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Course content

 Lecture 1 

► Introduction

► Linear classification

► Non-linear classification with kernels

► Kernel-trick more generally

► Bias-variance decomposition

 Lectures 2,3,4 (Julien Mairal)

► Theory on kernels

 Lectures 5,6 (Jakob Verbeek)

► Fisher kernel

► Convolutional and recurrent neural networks 



Course content

 From classic linear learning problems



Course content

 To current practical learning problems



Course content

 Extend well understood linear statistical learning techniques to real-
world complicated, structured and high-dimensional data (images, 
text, time series, graphs, distributions, permutations, …)

 Kernels: basic theory and kernel design
 Neural networks: learning convolutional and recurrent architectures



Learning predictive models from data

 Given training data labeled for two or more classes
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Learning predictive models from data

 Given training data labeled for two or more classes

 Determine a decision surface that separates those classes

 Use that surface to predict the class membership of new data



Recommender systems

 Given a dataset of users and the movies they liked

 Predict which other movies a given user would also like



Recommender systems

 Given a dataset of queries and click-through data

 Predict which are the most relevant pages for a given query 



Natural Language Processing

 Given a text, predict its topic

 Given an email, predict whether it is spam

 Given a text, predict its translation in another language

 Etc.



Tumor classification for prognosis

 Given the expression of genes in a new tumor, predict the development over 

the next 5 years



Molecule classification for drug design

 Given a candidate molecule, predict whether it is active against a certain 

condition



Gene expression clustering

 Are there groups of breast tumors with similar gene expression profile?



Audio understaning

 Given an audio stream, predict which song is played



Image Inpainting

 Complete an image with missing parts

 predict each image patch, as a linear combination of dictionary elements



Image Inpainting

 Complete an image with missing parts

 predict each image patch, as a linear combination of dictionary elements



Image Inpainting



Image super resolution

 Given an image, predict a high-resolution version of it

 Predictions per-patch, ensure spatial consistency



Classification examples in category-level recognition

 Given an image, predict if labels are relevant or not 
 For example: Person = yes, TV = yes, car = no, ...



Classification examples in category-level recognition

 Category localization: predict bounding box coordinates for each object 



Classification examples in category-level recognition

 Semantic segmentation: classify pixels to categories (multi-class)
 Impose spatial smoothness by Markov random field models.



Video understanding

 Given a video: predict the type of event that is shown: birthday party



Video understanding

 Given a video: predict spatio-temporal location of an action, eg drinking



Image captioning

 Given an image: predict a natural language description



Advanced learning models

 Each of these examples involves complex objects/large numbers of features 
for a restricted number of samples

 Intuitively, observing all these characteristics should allow us to predict or 
understand complex mechanisms

 But it also means that we should use very rich model classes that can 
capture a wealth of complex dependencies

 Introduces a risk of overfitting: modeling co-incidental structure in the data

 However, this wealth of features can cause trouble in statistical learning

 This course

► Modeling complex data structures with kernels and neural networks

► Regularization to avoid overfitting



Course content

 Introduction

 Linear classification

 Non-linear classification with kernels

 Kernel-trick more generally

 Bias-variance decomposition



Binary linear classifier

 Decision function is linear in the features:

 Classification based on the sign of f(x)

 Decision surface is (d-1) dimensional 

hyper-plane orthogonal to w 

 Offset from origin is determined by b

 We drop offset b, absorb it in x and w

 We will now consider the two most commonly used linear classifiers

► Logistic discriminant

► Support vector machines

f(x)=0

w

f (x)=w
T
x+b

x←(xT
1)T

w←(wT
b)T



Common loss functions for classification

 Assign class label using

► Zero-One loss:

► Hinge loss:

► Logistic loss:

L( y i , f (xi))=[ yi f (xi)≤0 ]
L( y i , f (xi))=max (0,1− yi f (xi))
L( y i , f (xi))=log2

(1+e
−yi f ( xi))

y=sign (f (x))



Common loss functions for classification

 Assign class label using

► Zero-One loss:

► Hinge loss:

► Logistic loss:

 The zero-one loss counts the number of misclassifications, which is 

the “ideal” empirical loss.

► Discontinuity at zero makes optimization intractable.

 Hinge and logistic loss provide continuous and convex upperbounds

 Combined with convex penalties to prevent overfitting this leads to 

convex objective functions, for which global optima can be found.

