ(xi) ,ϕ(x) ⟩

w=∑i
αiϕ(x i)

k (xi , x)=⟨ϕ(xi) ,ϕ(x)⟩

f (x)=∑i
αik (x , x i)=α

T k(x ,.)



Limitation of kernels

 Classification based on weighted “similarity” to training samples
► Design of kernel based on domain knowledge and experimentation

► Some kernels are data adaptive, for example the Fisher kernel
► Still kernel is designed before and separately from classifier training

 Number of free variables grows linearly in the size of the training data 
► Unless a finite dimensional explicit embedding is available
► Sometimes kernel PCA is used to obtain such a explicit embedding

 Alternatively: fix the number of “basis functions” in advance
► Choose a family of non-linear basis functions
► Learn the parameters, together with those of linear function 

f (x)=∑i
αik (x , x i)=α

T k(x ,.)

f (x)=∑i
αiϕi(x ;θi)

ϕ(x)



Feed-forward neural networks

 Define outputs of one layer as scalar non-linearity of linear function of input

 Known as “multi-layer perceptron” (MLP)
► Perceptron has a step non-linearity of linear function (historical)
► Other non-linearities are used in practice (see later)

z j=h(∑i
x iwij

(1)
)

yk=σ(∑ j
z jw jk

(2)
)



Feed-forward neural networks

 If “hidden layer” activation function is taken to be linear than a single-layer 
linear model is obtained

 Two-layer networks can uniformly approximate any continuous function on a 
compact input domain to arbitrary accuracy provided the network has a 
sufficiently large number of hidden units
► Holds for many non-linearities, but not for polynomials



MLP can implement any classifier over binary inputs

 Consider simple case with binary units
► Inputs and activations are all +1 or -1
► Total number of unique input vectors is 2D

► Classification problem into two classes

 Use a hidden unit for each positive sample x
m

► Activation is +1 if and only if input is x
m

 Let output implement an “or” over hidden units

 Problem: may need exponential number of 
hidden units

y=sign(∑m=1

M
zm+M−1)

wmi=xmi

zm=sign(∑i=1

D
wmi xi−D+1)



Feed-forward neural networks

 Architecture can be generalized 
► More than two layers of computation
► Skip-connections from previous layers

 Feed-forward nets are restricted to directed acyclic graphs of connections
► Ensures that output can be computed from the input in a single feed-

forward pass from the input to the output

 Main issues:
► Designing network architecture

 Nr nodes, layers, non-linearities, etc
► Learning the network parameters

 Non-convex optimization
► Sufficient training data

 Data augmentation, synthesis



An example: multi-class classifiction

 One output score for each target class 

 Multi-class logistic regression loss
► Define probability of classes by softmax over scores
► Maximize log-probability of correct class

 Precisely as before, but we are now learning the data representation 
concurrently with the linear classifier

p( y=c∣x)=
exp yc

∑k
exp y k

 Representation learning in 
discriminative and coherent manner

 Fisher kernel also data adaptive but not 
discriminative and task dependent

 More generally, we can choose a loss 
function for the problem of interest and 
optimize all network parameters w.r.t. 
this objective (regression, metric 
learning, ...)



Activation functions



Activation functions

Sigmoid

tanh

ReLU

Maxout 

 

Leaky ReLU1 /(1+e−x
)

max (0, x )

max (α x , x)

max (w1
T x ,w2

T x)



Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they  

have nice interpretation as a  
saturating “firing rate” of a neuron

Activation Functions

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



Sigmoid

1. Saturated neurons “kill” the 
 gradients

2. Sigmoid outputs are not zero- 
 centered

3. exp() is a bit compute 
expensive

- Squashes numbers to range [0,1]
- Historically popular since they  

have nice interpretation as a  
saturating “firing rate” of a neuron

Activation Functions

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

tanh(x)

[LeCun et al., 1991]

Activation Functions

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



ReLU
(Rectified Linear Unit)

Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than  

sigmoid/tanh in practice (e.g. 6x)

Activation Functions

[Nair & Hinton, 2010]

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



- Does not saturate
- Computationally efficient
- Converges much faster than  

sigmoid/tanh in practice! (e.g. 6x)
-   will not “die”.

