
Efficient Algorithms for Matching

Dan Huttenlocher and Phil Torr
ICCV 2003



2

Dynamic Programming
For Detection



3

Fast Detection

For example finding faces at video rates



4

Dynamic Programming (DP)

General algorithmic technique
– Not specific algorithm
– Analogous to “divide and conquer” – bottom up 

Methods that cache solutions to sub-
problems rather than re-computing them
– E.g., Fibonacci, substring matching

Applies to problems that can be 
decomposed into sequence of stages
– Each stage expressed in terms of results of fixed 

number of previous stages



5

Simple DP Example: Box Sum

Sum n-vector over sliding k-window
– Wk[x] = f[x] + … + f[x+k]

– Note: often k odd, sum between x ± (k-1)/2

Explicit summation O(k*n) additions 
Recurrence yields O(n+k) time method
– Wk[x] = Wk[x-1] + f[x+k] – f[x-1]
– Each element of sum differs from previous by 

just two values

… … 



6

Box Sums in d Dimensions

One pass along each dimension
– Sum intermediate result from previous pass
– 2D case: horizontal then vertical (or vice versa)

• m by n image, O(mn+wh) time vs. O(mnwh)
• E.g., 10 by 10 summation window, 100x faster

… … …
 

…
 



7

1d Integral Images

Fast summations over 
different sized regions 
(non spatially uniform)
Cumulative sum
– S[x] = f[0] + … + f[x]

DP recurrence O(n) time
– S[x] = S[x-1] + f[x]

Sum over window of f[x] 
independent of size k
– Wk[x] = S[x+k-1]-S[k-1]

… 

3 3 3 2 2 2 1 1 1 2

3 6 9 1113 15 16 17 1820



8

n-d Integral Images

Analogous for higher dimensions, 2D:
– S[x,y] = f[0,0] + … + f[0,y] + … 

f[x,0] + … + f[x,y]

Separate recurrence per dimension
– C[x,y] = C[x,y-1] + f[x,y]    (column sum)
– S[x,y] = S[x-1,y] + C[x,y]   (total sum)
– Or alternatively row sum then total sum

… 

…
 



9

Fast Region Sums With II

Sum over a rectangle, constant time
– S[b_r] + S[t_l-(1,1)] –

S[b_l-(1,0)] – S[t_r-(0,1)]

Sum over arbitrary region, linear time
– Running time proportional to length of 

boundary not area

+1-1

+1-1+2-2

+1

b_rb_l

t_rt_l



10

Fast Detection With II

Features formed from combinations of 
sums over rectangles
– For example positive and negative regions
– Running time independent of rectangle size

Viola and Jones use for face detection at 
approximately video rates



11

Fast Detection With II

Also useful for arbitrary shaped regions
– Decompose into rectangles

• With no holes in worst case this is number of 
scan lines (not too bad with holes either)

• Proportional to boundary length rather than area

– Construct chain-code representation of 
boundary and sum values
• Positive for downward links and negative for 

upward (reverse for holes)

– Note relation to work of Jermyn and Ishikawa 
on boundary integrals



12

Distance Transforms



13

Distance Transforms

Map of distance to nearest features
– Computed from map of feature locations

• E.g., edge detector output

Powerful and widely applicable
– Can think of as “smoothing in feature space”
– Related to morphological dilation operation
– Often preferable to explicitly searching for 

correspondences of features

Efficiently computable using DP
– Time linear in number of pixels, fast in practice



14

Distance Transform Definition

Set of points, P, some distance •
DP(x) = miny∈P x - y

– For each location x distance to nearest y in P
– Think of as cones rooted at each point of P

Commonly computed on a grid Γ using
DP(x) = miny∈ Γ (x - y + 1P(y) )

– Where 1P(y) = 0 when y∈P, ∞ otherwise

0
0

11
2 1 2

1 1
2 1 2

3
2
2
3



15

DP for L1 Distance Transform

1D case
– Two passes: 

• Find closest point on left
• Find closest on right if closer than one on left

– Incremental:
• Moving left-to-right, closest point on left either 

previous closest point or current point
• Analogous moving right-to-left for closest point 

on right

– Can keep track of closest point as well as 
distance to it
• Will illustrate distance; point follows easily



16

L1Distance Transform Algorithm

Two pass O(n) algorithm for 1D L1 norm
(for simplicity just distance)
1. Initialize: For all j

