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Application 1:
Collaborative filtering

Collaborative filtering for recommendation systems
Matrix completion optimization problem.

Ratings X:

e Data: for user i and movie j

film 1 Xi; € R, with (i,7) € Z: known ratings

film 2 film 3

Albert
Ben
Celine
Diana
Elia

Franz

o Purpose: predict a future rating
New (Z,_j) — Xij =7
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Application 1:
Collaborative filtering

Collaborative filtering for recommendation systems
Matrix completion optimization problem.

Ratings X:

e Data: for user i and movie j

film 1 Xi; € R, with (i,7) € Z: known ratings

film 2 film 3

Albert
Ben
Celine
Diana
Elia

Franz

o Purpose: predict a future rating
New (Z,_j) — Xij =7

Low rank assumption: For example:
Movies can be divided into a

small number of types . 1
P min = Y [Wy— Xyl + AW,

, werdxk N (e
mm [ Movies [
- .
i W], Nuclear norm = sum of singular values

e convex function
o surrogate of rank

rs

Users
el

Movies
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Application 2:
Multiclass classification
Multiclass classification of images
Example: ImageNet challenge

e Data (z;, y;) € R? x R* : pairs of (image, category)

—

marmot
o Purpose: predict the category for a new image
New image z — y =7

—

edgehog
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Multiclass classification of images
Example: ImageNet challenge

Application 2:
Multiclass classification

e Data (z;, y;) € R? x R* : pairs of (image, category)

—

marmot
e Purpose: predict the category for a new image
New image z —— y = ?
Low rank assumption: The features are assumed to

be embedded in a lower dimensional space

—— edgehog
Multiclass version of support vector machine (SVM)

WERdX k

Zmax{o 1+

max {W T; —
rs.t r#y;

W
Wyt + AW,
[l Az W)+l
W, € R?: the j-th column of W
Or <> =) aE=r T 9DACG




Matrix learning problem
o These two problems have the form:

Yi

) 1 N —_—
WBL y D T W) A W
i=1 regularization
=:R(W), empirical risk
e Notation
Prediction Data:
F prediction function N number of examples
¢ loss function x; feature vector
yi outcome

¥ predicted outcome

=} F = = £ DA
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Matrix learning problem
o These two problems have the form:

Yi

1 N /—/h
min = Uy, Fxi, W)+ A W]
werdxk N 4 ~——
i=1 regularization
=:R(W), empirical risk
e Notation
Prediction Data:
F prediction function N number of examples
£ loss function x; feature vector
yi outcome
¥ predicted outcome
e Nonsmooth empirical risk:
o Challenges ” o
* Large scale: N, k, d o0 r om0
* Robust learning;: g(&) = €] max{0, &}

Generalization — nonsmooth regularization

Noisy data, outliers — nonsmooth empirical risk
[ (=] = = QA
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My thesis
in one slide
min 1
wW N
2nd contribution

1

> Uy Fxi, W))

+ AW
—~—
3rd contribution
1st contribution
1 - Smoothing techniques

2 - Conditional gradient algorithms
3 - Group nuclear norm
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Part 1
Unified view of smoothing techniques
for first order optimization
Motivations:
e Smoothing is a key tool in optimization

e Smooth loss allows the use of gradient-based optimization

0 1

9(§) = max{0,{}
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Part 1
Unified view of smoothing techniques

for first order optimization
Motivations:

e Smoothing is a key tool in optimization

e Smooth loss allows the use of gradient-based optimization

0 1 2

9(&) = [¢] 9(€) = max{0, £}

Contributions:

o Unified view of smoothing techniques for nonsmooth functions
o New example: smoothing of top-k error (for list ranking and classification)

e Study of algorithms = smoothing + state of art algorithms for smooth problems

] = E 12N G4
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Part 2

Conditional gradient algorithms
for doubly nonsmooth learning
Motivations:

min

o Common matrix learning problems formulated as
WeRdXk

R(W) + AW
~——

nonsmooth emp.risk

e Nonsmooth empirical risk, e.g. L1 norm — robust to noise and outlyers

nonsmooth regularization

e Standard nonsmooth optimization methods not always scalable (e.g. nuclear norm)

o = ] = = wae



Part 2
Conditional gradient algorithms
for doubly nonsmooth learning

Motivations:

e Common matrix learning problems formulated as

min R(W) + AW
WeRdXk N—— N———
nonsmooth emp.risk nonsmooth regularization

e Nonsmooth empirical risk, e.g. L1 norm — robust to noise and outlyers

e Standard nonsmooth optimization methods not always scalable (e.g. nuclear norm)