L( y i , f (xi))=[ yi f (xi)≤0 ]
L( y i , f (xi))=max (0,1− yi f (xi))
L( y i , f (xi))=log2

(1+e
−yi f ( xi))

y=sign (f (x))



Logistic discriminant classifier

 Map linear score function to class probabilities with sigmoid

 For binary classification problem, we have by definition

► Exercise: show that 

σ(z)=
1

1+ exp(−z)

p( y=+1∣x)=σ (wT
x)

p( y=−1∣x)=1−p ( y=+ 1∣x)

p( y=−1∣x)=σ (−w
T
x)



Logistic discriminant classifier

 Map linear score function to class probabilities with sigmoid.

 The class boundary at f(x)=0, or equivalently p(y|x)=1/2.

 Soft transition between class assignment along decision boundary.

w

p(y|x)=1/2

f(x)=-5

f(x)=+5



Logistic discriminant classifier

 Probability of class y given by sigmoid of score function times label

 Log-likelihood of correct classification of i.i.d. data in training set

 We have obtained the logistic loss as negative log-likelihood 

p( y∣x)=σ( ywT
x)

log∏
i=1

n

p( yi∣xi)=∑
i=1

n

log p ( yi∣xi)

=∑
i=1

n

log σ ( yiw
T
xi)

=−∑
i=1

n

log (1+exp(− yiw
T
xi))

=−∑
i=1

n

Llogistic( yi ,w
T
xi)



Logistic discriminant estimation

 Estimate classifier from data by minimizing, e.g. L2, penalized loss:

► Penalty reduces risk of overfitting 

 Exercise 1: derive the gradient of the loss

 Exercise 2: Show that this is a convex optimization problem

minw∑i=1

n

L( yi ,w
T
xi)+λ

1

2
w

T
w

=minw∑i=1

n

log (1+exp(−yi w
T
xi))+λ

1

2
w

T
w

∂ L( yi ,w
T
xi)

∂w
=−yi(1−p( yi∣xi))xi



Logistic discriminant estimation

 Estimate classifier from data by minimizing, e.g. L2, penalized loss:

 Exercise: Show that this is a convex optimization problem

► Calculate gradient of loss w.r.t. w

► Calculate Hessian of Loss w.r.t. w

minw∑i=1

n

L( yi ,w
T
xi)+λ

1

2
w

T
w

=minw∑i=1

n

log (1+exp(−yi w
T
xi))+λ

1

2
w

T
w

∂ L( y ,w
T
x)

∂w
=−yx

1

1+exp( y w
T
x)

H (L)= yx ( 1

1+exp( y w
T
x))

2

exp( ywT
x) yxT

=σ ( ywT
x)σ (− yw

T
x) xxT



Logistic discriminant estimation

 Consider arbitrary w with non-zero norm

 Hessian is semi-positive definite, thus L is convex in w.
 Squared L2 norm also convex in w.

w
T
H (L)w=w

T (σ ( ywT
x)σ (−yw

T
x)xxT )w

=σ ( ywT
x)σ (− yw

T
x)(wT

x)2≥0



Logistic discriminant estimation

 Solve objective function using first or second order methods

► E.g. using gradient descent, conjugate gradient descent,...

► Stochastic gradient descent for large-scale problems

 Recall the gradient

 Consider gradient descent, starting from w=0

► Each step we add to w a linear combination of the data points

► Magnitude of weight given by probability of misclassification

► Sign of weight given by the label

 The optimal w is a linear combination of the data samples

► L2 regularization term does not change this property

minw∑i=1

n

log (1+exp(−yiw

T
xi))+λ

1

2
w

T
w

∂ L( yi ,w
T
xi)

∂w
=−yi(1−p( yi∣xi))xi



Support Vector Machines

 Find linear function to separate positive and negative examples

 Which function best separates the samples ?
► Function inducing the largest margin

yi=+1 : w
T
xi+b>0

yi=−1 : w
T
xi+b<0



Support vector machines

 Without loss of generality, define function value at margin as +/- 1

 Now constrain w to that all points fall on correct side of the margin:

 By construction we have that the “support vectors”, the ones that define the 

margin, have function values

 Express the size of the margin

in terms of w.