Leaky ReLU

Activation Functions

[Mass et al., 2013]  [He et al., 2015]

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



- Does not saturate
- Computationally efficient
-   Will not “die”
-   Maxout networks can implement 
ReLU networks and vice-versa
-  More parameters per node

Maxout

Activation Functions

[Goodfellow et al., 2013]

max (w1
T x ,w2

T x)



Training feed-forward neural network

 Non-convex optimization problem in general (or at least in useful cases)
► Typically number of weights is (very) large (millions in vision applications)
► Seems that many different local minima exist with similar quality

 Regularization 
► L2 regularization: sum of squares of weights
► “Drop-out”: deactivate random subset of weights in each iteration

 Similar to using many networks with less weights (shared among them)

 Training using simple gradient descend techniques
► Stochastic gradient descend for large datasets (large N)
► Estimate gradient of loss terms by averaging over a relatively small 

number of samples

1
N
∑i=1

N
L(f (x i) , y i ;W )+λΩ(W )



Training the network: forward propagation

 Forward propagation from input nodes to output nodes
► Accumulate inputs into weighted sum
► Apply scalar non-linear activation function f 

 Use Pre(j) to denote all nodes feeding into j

a j=∑i∈Pre ( j)
wij x i

x j=f (a j)



Training the network: backward propagation

 Input aggregation and activation

 Partial derivative of loss w.r.t. input

 Partial derivative w.r.t. learnable weights

 Gradient of weights between two layers 
given by outer-product of x and g 

g j=
∂ L
∂a j

∂L
∂wij

=
∂ L
∂ a j

∂a j

∂w ij

=g j xi

a j=∑i∈Pre ( j)
wij x i

x j=f (a j)

x i
w ij



Training the network: backward propagation

 Backward propagation of loss gradient from output nodes to input nodes
► Application of chainrule of derivatives

 Accumulate gradients from downstream nodes
► Post(i) denotes all nodes that i feeds into
► Weights propagate gradient back

 Multiply with derivative of local activation

 

gi=
∂ x i
∂ai

∂ L
∂ xi

=f ' (ai)∑ j∈Post (i)
wij g j

gi=
∂ L
∂ai

a j=∑i∈Pre ( j)
wij x i

x j=f (a j)

∂L
∂ xi
=∑ j∈Post (i)

∂L
∂a j

∂a j

∂ x i

=∑ j∈Post (i)
g jw ij



Limitations recurrent networks

 In a simple RNN the input and previous state always “write” on the state in the 
same manner

 Limits capacity to capture long-range dependencies as state cannot be 
“shielded” from updates for long term storage (Hochreiter 91, Bengio '94)

 Input-dependent “gates” can selectively block/pass inputs to the state



Training the network: forward and backward propagation

 Special case for Rectified Linear Unit (ReLU) activations

 Sub-gradient is step function

 Sum gradients from downstream nodes

► Set to zero if in ReLU zero-regime 
► Compute sum only for active units 

 Note how gradient on incoming weights is “killed” by inactive units
► Generates tendency for those units 

to remain inactive

f (a)=max (0,a)

f ' (a)={0 ifa≤0
1 otherwise

gi={ 0 if ai≤0

∑ j∈Post (i)
w ij g j otherwise

∂ L
∂w ij

=
∂ L
∂a j

∂a j

∂wij

=g j x i



airplane 
automobile 
bird 
cat 
deer 

dog 
frog 
horse 
ship 
truck

Input example : an image Output example : one class

Neural Networks

How to represent the image at the network input?