Contributions:
o New algorithms based on (composite) conditional gradient
o Convergence analysis: rate of convergence + guarantees

e Some numerical experiences on real data

[=] = = = = A



Motivations:

Part 3
Regularization by group nuclear norm
e Structured matrices can join information coming from different sources
o Low-rank models improve robustness and dimensionality reduction
Wi
W1
Wy
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Motivations:

Part 3
Regularization by group nuclear norm
e Structured matrices can join information coming from different sources
o Low-rank models improve robustness and dimensionality reduction
Wi
W1
Wy

Contributions:

o Definition of a new norm for matrices with underlying groups
e Analysis of its convexity properties
o Used as regularizer — provides low rank by groups and aggregate models
Or «@r <= aEr T DA



Outline

(@ Unified view of smoothing techniques
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Purpose:

to smooth a convex function

Smoothing techniques
g:R" >R

2
05

2
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Smoothing techniques

Purpose: 2 2
to smooth a convex function "sl '5'

1

g:R" >R -

Two techniques:
1) Product convolution [Bertsekas 1978] [Duchi et al. 2012]

@ (©) == / 9(€ —2) lu <E> dz u: probability density
R™ v v
2) Infimal convolution [Moreau 1965] [Nesterov 2007] [Beck, Teboulle 2012]

g5 (&) = iHRf {9(5 —2)+yw (3) } w : smooth convex function
zZER™

o = = E £ DA
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Smoothing techniques

to smooth a convex function

1

Purpose: zl 2

g:R" >R o

Two techniques:
1) Product convolution [Bertsekas 1978] [Duchi et al. 2012]

@ (©) == / 9(& —2) %u (%) dz p: probability density
]Rn

2) Infimal convolution [Moreau 1965] [Nesterov 2007] [Beck, Teboulle 2012]

gy (&) := inf {g(& —z)+yw (%) } w : smooth convex function

€eR”

Result
® g, is uniform approximation of g, i.e. Im, M >0 : —ym < gy(x) — g(x) <yYM
® g, is Ly-smooth, ie. g, differentiable, convex,

IV9+(x) = Vg, (y)ll, < Ly lIx — || (L proportional to )

where || - ||  is the dual norm of || - ||

=} F = = £ DA
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* (possibly) explicit expression

Smoothing surrogates of nonsmooth functions
e Purpose: obtain g, to be used into algorithms
* easy to evaluate numerically

o Elementary example (in R)
absolute value g(z)

= ||
* Product convolution, with  p(x) =

o 3o

T

95(@) = —wF(=2) = Lye g wF(2)
2

F(z) := \/427 f foo e~ "7 dt cumulative distribution of Gaussian

* Infimal convolution, with ~ w(z) = 5 |||

—a: +32 if |z] <~y
(@) = { ||
|z

if |z| >~
o Motivating nonsmooth function: top-% loss (next)

=] (=] = E = A



Motivating nonsmooth functions: top-£ loss
o Top-3 loss for Classification

Example: top-3 loss
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o Top-3 loss for Classification

Motivating nonsmooth functions: top-£ loss

Example: top-3 loss

1 | Paper towel
— 2 Wall = loss=0
; 3 Cat
® .' Ground truth Prediction
Good prediction if the true class is among the first 3 predicted.
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Motivating nonsmooth functions: top-£ loss
Example: top-3 loss

o Top-3 loss for Classification

1 | Paper towel
— 2 Wall = loss=0
3 Cat
Ground truth Prediction

N
Good prediction if the true class is among the first 3 predicted.