Margin
Support vectors

yi(w
T
xi+b)≥1

w
T
xi+b=y i

f(x)=+1

f(x)=0

f(x)=-1



Support vector machines

 Let's consider a support vector x from the positive class

 Let z be its projection on the decision plane

► Since w is normal vector to the decision plane, we have

► and since z is on the decision plane

 Solve for alpha

 Margin is twice distance from x to z

MarginSupport vectors

f ( x)=w
T
x+ b=1

z=x−αw

f (z)=w
T (x−αw)+b=0

∥x−z∥2=∥x−(x−αw)∥2

∥αw∥2=α∥w∥2

∥w∥2

∥w∥2

2
=

1

∥w∥2

w
T (x−αw)+b=0

w
T
x+b−αw

T
w=0

αw
T
w=1

α=
1

∥w∥2

2



Support vector machines

 To find the maximum-margin separating hyperplane, we
► Maximize the margin, while ensuring correct classification

► Minimize the norm of w, s.t.

 Solve using quadratic program with linear inequality constraints over 

p+1 variables

Margin
Support vectors

∀ i : yi(w
T
xi+b)≥1

f(x)=+1

f(x)=0

f(x)=-1

argminw ,b

1

2
w

T
w

subject to yi(w
T
xi+b)≥1



Support vector machines: inseperable classes

 For non-separable classes we incorporate hinge-loss 

 Recall: convex and piecewise linear upper bound on zero/one loss.

► Zero if point on the correct side of the margin

► Otherwise given by absolute difference from score at margin

L( y i , f (xi))=max (0,1− yi f (xi))



Support vector machines: inseperable classes

 Minimize penalized loss function

► Quadratic function, plus piecewise linear functions.

 Can again be transformed to a quadratic program

► Define “slack variables” that measure the loss for each data point

► Should be non-negative, and at least as large as the loss

minw ,b λ
1

2
w

T
w + ∑

i
max (0,1− yi(w

T
xi+b))

minw ,b , {ξi}
λ

1

2
w

T
w + ∑

i
ξi

subject to ∀i : ξi≥0  and ξi≥1− yi(w
T
xi+b)



Support vector machines: solution

 Minimize penalized loss function

 Solution for w will be a linear combination of the input data

► Split w into a part inside and outside the span of the data 

► Only norm of w depends on part of w outside the data span

► Note that

► Therefore optimal w is a linear combination of the data

 This is a special case of the more general “representer theorem”

minw ,b , {ξi}
λ

1

2
w

T
w + ∑

i
ξi

subject to∀i : ξi≥0  and ξi≥1− yi(w
T
xi+b)

w=wp+wo ∀ i :wo

T
xi=0 wp=∑

i
αi xi

w
T
w=wp

T
wp+wo

T
wo≥wp

T
wp



Dealing with more than two classes

 So far, we have only considered the, useful, case for two classes
► E.g., is this email spam or not ?

 Many practical problems have more classes
► E.g., which fruit is placed on the supermarket weight scale: apple, 

orange, or banana ?

 First idea: construction from multiple binary classifiers

► Learn binary “base” classifiers independently

 One vs rest approach:

► Train: 1 vs (2 & 3),  2 vs (1 & 3), 3 vs (1 & 2)

 Issue: regions claimed by several classes



Dealing with more than two classes

 One vs one approach: 

► Train:  1 vs 2, and 1 vs 3, and 2 vs 3

 Issue: conflicts in some regions



Dealing with more than two classes

 Instead: define a separate linear score function for each class

 Assign sample to the class of the function with maximum value 

 Exercise 1: give the expression for points

where two classes have equal score

 Exercise 2: show that the set of points 

assigned to a class is convex
► If two points are assigned to a class, then all points on connecting line 

are also assigned to that class.

f k (x)=wk

T
x

y=argmaxk f k (x )



Multi-class logistic discriminant classifier

 Map score functions to class probabilities with “soft-max” 

► The class probability estimates are non-negative, and sum to one.

 Relative probability of classes changes exponentially with the 

difference in the linear score functions

 For any given pair of classes, they are equally 

likely on a hyperplane in the feature space

p( y=c∣x)=
exp( f c (x))

∑
k=1

K

exp( f k( x))
f k (x)=wk

T
x

p( y=c∣x)
p ( y=k∣x)

=
exp( f c (x))

exp ( f k (x))
=exp( f c( x)−f k (x ))



Multi-class logistic discriminant: estimation

 Consider the likelihood of correct classification of i.i.d. data in training set

 As before, we define loss function as negative log-likelihood

 Estimate model by means of penalized empirical risk

minw∑i=1

n

L( yi , {f k (xi)})+λ
1

2
∑

k=1

K

wk

T
wk

log∏
i=1

n

p( yi∣xi)=∑
i=1

n

log p( yi∣xi)

=∑
i=1

n

( f yi
(xi)−log∑

k=1

K

exp(f k (xi)))

L( y , {f k (x)})=−f y(x)+ log∑
k=1

K

exp(f k (x))



Multi-class logistic discriminant: estimation

 Derivative of loss function has an intuitive interpretation

► Focus on points with poor classification, w is linear combination of x's

 Gradient is zero when 

► If x also contains the constant 1 as last element then empirical count of each 

class matches expected count.