Convolutional neural networks

 A convolutional neural network is a feedforward network where
► Hidden units are organizes into images or “response maps”
► Linear mapping from layer to layer is replaced by convolution



Convolutional neural networks

 Local connections: motivation from findings in early vision
► Simple cells detect local features
► Complex cells pool simple cells in retinotopic region

 Convolutions: motivated by translation invariance
► Same processing should be useful in different image regions



Local connectivity

Locally connected layer

Convolutional layer

Fully connected layer



The convolution operation



The convolution operation



Convolutional neural networks

 Hidden units form another “image” or “response map” 
► Result of convolution: translation invariant linear funcion of local inputs
► Followed by non-linearity

 Different convolutions can be computed “in parallel” 
► Gives a “stack” of response maps
► Similarly, convolutional filters “read” across different maps
► Input may also be multi-channel, e.g. RGB image

 Sharing of weights across hidden units
► Number of parameters decoupled from input and representation size



32

3

Convolution Layer

32x32x3 image

width

height

32

depth

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
 computing dot products”

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
 computing dot products”

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Filters always extend the full 
 depth of the input volume



32

32

3

32x32x3 image 
 5x5x3 filter

1 hidden unit:
dot product between 5x5x3=75 input 
patch and weight vector + bias

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

wT x+b



32

32

3

32x32x3 image 
 5x5x3 filter

activation maps

1

28

28

convolve (slide) over all 
 spatial locations

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



32

32

3

32x32x3 image 
 5x5x3 filter

activation maps

1

28

28

convolve (slide) over all 
 spatial locations

consider a second, green filter

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 2016

32

3 6

28

activation maps

32

28

Convolution Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



Convolution with 1x1 filters makes perfect sense

64

56

56
1x1 CONV
with 32 filters

32

56

56

(each filter has size  
1x1x64, and performs a 
 64-dimensional dot  
product)

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



Stride



(Zero)-Padding



Example:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



Example:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



Example:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



Example:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

(+1 for bias)

Number of parameters in this layer?  
each filter has 5*5*3 + 1 = 76 params
=> 76*10 = 760

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



Effect = invariance to small translations of the input

Pooling



- makes the representations smaller and computationally less expensive
- operates over each activation map independently

Pooling

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson



Receptive fields

 “Receptive field” is area in original image impacting a certain unit
► Later layers can capture more complex patterns over larger areas

 Receptive field size grows linearly over convolutional layers 
► If we use a convolutional filter of size w x w, then each layer the receptive 

field increases by (w-1) 

 Receptive field size increases exponentially over pooling layers
► It is the stride that makes the difference, not pooling vs convolution



Fully connected layers

 Convolutional and pooling layers typically followed by several “fully 
connected” (FC) layers, i.e. standard multi-layer network
► FC layer connects all units in previous layer to all units in next layer
► Assembles all local information into global vectorial  representation

 FC layers followed by softmax over outputs to generate distribution over 
image class labels

 First FC layer that connects response map to vector has many parameters
► Conv layer of size 16x16x256 with following FC layer with 4096 units leads 

to a connection with 256 million parameters !



Convolutional neural network architectures

 Surprisingly little difference between todays architectures and those of late 
eighties and nineties
► Convolutional layers, same
► Nonlinearities: ReLU dominant now, tanh before
► Subsampling: more strided convolution now than max/average pooling

Handwritten digit recognition network.  LeCun, Bottou, Bengio, Haffner, Proceedings IEEE, 1998



Convolutional neural network architectures

 Recent success with deeper networks
► 19 layers in Simonyan & Zisserman, ICLR 2015
► Hundreds of layers in residual networks, He et al. ECCV 2016

 More filters per layer: hundreds to thousands instead of tens

 More parameters: tens or hundreds of millions

Krizhevsky & Hinton, NIPS 2012, Winning model ImageNet 2012 challenge



Other factors that matter

 More training data
► 1.2 millions of 1000 classes in ImageNet challenge
► 200 million faces in Schroff et al, CVPR 2015

 GPU-based implementations
► Massively parallel computation of convolutions
► Krizhevsky & Hinton, 2012: six days of training on two GPUs 
► Rapid progress in GPU compute performance

