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Goal

• Recognition of object categories

• Unassisted learning



Some object 
categories

Learn from examples

Difficulties:

• Size variation
• Background clutter
• Occlusion
• Intra-class variation



Model: Constellation of Parts

Fischler & Elschlager 1973
Yuille ‘91
Brunelli & Poggio ‘93
Lades, v.d. Malsburg et al. ‘93
Cootes, Lanitis, Taylor et al. ‘95
Amit & Geman ‘95, ‘99 
Perona et al.  ‘95, ‘96, ’98, ’00
Agarwal & Roth ‘02

Main issues:

• measuring the similarity of parts

• representing the configuration  of parts



• Representation

• Recognition

• Learning

Overview of talk



Foreground model
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Recognition



Detection & Representation of regions
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Gives representation of appearance in low-dimensional vector space

• Find regions within image

• Use salient region operator
(Kadir & Brady 01)



Motorbikes
Samples from appearance model



Detected regions



Recognized Motorbikes



Background images evaluated with 
motorbike model



Learning



Learning procedure

E-step: Compute assignments for which regions are foreground / background

M-step: Update model parameters 

• Find regions & their location, scale & appearance
over all training

• Initialize model parameters

• Use EM and iterate to convergence:

• Trying to maximize likelihood – consistency in shape & appearance



Experiments



Experimental procedure
Two series of experiments:
• Fixed-scale model         - Objects the same size (manual normalization)
• Scale-invariant model - Objects between 100 and 550 pixels in width

Datasets

Training
• 50% images
• No identifcation of 

object within image 

Testing
• 50% images
• Simple object 

present/absent test

Motorbikes Airplanes Frontal Faces

Cars (Side) Cars (Rear) Spotted cats

Between 200 and 800 images in each dataset



Frontal faces



Airplanes



Spotted cats



Cars from rear
- Scale invariant



Summary of results

10.010.0Spotted cats

9.715.2Cars (Rear)

7.09.8Airplanes

4.64.6Faces

6.77.5Motorbikes

Scale invariant 
experiment

Fixed scale 
experimentDataset

% equal error rate

Note: Within each series, same settings used for all datasets



Comparison to other methods

Agarwal
Roth [ECCV 

’02]
21.011.5Cars (Side)

Weber32.09.8Airplanes

Weber6.04.6Faces

Weber et al. 
[ECCV ‘00]16.07.5Motorbikes

OthersOursDataset

% equal error rate



Robustness of Algorithm



Sampling from models

Faces Motorbikes



Extending the Model
Two types of parts:
• Appearance patch  - scale invariant region operator
• Curve segment - similarity invariant detection and representation 

• Canny edge detection – gives edgel chains
• Detect bitangent points
• Similarity transform curve segment 
• Represent:

- curve position (x,y coords. of centroid) 

- curve scale (distance btw. bitangent points)

- curve shape by 10-vector of y values

0 1

y

x



Example curves



Fitting the extended model
• Learn models with different combinations of patches and curves

• Choose between models using a validation set

• For the experiments the image datasets are divided into the ratio:

• 5/12  training

• 1/6    validation

• 5/12  testing

Example datasets

Camels Bottles Zebras



Camels



Bottles using patches and curves



Summary

Future work

• Comprehensive probabilistic model for object classes

• Learn appearance, shape, relative scale, occlusion etc. 
simultaneously in scale and translation invariant manner 

• Same algorithm gives <= 10% error across 5 diverse datasets with 
identical settings 

• Invariance to (affine) viewpoint changes

• Extend to 100’s of object categories

• Reduce training requirements - fewer images
Use Bayesian methods – ICCV ’03 paper