D[j] ← 1P[j]
2. Forward: For j from 1 up to n-1

D[j] ← min(D[j],D[j-1]+1)
3. Backward: For j from n-2 down to 0

D[j] ← min(D[j],D[j+1]+1)

1 0

0 1

∞ 0 ∞ 0 ∞ ∞ ∞ 0 ∞

∞ 0 1 0 1 2 3 0 1
1 0 1 0 1 2 1 0 1



17

L1 Distance Transform

2D case analogous to 1D
– Initialization
– Forward and backward pass

• Fwd pass finds closest above and to left
• Bwd pass finds closest below and to right

Note nothing depends on 0,∞ form of 
initialization
– Can “distance transform” arbitrary array

0
1

1
-

0
0

∞∞
∞ ∞ ∞

∞ ∞
∞ ∞ ∞

∞
∞

∞
∞

0
0

11
2 1 2

1 1
2 1 2

3
2
2
3

0
0

1∞
∞ ∞ ∞

∞ ∞
∞ ∞ ∞

∞
∞

∞
∞

0
0

1∞
∞ ∞ ∞

∞ 1
∞ 1 2

∞
2
2
3

-
10

1



18

L2 Distance Transform 

Approximations using fixed size masks
– Analogous to L1 case
– Simple to understand but not best methods

Exact linear time method for L2
2

– Can compute sqrt (but usually not needed)
– Fast in practice, easy to implement
– Harder to understand than L1 algorithm
– Uses important general algorithmic technique 

of amortized analysis

1D case – lower envelope of quadratics



19

1D L2
2 Distance Transform

Single left-to-right pass
– Adding k-th quadratic to lower envelope (LE) 

of first k-1 quadratics
– Quadratics differ only in location of their base

Concerned about intersection of k-th
quadratic and LE of first k-1
– Consider only rightmost quadratic visible in LE
– Keep track of locations of bases of visible
quadratics (VQ), ordered left-to-right

– Keep track of visible intersections of adjacent 
quadratics (VI), ordered left-to-right



20

Adding k-th Quadratic to LE

Case 1: intersection of k and rightmost VQ 
(RVQ) outside range, k not visible on LE
Case 2: intersection of k and RVQ to right 
of rightmost VI (RVI), k added to right
Case 3: intersection of k and RVQ to left 
of RVI, k covers at least RVQ, remove RVQ 
and try adding again



21

Running Time of 1D Algorithm

Traditional analysis would consider time 
for each case, multiplied by n iterations
– Cases 1 and 2 O(1), but case 3 ??

Amortized analysis: charge work done by 
algorithm to “events” that can be bounded
– Three event types

• K-th quadratic initially excluded
• K-th quadratic added
• K-th quadratic removed

– Each event happens at most once per 
quadratic (note once removed, never again)

– Algorithm does constant work per event



22

2D Algorithm

Horizontal pass of 1D algorithm
– Computes minimum x2 distance

Vertical pass of 1D algorithm on result of 
horizontal pass
– Computes minimum x2+y2 distance
– Note algorithm applies to any input (quadratics 

can be at any location)

Actual code straightforward and fast
– Each pass maintains arrays of indexes of 

visible parabolas and the intersections
– Fills in distance values at each pixel after 

determining which parabolas visible



23

Horizontal Pass of 2D L2
2 DT

for (y = 0; y < height; y++) {
k = 0;  /* Number of boundaries between parabolas */
z[0] = 0;   /* Indexes of locations of boundaries */
z[1] = width;  /* No current boundaries (first at end of array) */
v[0] = 0;     /* Indexes of locations of visible parabola bases */
for (x = 1; x < width; x++) {

do {
/* intersection of this parabola with rightmost visible parabola */
s = ((imRef(im, x, y) + x*x) - (imRef(im, v[k], y) + v[k]*v[k])) /

(2 * (x - v[k]));
sp = ceil(s);
/* case one: intersection off end, this parabola not visible */
if (sp >= width)

break;
/* case two: intersection is rightmost, add it to end*/
if (sp > z[k]) {

z[k+1] = sp; z[k+2] = width; v[k+1] = x; k++;
break;  }

/* case three: intersection is not rightmost, hides rightmost
parabola and perhaps others, remove rightmost and try again */

if (k == 0) {
v[0] = x; break;