► Therefore, for each class 1st order moment matches for empirical distribution 

and the model's class conditional distribution.

∂ L

∂wk

=∑
i=1

n

([ yi=k ]−p( yi=k∣xi)) xi

L=∑
i=1

n

L( yi ,{f k (xi)})

∑
i=1

n

[ yi=k ]xi

∑
i=1

n

[ yi=k ]
=
∑

i=1

n

p( yi=k∣xi)xi

∑
i=1

n

p( yi=k∣xi)

∑
i=1

n

[ yi=k ]=∑
i=1

n

p( yi=k∣xi)

∑
i=1

n

[ yi=k ]xi=∑
i=1

n

p( yi=k∣xi) xi



Summary of linear classifiers

 Two most widely used binary linear classifiers:
► Logistic discriminant, also considered the extension to >2 classes.

► Support vector machines, similar multi-class extensions exist.

 Both minimize convex upper bounds on the 0/1 loss

 In both cases the optimal weight vector w is a linear combination of 

the data points

 Therefore, we only need the inner-products between data 

points to use linear classifiers. This also holds for the 

optimization of w.

w=∑
i=1

n

αi xi

f (x)=w
T
x+b

=∑
i=1

n

αi (xi

T
x )+b



Course content

 Introduction

 Linear classification

 Non-linear classification with kernels

 Kernel-trick more generally

 Bias-variance decomposition



Nonlinear Classification

 So far we just considered linear classifiers.

 Obviously limits the problems that can be addressed.

 What to do it the data is not linearly separable?

 Similar to what we considered last week for regression with higher-

order polynomials, we can do linear classification on non-linear 

features. For example augment map the data to R2 by adding x2.

0 x

x2

0 x
Slide credit: Andrew Moore



Φ:  x → φ(x)

Non-linear feature mappings for classification

 Map the original input space to some higher-dimensional feature 

space where the training set is separable

 Data occupies a (non-linear) subspace of dimension equal to the 

original space.

 Which features could separate this 2dimensional data linearly ?

Slide credit: Andrew Moore



Non-linear feature mappings for classification

 Remember that for classification we only need dot-products.

 Let's calculate the dot-product explicitly for our example.
► New dot-product easily computed from the original one.

Φ:  x → φ(x)

ϕ(x)=(
x1

2

x2

2

√2 x1 x2

)
k (x , z)=ϕ(x)T ϕ(z)=?

=x1

2
z1

2+x2

2
z2

2+2x1 x2 z1 z2

=( x1 z1+x2 z2)2

=( xT
z )2



Non-linear feature mappings for classification

 Suppose we also want to keep the original features to still be able to 

implement linear functions

► Again efficient computation in 6d, roughly at cost of 2d dot-product

Φ:  x → φ(x)

ϕ(x )=(
1

√2 x1

√2 x2

x1

2

x2

2

√2 x1 x2

)
k ( x , y)=ϕ( x)T ϕ( y )=?

=1+ 2x
T
y+ (xT

y )2

=(xT
y+ 1)

2

0 x
Slide credit: Andrew Moore

0 x
Slide credit: Andrew Moore



Non-linear feature mappings for classification

 What happens if we do the same for higher dimensional data
► Which feature vector            corresponds to it ?

► First term, encodes an additional 1 in each feature vector

► Second term, encodes scaling of the original features by sqrt(2)

► Let's consider the third term

► In total we have 1 + 2D + D(D-1)/2 features ! 

► But computed as efficiently as dot-product in original space

( xT
y )

2

=( x1 y1+ ...+ xD yD)2

k ( x , y)=( xT
y+ 1 )

2

=1+ 2x
T
y+ (xT

y )
2

=∑
d=1

D

(xd yd)
2+2∑

d=1

D−1

∑
i=d+1

D

(xd yd)(xi yi)

=∑
d=1

D

xd

2
yd

2+2∑
d=1

D−1

∑
i=d+1

D

(xd xi)( yd yi)

ϕ(x )=(1 ,√2 x1 ,√2 x2, ... ,√2 xD , x1

2
, x2

2
, ... , xD

2
,√2 x1 x2 , ... ,√2 x1 xD , ... ,√2 xD−1 xD )