o Top-3 loss for Ranking

1 Janis Joplins
2 David Bowie
3 Eric Clapton T T David Bowie
4 Patty Smith +— 2| Patty Smith = loss=0+31+0
5 | Jean-Jacques Goldman 3 | Janis Joplins
6 Francesco Guccini
Grund truth Prediction

Predict an ordered list, the loss counts the mismatches to the true list

=] (=] = = = A



Smoothing of top-£

Convex top-k error function, written as a sublinear function

g(x) = max (x,2)

Z = {ze]R": 0<z <+, Y u< 1} = cube N simplex
i=1

eCasek =1 Top-1

900) = I+l = mac{0, maxfxi})

Infimal convolution with w(x) = <Z x; In(z;

.
) — ﬂﬁz)
=1
z;

=] (=] = E = A



Convex top-k error function, written as a sublinear function

Smoothing of top-£
g(x) = max (x, z)

zEZ

Z :{zeR”: ngigi, Zzigl} = cube N simplex
i=1

eCasek =1 Top-1

9(x) =[x ||, = max{0, max{x;}}

Infimal convolution with w(x) = <Z x; In(z;) — x2>
=1

)
== . n
i1 e > if

i
¥
— e >1

+— Classification
Same result as in statistics [Hastie et al., 2008]
~ = 1 — multinomial logistic loss

=] (=] = E = A



Smoothing of top-k case k > 1

Infimal convolution with w = 3 ||-||?

n

9y (%) = =M (3,7) + 20 Hy (@i + A(x,7))

=1
0 t<0 e'(\)
Ho(t) = ¢ 4¢? telo, 4] 3
bk 1>
e We need to solve an auxiliary problem 2
(smooth dual problem)
Evaluate g+ (x) through the dual problem Y
Define |
P :={zi,zi —k:i=1...n} 0
6,()‘):1_thEPx7T[O>1/k](tj+A) _32
=20
Find

a,b € Px st ©(a) <0< 0'(h)
A (x,7) = max {0, a— %}
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Outline

(@ Conditional gradient algorithms for doubly nonsmooth learning
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Matrix learning problem
min R(W) + AQ(W)
WERIXE e = N~——
nonsmooth nonsmooth
Empirical risk R(W) := +

N

N
! Ei:l E(Wv Xi, Y1)
o Top-k for ranking and multiclass classification  £1 (W, x,y) := [[(Axy W) ||
e L1 forregression ¢1(W,x,y) = |Ax,y W]|
Regularizer (typically norm)

QW)
e Nuclear norm |W]|_,

d k
e Linorm W], :== 370, >0, Wil
e Group nuclear norm Qg (W)

— sparsity on singular values
(of contribution 3)

— sparsity on entries

sparsity <> feature selection
CIRE-= =» «z» =T Wac



min
WeRdXE

Existing algorithms for nonsmooth optimization
R(W) +  AQW)
nonsmooth

nonsmooth
o Subgradient, bundle algorithms [Nemirovski, Yudin 1976] [Lemarechal 1979]
o Proximal algorithms [Douglas, Rachford 1956]

Algorithms are not scalable for nuclear norm: iteration cost ~ full SVD = O(dk?)

=] (=] = E = A



Existing algorithms for nonsmooth optimization

min R(W) +  AQW)
WERIXE e ~——
nonsmooth nonsmooth

o Subgradient, bundle algorithms [Nemirovski, Yudin 1976] [Lemarechal 1979]
o Proximal algorithms [Douglas, Rachford 1956]

Algorithms are not scalable for nuclear norm: iteration cost ~ full SVD = O(dk?)