} else {
z[k] = width; k--; }

} while (1);
}



24

DT Values From Intersections

/* get value of input image at each parabola base */
for (x = 0; x <= k; x++) {

vref[x] = imRef(im, v[x], y);
}
k = 0;
/* iterate over pixels, calculating value for closest parabola */
for (x = 0; x < width; x++) {

if (x == z[k+1])
k++;
imRef(im, x, y) = vref[k] + (v[k]-x)*(v[k]-x);

}

No reason to approximate L2 distance!
Code available at 
www.cs.cornell.edu/~dph/matchalgs/



25

DT and Morphological Dilation

Dilation operation replaces each point of P 
with some fixed point set Q
– P ⊕ Q = Up Uq p+q 

Dilation by a “disc” Cd of radius d replaces 
each point with a disc
– A point is in the dilation of P by Cd exactly 

when the distance transform value is no more 
than d (for appropriate disc and distance fcn.)

– x ∈ P ⊕ Cd ⇔ DP(x) ≤ d

0
0

11
2 1 2

1 1
2 1 2

3
2
2
3

1
1

11
0 1 0

1 1
0 1 0

0
0
0
0

1
1

11
1 1 1

1 1
1 1 1

0
1
1
0



26

Generalizations of DT

Combination distance functions
– Robust “truncated quadratic” distance

• Quadratic for small distances, linear for larger
• Simply minimum of (weighted) quadratic and 

linear distance transforms

DT of arbitrary functions: minyx-y+f(y) 
– Exact same algorithms apply
– Combination of cost function f(y) at each 

location and distance function
• Useful for certain energy minimization problems



27

Distance Transforms in Matching



28

Distance Transforms in Matching

Chamfer measure – asymmetric
– Sum of distance transform values

• “Probe” DT at locations specified by model and 
sum resulting values 

Hausdorff distance (and generalizations)
– Max-min distance which can be computed 

efficiently using distance transform
– Generalization to quantile of distance 

transform values more useful in practice

Iterated closest point (ICP) like methods
– Traditionally search for matches, DT faster



29

Hausdorff Distance

Classical definition
– Directed distance (not symmetric)

• h(A,B) = maxa∈A minb∈B a-b

– Distance (symmetry)
• H(A,B) = max(h(A,B), h(B,A))

Minimization term is simply a distance 
transform of B
– h(A,B) = maxa∈A DB(a)
– Maximize over selected values of DT

Classical distance not robust, single “bad 
match” dominates value 



30

Hausdorff Matching

Partial (or fractional) Hausdorff distance to 
address robustness to outliers
– Rank rather than maximum

• hk(A,B) = ktha∈A minb∈Ba-b = ktha∈A DB(a)

– K-th largest value of DB at locations given by A

– Often specify as fraction f rather than rank

• 0.5, median of distances; 0.75, 75th percentile

1,1,2,2,3,3,3,3,4,4,5,12,14,15

1.0.75.5.25



31

Hausdorff Matching

Best match
– Minimum fractional Hausdorff distance over 

given space of transformations

Good matches
– Above some fraction (rank) and/or below some 

distance

Each point in (quantized) transformation 
space defines a distance
– Search over transformation space

• Efficient branch-and-bound “pruning” to skip 
transformations that cannot be good



32

Fast Hausdorff Search

Branch and bound hierarchical search of 
transformation space
Consider 2D transformation space of 
translation in x and y
– (Fractional) Hausdorff distance cannot change 

faster than linearly with translation
• Similar constraints for other transformations

– Quad-tree decomposition, compute distance 
for transform at center of each cell
• If larger than cell half-width, rule out cell
• Otherwise subdivide cell and consider children



33

Branch and Bound Illustration

Guaranteed (or admissible) 
search heuristic
– Bound on how good answer 

could be in unexplored region
• Cannot miss an answer

– In worst case won’t rule anything 
out

In practice rule out vast 
majority of transformations
– Can use even simpler tests than 

computing distance at cell center



34

DT Based Matching Measures

Fractional Hausdorff distance
– Kth largest value selected from DT

Chamfer
– Sum of values selected from DT

• Suffers from same robustness problems as 
classical Hausdorff distance

• Max intuitively worse but sum also bad
– Robust variants

• Trimmed: sum the K smallest distances (same 
as Hausdorff but sum rather than largest of K)