T

Original features Squares Products of two distinct elements

ϕ(x )



Nonlinear classification with kernels

 The kernel trick: instead of explicitly computing the feature 

transformation φ(x), define a kernel function K such that

       K(xi , xj) = φ(xi ) · φ(xj)

 This allows us to obtain nonlinear classification in the original space:

f (x) = b+w
T ϕ (x)

= b+∑
i
αiϕ (x)T ϕ (xi)

= b+∑i
αi k (x , xi)

= b+αT
k (x ,.)

w
T
w=∑

i
∑

j
αiα jϕ (xi)

T ϕ (x j)

=∑
i
∑

j
αiα j k (xi , x j)

=αT
K α



Summary of classification

 Linear classifiers learned by minimizing convex cost functions
► Logistic loss: smooth objective, minimized using gradient descent, etc.

► Hinge loss: piecewise linear objective, quadratic programming

► Both require only computing inner product between data points

 Non-linear classification can be done with linear classifiers over new 

features that are non-linear functions of the original features
► Kernel functions efficiently compute inner products in (very) high-

dimensional spaces, can even be infinite dimensional.

 Using kernel functions non-linear classification has drawbacks
► Requires storing the data with non-zero weights, memory cost 

► Kernel evaluations for test point may be computationally expensive 



Course content

 Introduction

 Linear classification

 Non-linear classification with kernels

 Kernel-trick more generally

 Bias-variance decomposition



Representation by pairwise comparisons

 We can think of a kernel function as a pairwise comparison function

 Represent a set of n data points by the n x n matrix

 Always an n x n matrix, whatever the nature of the data

► Same algorithms will work for any type of data: images, text...

 Modularity between the choice of K and the choice of algorithms.

 Poor scalability with respect to the data size (squared in n).

 We will restrict attention to a specific class of kernels.

K : X×X→R

[K ]ij=K (xi , x j)



Positive definite kernels

 Definition: A positive definite kernel on the set X is a function 

which is symmetric: 

and which satisfies

 Equivalently, a kernel K is positive definite if and only if, for any n 

and any set of n points, the similarity matrix K is positive 

semidefinite:

K : X×X→R

∀ (x , x ')∈X
2
: K (x , x ' )=K (x ' , x)

∀n∈N

∀ (x1, ... , xn)∈R
n

 and (a1, ... , an)∈R
n

∑
i=1

n

∑
j=1

n

ai a j K (xi , x j)≥0

a
T
K a≥0



The simplest positive definite kernel

 Lemma: The kernel function defined by the inner product over 

vectors is a positive definite kernel.

► This kernel is known as the “linear kernel”

 Proof

► Symmetry: 

► Positive definiteness:

K : X×X→R

∀ (x , x ')∈X
2
: K (x , x ' )=x

T
x '

∑
i=1

n

∑
j=1

n

ai a j K (xi , x j)=∑
i=1

n

∑
j=1

n

ai a j xi

T
x j=∥∑

i=1

n

ai xi∥2

2≥0

K (x , x ')=x
T
x '=(x ')T x=K (x ' , x)



More generally: for any embedding function

 Lemma: The kernel function defined by the inner product over data 

points embedded in a vector space by a function φ is a positive 

definite kernel.

 Proof

► Symmetry: 

► Positive definiteness:

K : X×X→R

∀ (x , x ')∈X
2
: K (x , x ' )=⟨ϕ (x),ϕ (x ')⟩H

∑
i=1

n

∑
j=1

n

aia j K (xi , x j)=∑
i=1

n

∑
j=1

n

ai a j ⟨ϕ(xi) ,ϕ(x j)⟩H=∥∑
i=1

n

aiϕ (xi)∥H

2 ≥0

K (x , x ' )=⟨ϕ (x) ,ϕ (x ')⟩H=⟨ϕ (x ') ,ϕ (x)⟩H=K (x ' , x)



Conversely: Kernels as inner products

 Theorem (Aronszajn,1950)

K is a positive definite kernel on the set X if and only if there exists a 

Hilbert space H and a mapping

such that for any x and x' in X

 Establishes the correspondence between kernels and 

representations.

Φ : X→H

K (x , x ' )=⟨ϕ (x) ,ϕ (x ')⟩H



The kernel trick

 Choosing a p.d. kernel K on a set X amounts to embedding the data 
in a Hilbert space: there exists a Hilbert space H and a mapping

such that for all x and x' in X

 This mapping might not be explicitly given, nor convenient to work 
with in practice, e.g. for very large or even infinite dimensions.