What if the loss were smooth?

min S(W) + XQ(W)
WERIXE e = ~—~—

smooth nonsmooth

Algorithms with faster convergence when S is smooth

o Proximal gradient algorithms
[Nesterov 2005] [Beck, Teboulle, 2009]
Still not scalable for nuclear norm: iteration cost ~ full SVD

o (Composite) conditional gradient algorithms
[Frank, Wolfe, 1956][Harchaoui, Juditsky, Nemirovski, 2013]
Efficient iterations for nuclear norm:
iteration cost ~ compute largest singular value = O(dk)

=] (=] = E = A



min

Composite conditional gradient algorithm
S(W)
WERdX k R/—/
State of art algorithm:

+ AQW)
smooth

——
nonsmooth
Composite conditional gradient algorithm
Let Wo =0
ro such that Q(W,) < rg
for t=0...T do
Compute
Z; =

= argmin (VS(W,),D)
Ds.t. Q(D)<r¢
o, Bt =

argmin
a,$20; a+B<1
Update

S(aZt ap BWt) ap )\(CM + B)Tt

Wi = oZyi + B: Wy
end for

rep1 = (e + Be)re

[gradient step]
[optimal stepsize]
where

W,,Z,, D e RI**

Efficient and scalable for some () e.g. nuclear norm, where Z, = wv !
o« = E = 9ac



Conditional gradient despite nonsmooth loss

Use conditional gradient replacing V.S(W,) with a subgradient s; € 9R(W)

=] (=] = E = A



Conditional gradient despite nonsmooth loss
Simple counter example in R?

Use conditional gradient replacing V.S(W,) with a subgradient s; € 9R(W)

min [[Aw + b1 + [|wl];
wER?

atoms of A

level sets of Remp
ra

Pierucci
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Smoothed composite conditional gradient algorithm
Idea: Replace the nonsmooth loss with a smoothed loss
min

R(W) +AQ(W)
WEeRdXE N——"

—
nonsmooth

min

Ry (W) +XQ(W)
wereE smooth
{R,}y>0 family of smooth approximations of R
Let Wo =0
ro such that Q(W,) < rg
for t=0...T do
Compute
Z, = argmin (VR,,(W.),D)
Dst Q(D)<r;
ai, By = argmin R, (aZ: + BWy) + Aa + B)re
a,2>0; a+B<1
Update
Wip1 = owZs + B W,
Tt41 = (at aF ,Bt)'r’t
end for

ai, By = stepsize

vt = smoothing parameter

Note: We want solve the initial ‘“doubly nonsmooth” problem
=} =) = E £ DA



Convergence analysis

Doubly nonsmooth problem

min  F(W) = R(W) + AQ(W)

WeRdxk

W, optimal solution
vt = smoothing parameter (# stepsize)

Theorems of convergence

o Fixed smoothing of R v, =~

2
F(W:) - F(W,) < M
(Wo) = F(W.) < 3M+ o
Dimensionality freedom of M depends on w or 1
The best v depends on the required accuracy e
o Time-varying smoothing of & v = 4=
W) - W) < &
t * = \ﬁ

Dimensionality freedom of C' depends on w or y, o and ||[W.||

=] (=] = = A



Algoritm implementation

Package
All the Matlab code written from scratch, in particular:

o Multiclass SVM
o Top-k multiclass SVM
o All other smoothed functions

Memory
Efficient memory management

o Tools to operate with low rank variables

o Tools to work with sparse sub-matrices of low rank matrices (collaborative filtering)

Numerical experiments - 2 motivating applications
o Fix smoothing - matrix completion (regression)

o Time-varying smoothing - top-5 multiclass classification

=] (=] = E = A



Fix smoothing
Example with matrix completion, regression

Data: Movielens Benchmark

d =71 567 users o [terates W, generated on a train set

k =10 681 movies o We observe R(W;) on the validation set

10 000 054 ratings (= 1.3%) e Choose the best v that minimizes R(W;) in the
(normalized into [0,1] ) validation set

=] (=] = E = A



Fix smoothing
Example with matrix completion, regression

Data: Movielens Benchmark

d =71 567 users o [terates W, generated on a train set

k =10 681 movies o We observe R(W;) on the validation set

10 000 054 ratings (= 1.3%) e Choose the best v that minimizes R(W;) in the
(normalized into [0,1] ) validation set

Emp. risk on validation set, A=10"°

0.71679
---y=0.001
0.5484 —y=001
---y=0.1
0.4196 —y=05
-my= 1
0.3211 —y=5
--y=10
0.2457 =50
* y=best
0.188
10

iterations
Each v gives a different optimization problem

Tiny smoothing — slower convergence

Large smoothing — objective much different than the initial one
I - 9ac
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Time-varying smoothing
Example with top-5 multiclass classification