• Truncated: truncate individual distances before 
summing



35

Comparing DT Based Measures

Monte Carlo experiments with known 
object location and synthetic clutter
– Matching edge locations

Varying percent clutter
– Probability of edge 

pixel 2.5-15%

Varying occlusion
– Single missing interval, 

10-25% of boundary

Search over location,
scale, orientation 5% Clutter Image



36

ROC Curves

Probability of false alarm vs. detection
– 10% and 15% occlusion with 5% clutter
– Chamfer is lowest, Hausdorff (f=.8) is highest
– Chamfer truncated distance better than trimmed

Hausdorff, f=.8

Trimmed Chamfer, f=.8

Truncated Chamfer, d=2

Chamfer



37

Edge Orientation Information

Match edge orientation as well as location
– Edge normals or gradient direction

Increases detection performance and 
speeds up matching
– Better able to discriminate object from clutter
– Better able to eliminate cells in branch and 

bound search

Distance in 3D feature space [px,py,αpo]
– α weights orientation versus location
– ktha∈A minb∈B a-b  = ktha∈A DB(a) 



38

ROC’s for Oriented Edge Pixels

Vast improvement for moderate clutter
– Images with 5% randomly generated contours
– Good for 20-25% occlusion rather than 2-5%

Oriented Edges Location Only



39

Observations on DT Based Matching

Fast compared to explicitly considering 
pairs of model and data features
– Hierarchical search over transformation space

Important to use robust distance
– Straight Chamfer very sensitive to outliers

• Truncated DT can be computed fast

No reason to use approximate DT 
– Fast exact method for L2

2 or truncated L2
2

For edge features use orientation too 
– Comparing normals or using multiple edge maps



40

Template Clustering

Cluster templates into tree structures to 
speed matching
– Rule out multiple templates simultaneously

• Coarse-to-fine search where coarse granularity 
can rule out many templates

• Several variants: Olson, Gavrila, Stenger

Applies to variety of DT based matching 
measures
– Chamfer, Hausdorff and robust Chamfer

Use hierarchical clustering techniques 
(e.g., Edelsbrunner) offline on templates



41

Example Hierarchical Clusters

Larger pairwise differences higher in tree 



42

Hausdorff and Linear Halfspaces



43

Dilate and Correlate Matching

Fixed degree of “smoothing” of features
– Dilate binary feature map with specific radius 

disc rather than all radii as in DT

hk(A,B) ≤ d  ⇔ |A ∩ Bd| ≥ k
– At least k points of A contained in Bd

For low dimensional transformations such 
as x-y-translation best way to compute
– Dilation and binary correlation are very fast
– For higher dimensional cases hierarchical 

search using DT is faster 



44

Dot Product Formulation

Let A and Bd be (binary) vector 
representations of A and B
– E.g. standard scan line order

Then fractional Hausdorff distance can be 
expressed as dot product
– hk(A,B) ≤ d ⇔ A•Bd ≥ k

Note that if B is perturbation of A by d 
then A•B is arbitrary whereas A•Bd= A•A
Hausdorff matching using linear subspaces
– Eigenspace, PCA, etc.



45

Learning and Hausdorff Distance

Learning linear half spaces
– Dot product formulation defines linear 

threshold function
• Positive if A•Bd ≥ k, negative otherwise

PAC – probably approximately correct
– Learning concepts that with high probability 

have low error 
– Linear programming and perceptrons can both 

be used to learn half spaces in PAC sense

Consider small number of values for d 
(dilation parameter) and pick best



46

Illustration of Linear Halfspace

Possible images define n-dimensional 
binary space
Linear function separating positive and 
negative examples

000 100

101

111

010

011

001

110



47

Perceptron Algorithm

Examples xi each with label yi∈{+,-}
Set initial prediction vector v to 0
For i=1, …, m
– If sign(v•xi) ≠ sign(yi)

then v=v+yixi

Run repeatedly until no misclassifications 
on m training examples
– Or less than some threshold number but then 

haven’t found linear separator

Generally need many more negative than 
positive examples for effective training



48

Learned Half-Space Templates

Positive examples (500)

Negative examples (350,000) 

All Model
Coefs.

Pos. Model
Coefs.