Krizhevsky & Hinton, NIPS 2012, Winning model ImageNet 2012 challenge



Understanding convolutional neural network activations

 Architecture consists of 
► 5 convolutional layers
► 2 fully connected layers

 Visualization of patches that yield maximum response for certain units
► We will look at each of the 5 convolutional layers

Krizhevsky & Hinton, NIPS 2012, Winning model ImageNet 2012 challenge



Understanding convolutional neural network activations

 Patches generating highest response for a selection of convolutional filters, 
► Showing 9 patches per filter
► Zeiler and Fergus, ECCV 2014

 Layer 1: simple edges and color detectors 

 Layer 2: corners, center-surround, ...



Understanding convolutional neural network activations

 Layer 3: various object parts



Understanding convolutional neural network activations

 Layer 4+5: selective units for entire objects or large parts of them



Convolutional neural networks for other tasks

 Object category localization

 Semantic segmentation



CNNs for object category localization

 Apply CNN image classification model to image sub-windows 
► For each window decide if it represents a car, sheep, ...

 Resize detection windows to fit CNN input size

 Unreasonably many image regions to consider if applied in naive manner
► Use detection proposals based on low-level image contours 

R-CNN, Girshick et al., CVPR 2014



Detection proposal methods

 Many methods exist, some based on learning others not

 Selective search method [Uijlings et al., IJCV, 2013]
► Unsupervised multi-resolution hierarchical segmentation
► Detections proposals generated as bounding box of segments
► 1500 windows per image suffice to cover over 95% of true objects 

with sufficient accuracy



CNNs for object category localization

 On some datasets too little training data to learn CNN from scratch
► Only few hundred objects instances labeled with bounding box 
► Pre-train AlexNet on large ImageNet classification problem
► Replace last classification layer with classification over N categories + 

background
► Fine-tune CNN weights for classification of detection proposals



CNNs for object category localization

 Comparison with state of the art non-CNN models 
► Object detection is correct if window has intersection/union with ground-

truth window of at least 50%

 Significant increase in performance of 10 points mean-average-precision 
(mAP)



Efficient object category localization with CNN

 R-CNN recomputes convolutions many times across overlapping regions

 Instead: compute convolutional part only once across entire image 

 For each window: 
► Pool convolutional features using max-pooling into fixed-size 

representation
► Fully connected layers up to classification computed per window

SPP-net, He et al., ECCV 2014



Efficient object category localization with CNN

 Refinement: Compute convolutional filters at multiple scales
► For given window use scale at which window has roughly size 224x224

 Similar performance as explicit window rescaling, and re-computing 
convolutional filters

 Speedup of about 2 orders of magnitude



Convolutional neural networks for other tasks

 Object category localization

 Semantic segmentation



Application to semantic segmentation

 Assign each pixel to an object or background category
► Consider running CNN on small image patch to determine its category
► Train by optimizing per-pixel classification loss

 Similar to SPP-net: want to avoid wasteful computation of convolutional filters
► Compute convolutional layers once per image
► Here all local image patches are at the same scale
► Many more local regions: dense, at every pixel

Long et al., CVPR 2015



Application to semantic segmentation

 Interpret fully connected layers as 1x1 sized convolutions
► Function of features in previous layer, but only at own position
► Still same function is applied at all positions

 Five sub-sampling layers reduce the resolution of output map by factor 32



Application to semantic segmentation

 Idea 1: up-sampling via bi-linear interpolation
► Gives blurry predictions

 Idea 2: weighted sum of response maps at different resolutions
► Upsampling of the later and coarser layer 
► Concatenate fine layers and upsampled coarser ones for prediction
► Train all layers in integrated manner

Long et al., CVPR 2015



Upsampling of coarse activation maps

 Simplest form: use bilinear interpolation or nearest neighbor interpolation 
► Note that these can be seen as upsampling by zero-padding, 

followed by convolution with specific filters, no channel interactions

 Idea can be generalized by learning the convolutional filter
► No need to hand-pick the interpolation scheme
► Can include channel interactions, if those turn out be useful

 Resolution-increasing counterpart of strided convolution
► Average and max pooling can be written in terms of convolutions
► See: “Convolutional Neural Fabrics”, Saxena & Verbeek, NIPS 2016.