Data: ImageNet Benchmark

k = 134 classes o [terates W, generated on a train set

N =13 400 images e We observe top-5 misclassification error on the validation set
Features: BOW e To compare: find best fixed smoothing parameter (using the
d = 4096 features other benchmark)

=] (=] = E = A



Time-varying smoothing
Example with top-5 multiclass classification

Data: ImageNet Benchmark
k = 134 classes o [terates W, generated on a train set
N =13 400 images e We observe top-5 misclassification error on the validation set
Features: BOW e To compare: find best fixed smoothing parameter (using the
d = 4096 features other benchmark)
Validation set
0.9648
e Vo=0'01 p=1
Time-varying smoothing parameter 09244 Y01 Pt
o gl yo_l p=1
V¢ = _ % - V710 p=1
(1 + t)p §0.8857 - Yp=100p=1
g -0.Y,=0.01p=05
1 2 =0.1p=0.5
5,1 2 0.8487 ~e-Yp=0-1p
pe { 2 } 3 <o.¥;=L p=05
= -e.Y,=10p=05
0.8131 Y100 p=05
. \§|—v=0.1 non ad.

O'77911 2 4 8 16 32 64 128256

iterations

No need to tune vo:
¢ Time-varying smoothing matches the performances of the best experimentally
tuned fixed smoothing

=} F = = £ DA
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Outline

(3 Regularization by group nuclear norm
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Group nuclear norm
e Matrix generalization of the popular group lasso norm

[Turlach et al., 2005] [Yuan and Lin, 2006] [Zhao et al., 2009] [Jacob et al., 2009]

o Nuclear norm ||[W]|, ; : sum of singular values of W

=] (=] = E = A



Group nuclear norm
e Matrix generalization of the popular group lasso norm

[Turlach et al., 2005] [Yuan and Lin, 2006] [Zhao et al., 2009] [Jacob et al., 2009]

o Nuclear norm ||[W]|, ; : sum of singular values of W

11/7 W Zgl mmersion
1T
w = Wy £ Wo
W3

I1,: projection
3
L3
W3
G =1{1,2,3}
Qg(W) = min

S W=Y (W)

geg

> ag[Wll,,

geg

[Tomioka, Suzuki 2013] non-overlapping groups

Pierucci
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Group nuclear norm

e Matrix generalization of the popular group lasso norm
[Turlach et al., 2005] [Yuan and Lin, 2006] [Zhao et al., 2009] [Jacob et al., 2009]

o Nuclear norm ||[W]|, ; : sum of singular values of W

W 1g: IINMErsion

i1 1 L.

S — I1,: projection
Iy

W = Wy f——————

Wy

—

W3 I3

W
g=1{1,2,3}
Convex analysis - theoretical study

Qg (W) = min Z ag [Wll, 1 o Fenchel conjugate Qg

w= ;g 9Wa)  yeg e Dual norm Qg

g9

e Expression of {2g as a support function
[Tomioka, Suzuki 2013] non-overlapping groups

o Convex hull of functions involving rank

=} = E £ DA
26/33
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Convex hull - Results
In words, the convex hull is the largest convex function lying below the given one
Properly restricted to a ball,

the nuclear norm is the convex hull of rank [Fazel 2001] — generalization
Properly restricted to a ball, group nuclear norm is the convex hull of:
o The ‘reweighted group rank’ function:
QE (W) = inf
W= ig(Wy)
9€G
o The ‘reweighted restricted rank” function:

Z ag rank(Wy)

9€g

04 indicator function

Qrank(w) = I;lel(r_;l Qg raﬂk(W) ar 69 (W)

Learning with group nuclear norm enforces low-rank property on groups
o« = = = 9ac



Learning with group nuclear norm
Usual optimization algorithms can handle the group nuclear norm:

* composite conditional gradient algorithms

* (accelerated) proximal gradient algorithms

o = ] = = wae



Learning with group nuclear norm

Usual optimization algorithms can handle the group nuclear norm:
* composite conditional gradient algorithms
* (accelerated) proximal gradient algorithms