Example Model (dilation d=3, picked automatically)



49

Detection Results

Train on 80% test on 20% of data
– No trials yielded any false positives
– Average 3% missed detections, worst case 5%



50

Spatial Continuity

Hausdorff and Chamfer matching do not 
measure degree of connectivity
– E.g., edge chains versus isolated points

Spatially coherent matching approach
– Separate features into three subsets

• Matchable
− Near image features

• Boundary
− Matchable but near

un-matchable

• Un-matchable
− Far from image features



51

Flexible Templates



52

Flexible Template Matching

Pictorial structures
– Parts connected by springs and appearance 

models for each part
– Used for human bodies, faces
– Fischler&Elschlager, 1973 – considerable 

recent work



53

Formal Definition of Model

Set of parts V={v1, …, vn}
Configuration L=(l1, …, ln)
– Specifying locations of the parts

Appearance parameters A=(a1, …, an)
– Model for each part

Edge eij, (vi,vj) ∈ E for connected parts
– Explicit dependency between part locations li, lj
Connection parameters C={cij | eij ∈ E}
– Spring parameters for each pair of connected 

parts



54

Flexible Template Algorithms

Difficulty depends on structure of graph
– Which parts are connected (E) and how (C)

General case exponential time
– Consider special case in which parts translate 

with respect to common origin
• E.g., useful for faces

• Distinguished central part v1

• Spring ci1 connecting vi to v1

• Quadratic cost for spring



55

Efficient Algorithm for Central Part  

Location L=(l1, …, ln) specifies where each 
part positioned in image
Best location minL (Σi mi(li) + di(li,l1))
– Part cost mi(li) 

• Measures degree of mismatch of appearance ai
when part vi placed at location li

– Deformation cost di(li,l1)
• Spring cost ci1 of part vi measured with respect 

to central part v1

• E.g., quadratic or truncated quadratic function
• Note deformation cost zero for part v1 (wrt self)



56

Express as Kind of DT

minL (Σi (mi(li) + di(li,l1)))
minL (Σi mi(li) + li – Ti(l1)2)
– Quadratic distance between location of part vi

and ideal location given location of central part

minl1 (m1(l1) + 
Σi>1 minli (mi(li)+li–Ti(l1)2))

– i-th term of sum minimizes only over li
minl1 (m1(l1) + Σi>1 Dmi(Ti(l1)))
– Each term of sum is distance transform of the 

match cost function mi
• Df(x) = miny (f(y) + y-x2), using same 

algorithms as before



57

Application to Face Detection

Five parts: eyes, tip of nose, sides of 
mouth
Each part a local image patch (mi)
– Represented as response to oriented filters

– 27 filters at 3 scales and 9 orientations
– Learn coefficients from labeled examples

Parts translate with respect to central 
part, tip of nose (di)



58

Flexible Template Face Detection

Runs at several frames per second
– Compute oriented filters at 27 orientations and 

scales for part cost mi

– Distance transform mi for each part other than 
central one (nose tip)

– Find maximum of sum
for detected location



59

More General Flexible Templates

Efficient computation using distance 
transforms for any tree-structured model
– Not limited to central reference part

Two differences from reference part case
– Relate positions of parts to one another using 

tree-structured recursion
• Solve with Viterbi or forward-backward 

algorithm

– Parameterization of distance transform more 
complex – transformation Tij for each 
connected pair of parts 



60

General Form of Problem

Best location can be viewed in terms of 
probability or cost (negative log prob.)
– maxLp(L|I,Θ)=argmaxLp(I|L,A)p(L|E,C)

– minL ΣV mj(lj) + ΣE dij(li,lj)
• mj(lj) – how well part vj matches image at lj
• dij(li,lj) – how well locations li,lj agree with model

(spring connecting parts vi and vj)

Difficulty of maximization/minimization 
depends on form of graph
– Exponential time in general, efficient for tree



61

Minimizing Over Tree Structures

Use dynamic programming to minimize
ΣV mj(lj) + ΣE dij(li,lj)
Can express as function for pairs Bj(li) 
– Cost of best location of vj given location li of vi

Recursive formulas in terms of children 
Cj of vj

– Bj(li) = minlj ( mj(lj) + dij(li,lj) + ΣCj Bc(lj) )
– For leaf node no children, so last term empty 
– For root node no parent, so second term 

omitted



62

Efficient Algorithm for Trees

MAP estimation algorithm
– Tree structure allows use of Viterbi style 

dynamic programming
• O(ns2) rather than O(sn) for s locations, n parts
• Still slow to be useful in practice (s in millions)