Application to semantic segmentation

 Results obtained at different resolutions
► Detail better preserved at finer resolutions



Semantic segmentation: further improvements

 Beyond independent 
prediction of pixel labels
► Integrate conditional 

random field (CRF) 
models with CNN
Zheng et al., ICCV’15

 Using more sophisticated 
upsampling schemes to 
maintain high-resolution 
signals

Kokkinos, arXiv 2016

Saxena & Verbeek
NIPS 2016



Summary feed-forward neural networks

 Construction of complex functions with circuits of simple building blocks 
► Linear function of previous layers
► Scalar non-linearity

 Learning via back-propagation of error gradient throughout network
► Need directed acyclic graph 

 Convolutional neural networks (CNNs) extremely useful for image data
► State-of-the-art results in a wide variety of computer vision tasks
► Spatial invariance of processing (also useful for video, audio, ...)
► Stages of aggregation of local features into more complex patterns
► Same weights shared for many units organized in response maps 



Modeling sequential data

 Compact schematic drawing of standard multi-layer perceptron (MLP)

inpu
t

output

hidden



Modeling sequential data

 So far we mostly considered prediction tasks with a fixed sized input/output
► Classification: one image, one class label
► Segmentation: one image, per pixel labels

 Many prediction problems have a sequential nature to them 
► Either in input, in output, or both
► Both may vary in length from one example to another

inpu
t

output

hidden



Modeling sequential data

 Image captioning
► Input: an image
► Output: natural language description



Modeling sequential data

 Natural language processing
► Input: a sentence
► Output: user rating



Modeling sequential data

 Machine translation of text from one language to another
► Sequences of different length on input and output

 Encoder-decoder: source encoded to latent state, then decode to target



Modeling sequential data

 Part of speech tagging
► Input: a sentence
► Output: a part of speech tag for each word

 Input and output sequence of same length 



Modeling sequential data

 Using k-order  Markov chains over input and/or output sequences limits 
memory  to  only k time steps in the past

 A layer of hidden units allows to build up a representation of the sequence as 
a whole over time, even using a first-order system
► Inputs and/or outputs influence hidden state update, carried on to future 

time steps



Recurrent neural networks

 Recurrent computation of hidden units from one time step to the next
► Time-invariant recurrence makes it applicable to arbitrarily long sequences

 Similar ideas of parameter sharing used in 
► (Hidden) Markov models or Kalman filters for arbitrarily long sequences
► Across space in convolutional neural networks



Recurrent neural networks

 Basic example for many-to-many prediction
► Hidden state linear function of current input and previous hidden state, 

followed by point-wise non-linearity
► Output is linear function of current hidden state, followed by point-wise 

non-linearity
zt=ϕ(A x t+B zt−1)

y t=ψ(C zt)

xt

y t

zt



Recurrent neural network diagrams

 Two graphical representations are used

“Unfolded” flow diagram Recurrent flow diagram

 Unfolded representation shows that we still have an acyclic directed graph
► Size of the graph (horizontally) is variable, given by sequence length
► Weights are shared across horizontal replications

 Gradient computation via back-propagation still works
► Referred to as “back-propagation through time” (Pearlmutter, 1989)

xt

y t

zt

xt

y t

zt

A

B

C
zt=ϕ(A x t+B zt−1)

y t=ψ(C zt)



Recurrent neural network diagrams

 Deterministic feed-forward network from inputs to outputs

 Predictive model over output sequence is obtained by defining a distribution 
over outputs given y
► For example: probability of a word given via softmax of word score

p(wt=k )=
exp y tk

∑v=1

V
exp y tv

xt

y t

z t

z t=ϕ(A x t+B zt−1)

y t=ψ(C zt)

wt



More topologies: “deep” recurrent networks

 Instead of a recurrence across a single hidden layer, consider a recurrence 
across a multi-layer architecture