Illustration with proximal gradient optimization algorithm
The key computations are parallelized on each group

Good scalability when there are many small groups
o prox of group nuclear norm

Prox, a4 (Wy)g) = (UQD"/(SQ)VQT)QEQ

where D, : soft thresholding operator
o SVD decomposition
W, =U,S,V,"

D+ (8S) = Diag({max{s; — 7,0} }1<i<r)-

=] (=] E = A



Learning with group nuclear norm

Usual optimization algorithms can handle the group nuclear norm:
* composite conditional gradient algorithms
* (accelerated) proximal gradient algorithms

Illustration with proximal gradient optimization algorithm
The key computations are parallelized on each group

Good scalability when there are many small groups
o prox of group nuclear norm

Prox, a4 (Wy)g) = (UQD"/(SQ)VQT)QEQ

where D, : soft thresholding operator

o SVD decomposition
W, =U,8,V, '

D+ (8S) = Diag({max{s; — 7,0} }1<i<r)-

Package in Matlab, in particular:
— vector space of group nuclear norm, overloading of + *

=] (=] E = A



Numerical illustration: matrix completion

“Ground truth”

200
400
600
800
1000
1200
1400
1600
1800
2000

500 1000 1500 2000

Synthetic low rank matrix X
sum of 10 rank-1 groups
normalized to have p = 0,0 =1

o (=] = = = A



Numerical illustration: matrix completion

“Ground truth” Observation

200
400
600
800

1000
-1
1200
1400 »
1600
1800 -3
2000 %

500 1000 1500 2000 500 1000 1500 2000
Synthetic low rank matrix X Uniform 10% sampling X
sum of 10 rank-1 groups with (i,7) € Z
normalized to have y = 0,0 =1 Gaussian additive noise o = 0.2

Or «@r<=raEr T DA
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Numerical illustration: matrix completion

“Ground truth” X Solution W*
2
200 [
400 1!
600 |
800 0,
1000
1200 *
1400 »
1600
1800 -3
2000
1000 1500 2000 500 1000 1500 2000
Recovery error:

& [[W* — X||> = 0.0051

. 1
wgﬁglxk N ( )

%(Wij_Xij)Q + AQg(W)

=] (=] = = QA
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Outline

(@ Conclusion and perspectives

=] (=] = = QA



e Smoothing

Summary
* Versatile tool in optimization

* Ways to combine smoothing with many existing algorithms
o Time-varying smoothing

% Theory: minimization convergence analysis

* Practice: recover the best, no need to tune y
e Group nuclear norm

% Overlapping groups

* Theory and practice to combine groups and rank sparsity

=] (=] = E = A



e Smoothing for faster convergence:

Perspectives
Moreau-Yosida smoothing can be used to improve the condition number of poorly
conditioned objectives before applying linearly-convergent convex optimization
algorithms [Hongzhou et al. 2017]
e Smoothing for better prediction:
Smoothing can be adapted to properties of the dataset and be used to improve the
prediction performance of machine learning algorithms
e Learning group structure and weights for better prediction:
The group structure in the group nuclear norm can be learned to leveraged
underlying structure and improve the prediction
¢ Extensions to group Schatten norm
e Potential applications of group nuclear norm

* multi-attribute classification

* multiple tree hierarchies

% dimensionality reduction, feature selection e.g. concatenate features, avoid PCA

] = = wace
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o Smoothing for faster convergence:

Perspectives
Moreau-Yosida smoothing can be used to improve the condition number of poorly
conditioned objectives before applying linearly-convergent convex optimization
algorithms [Hongzhou et al. 2017]
e Smoothing for better prediction:
Smoothing can be adapted to properties of the dataset and be used to improve the
prediction performance of machine learning algorithms
e Learning group structure and weights for better prediction:
The group structure in the group nuclear norm can be learned to leveraged
underlying structure and improve the prediction
¢ Extensions to group Schatten norm
e Potential applications of group nuclear norm

* multi-attribute classification

% multiple tree hierarchies

% dimensionality reduction, feature selection e.g. concatenate features, avoid PCA

Thank You
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