Object class recognition using unsupervised scale-invariant learning

Rob Fergus Pietro Perona Andrew Zisserman

Oxford University California Institute of Technology

Goal

- Recognition of object categories
- Unassisted learning

Some object categories

Learn from examples

Difficulties:

- Size variation
- Background clutter
- Occlusion
- Intra-class variation

Model: Constellation of Parts

Main issues:

- measuring the similarity of parts
- representing the configuration of parts

Fischler & Elschlager 1973 Yuille '91 Brunelli & Poggio '93 Lades, v.d. Malsburg et al. '93 Cootes, Lanitis, Taylor et al. '95 Amit & Geman '95, '99 Perona et al. '95, '96, '98, '00 Agarwal & Roth '02

Overview of talk

- Representation
- Recognition
- Learning

Generative probabilistic model

Foreground model

Recognition

Detection & Representation of regions

- Find regions within image
- Use salient region operator (Kadir & Brady 01)

Location

(x,y) coords. of region centre

Scale

Radius of region (pixels)

Appearance

Motorbikes

Detected regions

Recognized Motorbikes

Background images evaluated with motorbike model

Learning

Learning procedure

- Find regions & their location, scale & appearance over all training
- Initialize model parameters
- Use EM and iterate to convergence:

E-step: Compute assignments for which regions are foreground / background M-step: Update model parameters

• Trying to maximize likelihood – consistency in shape & appearance

Experiments

Experimental procedure

Two series of experiments:

Fixed-scale model

Scale-invariant model

- Objects the same size (manual normalization)
- Objects between 100 and 550 pixels in width

Training

- 50% images
- No identification of object within image

Datasets

Airplanes

Testing

- 50% images
- Simple object present/absent test

Cars (Rear)

Spotted cats

Between 200 and 800 images in each dataset

Frontal faces

Part 1	Det: 5x10-21							
Part 2	Det: 2x10-28	B	FR	(*)	N.	2	2	F
		1	T	T	C	C		1
Part 3	Det: 1x10-36	-	No.	17.400	The second second	El contra la	and the second second	
(P)	(e) (e)	200		~		(0)	CO	0
Part 4	Dec 3x10-26	in the second	and the second	in the second	in the second	10000	10000	The second second
THE			D.			TO DE	TO.	T
Part 5	Det: 9x10-25	_	-	_	-	_	_	-
Part 6	Oct: 2x10-27	T	0	0	10	191	10	1
		1	9	1				1
Backgrou	nd Det: 2x10-19	_	-					
1		Ě.	0		50	3	3	Q.

Airplanes

INCORRECT

Correct

Correct

Correct

Correct

Part 4 Det: 2x10-3 Part 5 Det: 7x10-3

107072A

en.

-

Background Det: 1x10-20

Spotted cats

Cars from rear

- Scale invariant

Summary of results

Dataset	Fixed scale experiment	Scale invariant experiment		
Motorbikes	7.5	6.7		
Faces	4.6	4.6		
Airplanes	9.8	7.0		
Cars (Rear)	15.2	9.7		
Spotted cats	10.0	10.0		

% equal error rate

Note: Within each series, same settings used for all datasets

Comparison to other methods

% equal error rate

Robustness of Algorithm

Sampling from models

Faces

Motorbikes

Extending the Model

Two types of parts:

- Appearance patch scale invariant region operator
- Curve segment similarity invariant detection and representation

- CUIVE SCale (distance btw. bitangent points)
- curve shape by 10-vector of y values

Example curves

Fitting the extended model

- Learn models with different combinations of patches and curves
- Choose between models using a validation set
- For the experiments the image datasets are divided into the ratio:
 - 5/12 training
 - 1/6 validation
 - 5/12 testing

Camels

Zebras

Example datasets

Camels

Bottles using patches and curves

Correct

Part 3 - Det: 9e-48Part 4 - Det: 1e-45Part 6 - Det: 2e-45Part 6 - Det: 2e-45

Summary

- Comprehensive probabilistic model for object classes
- Learn appearance, shape, relative scale, occlusion etc. simultaneously in scale and translation invariant manner
- Same algorithm gives <= 10% error across 5 diverse datasets with identical settings

Future work

- Invariance to (affine) viewpoint changes
- Extend to 100's of object categories
- Reduce training requirements fewer images Use Bayesian methods – ICCV '03 paper