 Yet another feed-forward network, with weight sharing over time
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More topologies: multi-dimensional recurrent networks

 Instead of a recurrence across a single (time) axis, consider a recurrence 
across a multi-dimensional grid

 For example: axis aligned directed edges 
► Each node receives input from predecessors, one for each dimension

x3,1,2 x3,3,2x3,2,2

x2,1,2 x2,3,2x2,2,2

x1,1,2 x1,3,2x1,2,2

x3,1,1 x3,3,1x3,2,1

x2,1,1 x2,3,1x2,2,1

x1,1,1 x1,3,1x1,2,1



More topologies: bidirectional recurrent neural networks

 Use left and right contextual representation at each time step
► Two recurrences, one in each direction
► Aggregate output from both directions at each time step for output

 Not Possible on output sequence since it needs to be predicted/generated, 
and is thus not available for the backwards recurrence



More topologies: output feedback loops

 So far the element in the output sequence at time t was independently drawn 
given the state at time t
► State at time t depends on the entire input sequence up to time t
► No dependence on the output sequence produced so far

 Problematic when there are strong regularities in output, eg character or 
words sequences in natural language
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More topologies: output feedback loops

 To introduce dependence on output sequence, we add a feedback loop from 
the output to the hidden state

 Without output-feedback, the state evolution is a deterministic non-linear 
dynamical system

 With output feedback, the state evolution becomes a stochastic non-linear 
dynamical system
► Caused by the stochastic output, which flows back into the state update
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How do we generate data from an RNN ?

xt

y t

zt

 RNN gives a distribution over output sequences
► How can we sample from this distribution ?
► What else can we do with it ?

 Sequential sampling of output sequence, for each time-step t
► Compute state from current input and previous state and output
► Compute distribution on current output symbol
► Sample output symbol 

 Likelihood of sequence given by product of symbol likelihoods

 Compute maximum likelihood sequence?
► Not feasible since output symbol impacts state

 Marginal distribution on n-th symbol 
► Not feasible: marginalize over exponential nr sequences

 Marginal probability of a symbol appearing anywhere in seq.
► Not feasible: average over all marginals



Approximate maximum likelihood sequences

xt

y t

zt

 Approximate maximum likelihood sequence via beam search
► Start with empty sequence
► Expand previous sequences with all V possible symbols
► Compute likelihood of expanded sequences
► Keep K best sequences, and proceed to next time step
► Terminate after T steps, or when generating STOP symbol

 Computational cost linear in 
► Beam size K
► Vocabulary size V
► Sequence length T

 Exhaustive maximum likelihood search exponential in T, 

since beam size should grow exponentially in that case 



How do we train an RNN ?

x t

y t

z t

 Case without feedback from output
► Compute full state sequence given the input (deterministic given input)
► Compute loss at each time step wrt ground truth output sequence
► Backpropagation through time to compute gradients w.r.t. loss



How do we train an RNN ?

xt

y t

zt

 Case with output sequence and feedback
► Compute state sequence given input and ground-truth output, 

deterministic due to known and fixed output
► Loss at each time step wrt ground truth output seq, backprop through time

 Note discrepancy between train and test 
► Training: predict next symbol correctly given correct sequence so far
► Test: predict next symbol, given generated sequence so far



Scheduled sampling for RNN training

 Compensate discrepancy between train and test procedure by training from  
generated sequence [Bengio et al. NIPS, 2015]

 Directly training from sampled sequences does not work well in practice 
► At the start randomly initialized model generates random sequences
► Instead, start by training from ground-truth sequence, and progressively 

increase probability to sample generated symbol in the sequence



Scheduled sampling for RNN training

 Evaluation for image captioning tasks
► Higher scores is better

 Dropout as regularization does not help 

 Always sampling gives very poor results

 Uniform Scheduled Sampling: sample uniform instead of using model
► Already improves over baseline, but not as much as using model