– Couple with distance transform method for 
finding best pair-wise locations in linear time
• Resulting O(ns) method

Similar techniques allow sampling from 
posterior distribution in O(ns) time
– Using forward-backward algorithm



63

O(ns) Algorithm for MAP Estimate

Express Bj(li) in recursive minimization 
formulas as a DT Df(Tij(li))
– Cost function

• f(y) = mj(Tji
-1(y)) + ∑Cj Bc(Tji

-1(y)) 

– Tij,Tji map locations to space where difference 
between li and lj is a squared distance
• Distance zero at ideal relative locations

Yields n recursive equations 
– Each can be computed in O(sD) time

• D is number of dimensions to parameter space 
but is fixed (in our case D is 2 to 4)



64

Example: Recognizing People



65

Variety of Poses



66

Variety of Poses



67

Samples From Posterior



68

Model of Specific Person



69

Bayesian Formulation of Learning

Given example images I1, …, Im with 
configurations L1, …, Lm

– Supervised or labeled learning problem

Obtain estimates for model Θ=(A,E,C)

Maximum likelihood (ML) estimate is
– argmaxΘ p(I1, …, Im, L1, …, Lm |Θ)

– argmaxΘ ∏kp(Ik,Lk|Θ) 
• Independent examples

– argmaxΘ ∏kp(Ik|Lk,A) ∏kp(Lk|E,C)
• Independent appearance and dependencies



70

Efficiently Learning Tree Models

Estimating appearance p(Ik|Lk,A)
– ML estimation for particular type of part

• E.g., for constant color patch use Gaussian 
model, computing mean color and covariance

Estimating dependencies p(Lk|E,C)
– Estimate C for pairwise locations, p(lik,ljk|cij)

• E.g., for translation compute mean offset 
between parts and variation in offset

– Best tree using minimum spanning tree (MST) 
algorithm
• Pairs with “smallest relative spatial variation”



71

Example: Generic Person Model

Each part represented as rectangle
– Fixed width, varying length
– Learn average and variation 

• Connections approximate revolute joints

– Joint location, relative position, 
orientation, foreshortening

– Estimate average and variation

Learned model (used above)
– All parameters learned

• Including “joint locations”

– Shown at ideal configuration


	Efficient Algorithms for Matching
	Dynamic ProgrammingFor Detection
	Fast Detection
	Dynamic Programming (DP)
	Simple DP Example: Box Sum
	Box Sums in d Dimensions
	1d Integral Images
	n-d Integral Images
	Fast Region Sums With II
	Fast Detection With II
	Fast Detection With II
	Distance Transforms
	Distance Transforms
	Distance Transform Definition
	DP for L1 Distance Transform
	L1Distance Transform Algorithm
	L1 Distance Transform
	L2 Distance Transform
	1D L22 Distance Transform
	Adding k-th Quadratic to LE
	Running Time of 1D Algorithm
	2D Algorithm
	Horizontal Pass of 2D L22 DT
	DT Values From Intersections
	DT and Morphological Dilation
	Generalizations of DT
	Distance Transforms in Matching
	Distance Transforms in Matching
	Hausdorff Distance
	Hausdorff Matching
	Hausdorff Matching
	Fast Hausdorff Search
	Branch and Bound Illustration
	DT Based Matching Measures
	Comparing DT Based Measures
	ROC Curves
	Edge Orientation Information
	ROC’s for Oriented Edge Pixels
	Observations on DT Based Matching
	Template Clustering
	Hausdorff and Linear Halfspaces
	Dilate and Correlate Matching
	Dot Product Formulation
	Learning and Hausdorff Distance
	Illustration of Linear Halfspace
	Perceptron Algorithm
	Learned Half-Space Templates
	Detection Results
	Spatial Continuity
	Flexible Templates
	Flexible Template Matching
	Formal Definition of Model
	Flexible Template Algorithms
	Efficient Algorithm for Central Part
	Express as Kind of DT
	Application to Face Detection
	Flexible Template Face Detection
	More General Flexible Templates
	General Form of Problem
	Minimizing Over Tree Structures
	Efficient Algorithm for Trees
	O(ns) Algorithm for MAP Estimate
	Example: Recognizing People
	Variety of Poses
	Variety of Poses
	Samples From Posterior
	Model of Specific Person
	Bayesian Formulation of Learning
	Efficiently Learning Tree Models
	Example: Generic Person Model