 The “trick” is to work implicitly in the feature space H by means of 
kernel evaluations.

k (x , x ' )=〈ϕ (x) ,ϕ (x ')〉H.

Φ : X→H



The kernel trick

 Any algorithm to process finite dimensional vectors that can be 
expressed only in terms of pairwise inner products can be applied to 
potentially infinite-dimensional vectors in the feature space of a p.d. 
kernel by replacing each inner product evaluation by a kernel 
evaluation.

 This statement is trivially true, since the kernel computes the inner 
product in the associated RKHS.

 The practical implications of this “trick” are important.

 Vectors in the feature space are only manipulated implicitly, through 
pairwise inner products, there is no need to explicitly represent any 
data in the feature space.



Example 1: computing distances in the feature space

 
dk (x , x ')2=∥ϕ(x)−ϕ (x ' )∥H

2

=〈ϕ (x)−ϕ(x ' ) ,ϕ (x)−ϕ(x ' )〉H

=〈ϕ (x) ,ϕ(x)〉H+〈ϕ (x ') ,ϕ (x ' )〉H−2 〈ϕ(x) ,ϕ (x ')〉H

=k (x , x)+k (x ' , x ' )−2k (x , x ' )



Distance for the Gaussian kernel

 
 The Gaussian kernel with bandwidth 

sigma is given by

 In the feature space, all points are 
embedded on the unit sphere since

 The distance in the feature space 
between x and x' is given by

k (x , x ' )=exp (−∥x−x '∥2 /(2σ2))

dk (x , x ')=√2 [1−exp (−∥x−x '∥2 /(2σ2))]

k (x , x)=∥ϕ(x)∥H

2 =1



Example 2: distance between a point and a set

 
 Let S be a finite set of points in X: 

 How to define and compute the similarity between any point x in X and 
the set S?

 The following is a simple approach:

► Map all points to the feature space 

► Summarize S by the barycenter of the points

► Define the distance between x and S as

dk (x ,S)=∥ϕ(x)−m∥H

m=
1

n
∑

i=1

n

ϕ(xi)

S=(x1, ... , xn)



Example 2: distance between a point and a set

=∥ϕ (x)−
1

n
∑

i=1

n

ϕ(xi)∥H

=√k (x , x)−
2

n
∑

i=1

n

k (x , xi)+
1

n
2 ∑i , j=1

n

k (xi , x j)

dk (x ,S)=∥ϕ(x)−m∥H



Uni-dimensional illustration

 
 Let S = {2,3}, plot f(x) = d(x,S).

Linear kernel Gaussian kernel, Gaussian kernel,

with σ=1 with σ=0.2



2D illustration

 
 Let S = { (1,1)', (1,2)', (2,2)' }, plot f(x) = d(x,S).

Linear kernel Gaussian kernel, Gaussian kernel,

with σ=1 with σ=0.2



Application to discrimination

 
 Consider a set of points from positive class P = { (1,1)', (1,2)' }
 And a set of points from the negative class N={ (1,3)', (2,2)' }
 Plot 

Linear kernel Gaussian kernel, Gaussian kernel,

with σ=1 with σ=0.2

=∥ϕ (x)−mP∥H

2 −∥ϕ(x)−mN∥H

2

=
2

n
∑

xi∈N
k (x , xi)−

2

n
∑

xi∈P
k (x , xi)+constant

f (x)=dk (x , P)2−dk (x , N )2



Example 3: centering data in feature space

 
 Let S be a set of n points in X.
 Let K be the kernel matrix generated by the p.d. kernel k(.,.).
 Let m be the barycenter in the feature space of the points in S.
 How to compute the kernel matrix when the points are centered on m?

h(x , x ' )=〈ϕ (x)−m,ϕ(x ' )−m〉H



Example 3: centering data in feature space

 
 Substitution of the barycenter gives

 Or, in matrix notation we get

where for all i,j: 

h(xi , x j)=〈ϕ (xi)−m ,ϕ (x j)−m〉H

=〈ϕ (xi),ϕ (x j)〉H−〈m,ϕ (xi)+ϕ(x j)〉H+〈m,m〉H

=k (xi , x j)−
1

n
∑

k=1

n

(k (xi , xk )+k (xk , x j))+
1

n
2 ∑k , l=1

n

k (xk , xl)

H=K−KU−UK+UKU=(I−U )K ( I−U )

Ui, j=1 /n