Limitations recurrent networks

 Recurrent net can be unrolled as deep network 
► As deep as the number of time steps of the RNN
► Very deep for very long sequences

 Gradients of “deep” layers (far from input) computed via chainrule as product 
of Jacobians between layers (time-steps)
► Product of Jacobians tend to either “explode” to inf. or “vanish” to zero
► Similar effect observed in non-recurrent networks

 Approaches to address this issue
► Non-recurrent case: add skip connections from earlier layers towards 

output: Residual networks (He et al, ECCV’16)
► Clipping the magnitude of gradients (Pascanu, ICML’13)
► Rescaling of gradients based on history of their norm (Kingma & Ba, 

ICL’15)
► Introduction of gates that shield a hidden unit from input and/or output for 

several layers, effectively shortening the depth for that unit (Hochreiter & 
Schmidhuber, Neural Computation ‘97) (Cho et al., Empirical Methods in 
NLP’14) 



Gated units: Long short-term memory (LSTM)

 Introduced by Hochreiter & Schmidhuber (Neural Computation, 1997)

 LSTM defines a dynamical system on hidden state h and a “memory cell” c 

 Involves a number of additional processing elements



Long short-term memory (LSTM) cells 

 Introduced by Hochreiter & Schmidhuber (Neural Computation, 1997)

 LSTM defines a dynamical system on hidden state h and a “memory cell” c 

 Involves a number of additional processing elements
► Forget gate f: “remember” or “forget” previous cell state c



Long short-term memory (LSTM) cells 

 Introduced by Hochreiter & Schmidhuber (Neural Computation, 1997)

 LSTM defines a dynamical system on hidden state h and a “memory cell” c 

 Involves a number of additional processing elements
► Input gate i: controls flow of input to cell state
► Input modulator      , maps input and previous state to cell state update ~C



Long short-term memory (LSTM) cells 

 Introduced by Hochreiter & Schmidhuber (Neural Computation, 1997)

 LSTM defines a dynamical system on hidden state h and a “memory cell” c 

 Involves a number of additional processing elements
► Cell update: can “forget” previous cell state, can ignore input



Long short-term memory (LSTM) cells 

 Introduced by Hochreiter & Schmidhuber (Neural Computation, 1997)

 LSTM defines a dynamical system on hidden state h and a “memory cell” c 

 Involves a number of additional processing elements
► Output gate o, controls flow of cell state to output
► Output vector also passed to next time step of LSTM unit



Gated Recurrent Unit 

 GRU simpler gated model than LSTM, empirically gives similar performance 
(Cho et al., Empirical Methods in Natural Language Processing, 2014)

 Two gates are used 
► Read gate r, controls access to hidden state for state update
► Forget gate z, mixes old state and updated one



Case study: character-level LSTM language model

 Learn model to generate text at character level without any conditioning 
► Uses output-feedback for state update
► Training data: all Paul Graham essays, about 1 million characters

 Random sample from the trained model:

The surprised in investors weren't going to raise money. I'm not the company with the 
time there are all interesting quickly, don't have to get off the same programmers. 
There's a super-angel round fundraising, why do you can do. If you have a different 
physical investment are become in people who reduced in a startup with the way to 
argument the acquirer could see them just that you're also the founders will part of 
users' affords that and an alternation to the idea. [2] Don't work at first member to see 
the way kids will seem in advance of a bad successful startup. And if you have to act 
the big company too.

  Model learned to spell words, and long-range grammatical dependencies



Case study: character-level LSTM language model

 Same model, now training data: all of Shakespeak (4.4 MB)

 Random sample from the trained model:

PANDARUS:
Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after this chamber, and
my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

 Specific style structure is also captured by the model



Case study: character-level LSTM language model

 Same model trained on linux source code (474 MB)
► Very long range dependencies on bracket structure

/*
 * Increment the size file of the new incorrect UI_FILTER group information
 * of the size generatively.
 */
static int indicate_policy(void)
{
  int error;
  if (fd == MARN_EPT) {
    /*
     * The kernel blank will coeld it to userspace.
     */
    if (ss->segment < mem_total)
      unblock_graph_and_set_blocked();
    else
      ret = 1;
    goto bail;
  }
  segaddr = in_SB(in.addr);
  selector = seg / 16;
  setup_works = true;
  for (i = 0; i < blocks; i++) {
    seq = buf[i++];
    bpf = bd->bd.next + i * search;
    if (fd) {
      current = blocked;
    }
  }
  rw->name = "Getjbbregs";
  bprm_self_clearl(&iv->version);
  regs->new = blocks[(BPF_STATS << info->historidac)] | PFMR_CLOBATHINC_SECONDS << 12;
  return segtable;
}



Case study: image captioning

 Given image generate descriptive english sentence



Image captioning with encoder-decode system

 Encoder: CNN takes image and maps it into a vector 

 For example, fully connected layer of VGG16 network
► CNN pre-trained on ImageNet classification task (>1 million images)



Image captioning with encoder-decode system

 Decoder: RNN takes CNN image vector to initialize RNN state

 Typical configuration: 
► Single layer of 512 GRUs
► Output feedback to ensure coherent sentence



Image captioning with encoder-decode system

 Example output (Vinyals et al., CVPR 2015)



Case-study: Machine translation with encoder-decoder

 Translation of a sentence into another language
► Input and output of different length



Encoder-decoder model

 Read source sentence with encoder RNN (Sutskever et al., NIPS 2014)
► Reading input in reverse yields better result: more short dependencies
► Can use bidirectional RNN since input sequence is given

 Generate target sentence with decoder RNN 
► Uses a different set of parameters
► Uses output feedback to ensure output coherency

 Meaning of source sentence encoded in the RNN state vector passed 
between encoder and decoder
► The captioning model we saw before is a variant of this idea where a  

CNN is used as an image encoder

encoder decoder



Encoder-decoder machine translation

 Trained from “aligned” corpus of matching source-target sentences

 Encoder and decoder can be learned on multiple language pairs in parallel
► (English to French) and (Dutch to French) use same decoder
► (English to French) and (English to Dutch) use same encoder

 Generalizes to translation between new language pairs for which no aligned 
training corpus was available

english

french

french

english

dutch

english

dutch

english
dutch english

english dutch
french french



Encoder-decoder machine translation

 PCA projection of LSTM encoder state after reading several phrases 

 Word order important for meaning, captured in encoder state vector
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Encoder-decoder machine translation

 PCA projection of LSTM encoder state after reading several phrases 

 Word order important for meaning, captured in encoder state vector



Summary of recurrent networks

 Recurrent networks are powerful tools to model sequential data
► Sequential input and/or sequential output
► Input and output sequence may be aligned or not

 “Unfolding” recurrent networks allows to recognize them as feedforward 
networks with weight-sharing across recurrent connections, generalizable to
► Multidimensional structures  data on input or output
► Encoder-decoder networks
► Deep recurrent networks

 Recurrent networks with a gating mechanism much more powerful for tasks 
with long-range dependencies: LSTM and GRU
► Gates can be thought of as internal to the recurrent unit
► Does not change the unfolded graph topology: remains feedforward

 State-of-the art performance on various tasks, including
► Image captioning
► Machine translation
► Speech recognition



Further reading

 “Deep Learning” 

Ian Goodfellow, Yoshua Bengio, Aaron Courville. 

MIT Press, 2016 (free online)

http://www.deeplearningbook.org/

 “Supervised Sequence Labelling with Recurrent Neural Networks” 

Alex Graves, 2012 (free online)

 “Pattern Recognition and Machine Learning”

Chris Bishop. 

Springer, 2006.
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