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Abstract

Gamut mapping color constancy algorithms (originally in-
troduced by Forsyth[For90]) attempt to map RGBs of sur-
faces viewed under an unknown light to corresponding
RGBs under a known reference illuminant. With respect
to a reference light source the set of all observable RGBs
occupies a 3-dimensional convex region, or gamut, of RGB
space. If a triple of 3 simple scalar factors defines the map
from image colors to reference conditions then it has been
shown that the set of all maps taking RGBs into the refer-
ence gamut is also a convex set. Gamut mapping algorithms
work in 2 stages. First, the set of feasible maps is computed
then in a second stage an optimal member of this map set is
chosen.

Here we show that feasible map set does not need to be
computed. Rather we combine the final map selection stage
with the enforcement of the constraint that image colors are
mapped inside the reference gamut. The main contribution
of this paper is to show that this combined computation can
be set up as a simple convex programming problem. Two
main advantages result from this reformulation of gamut
mapping. First, several reasonable designations of ‘opti-
mal’ map can be formulated and tested within the convex
programming framework. If we maximize the sum of the
triplet of map parameters then color constancy is shown
to be a linear programming problem. Maximizing the Eu-
clidean magnitude of the mapping triplet gives a quadratic
programming formulation and maximizing the volume of the
mapped image gamut (Forsyth’s original gamut mapping
algorithm) is also possible The second advantage is that
convex programming provides a fast solution to the color
constancy problem. Indeed, we show that linear program-
ming color constancy is a strictly more efficient implemen-
tation of gamut mapping compared to previous methods.

Experiments indicate that, for the Simon Fraser Data set
(synthetic and real images), linear programming color con-
stancy provides the best performance over all the convex
programming methods tested.

1. Introduction

The RGBs recorded by a color camera depend on the color
of the light and the color of the surfaces in the scene. Unless
otherwise corrected the same scene viewed under progres-
sively yellower light will result in RGBs which are more
and more yellow. Identifying and removing color casts due
to the prevailing illumination conditions is called color con-
stancy.

There is a long history of research in color constancy in
computer vision. The simplest approaches attempt to iden-
tify the illuminant color using a simple statistical estima-
tor. For example, if the average surface color in a scene is
grey then the average RGB in a image will have the same
color as the scene illumination[Buc80, GJT88]. Of course
the average scene color is rarely grey and so this ’grey-
world’ approach does not work well in practice. Alterna-
tively, the maximum R, G and B can be used as an illumi-
nation estimate[Fin97, Lan77]. This estimator is justified
in a number of scenarios. If for example, there is a white
reflectance in a scene then the maximum RGB present will
correspond to the RGB of white and this will give a correct
estimate of the illuminant color. Moreover, even if white
is not present but say there is a bright blue and a bright
yellow then the maximum RGB still gives a correct esti-
mate (since Blue is indistinguishable from white for the
blue channel and yellow is indistinguishable from white for
the Red and Green channels). The max RGB assumption
turns out to deliver much better illuminant estimation than
the grey world algorithm: though, it is still wrong much
of the time. There are also many other statistical meth-
ods used[Sap98, DI94, Yui87, MW86]. While the most
recent approaches[FHH01, RHT01, BF97] do deliver im-
proved constancy, they still fail some of the time.

Indeed, such failures must be expected: color constancy
is an inherently ill posed task. Consider a yellow image
recorded for a surface of unknown color viewed under an
unknown illuminant. It is possible that the illuminant is yel-
low and the surface is white or vice versa. That is, based on
the available evidence it is not possible to solve the color
constancy problem. Forsyth[For90] placed this observation
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at the heart of his gamut mapping algorithm for color con-
stancy. In gamut mapping color constancy one attempts to
solve for all feasible answers to color constancy. It is only at
a second stage where a single ‘optimal’ answer is chosen. In
contradistinction to other color constancy algorithms, when
a choice is made there is enough information to give a mea-
sure of certainty with the estimate[FH99].

So how does gamut mapping work? The key insight is
that the range, or gamut, of colors should depend on illumi-
nation. Intuitively, we do not expect to observe the bluest
RGB under a reddish light. To understand better how RGBs
depend on illumination let us measure RGBs for as many
surfaces as we can find with respect to a particular refer-
ence light. Of course it possible that our set of surfaces is
not complete and so we allow convex combinations of the
surfaces and this results in convex combinations of the cor-
responding RGBs. Note this operation is perfectly legal: we
are merely simulating what happens when two or more sur-
faces (present in some proportion in some area of a scene)
are mapped (averaged) to the same pixel. Thus, the gamut
of reference colors, henceforth denoted

�
, is a closed con-

vex region of RGB space.
Now let us suppose we record an image under a second

unknown illuminant. How can the color bias due to the il-
luminant be removed? In gamut mapping we succeed in
solving the color constancy problem if we can map the im-
age gamut (the convex closure of the image RGBs) so that is
inside the reference gamut. But, what do we mean when we
say ‘map image colors’? It is common (and almost always
justified[FDF94] to use a simple set of three � ������� scaling
factors as the map that models illumination change. Under
a change in illumination � 	�
��� is mapped according to�� 	
�

���� �� � � �� � �� � �
����� 	
�

�� �����

That is, � ������� parameterize a diagonal matrix. Using the
subscript � to denote the  th image RGB then � �!�"��� is a
solution to gamut mapping color constancy if and only if

# �  
� �� � � �� � �� � �

�� �� 	 �
 �� �
��!$ � �&%'�

Or, equivalently a diagonal matrix ( is a solution for color
constancy if and only if it maps all image RGBs into

�
.

Forsyth showed (see also section 2 below) that for each� 	 � 
 � � � � the set of � �)����� scaling parameters is a 3 di-
mensional convex set. It follows then that to determine the
set of all maps taking all image colors inside the reference
gamut involves intersecting the mapping sets computed for
each image color. In fact the task is not quite as onerous as
it sounds since it can be shown that we only need to exam-
ine the mapping sets corresponding to points on the convex

hull of the image RGBs (though this can still be large). The
cost of intersecting two 3-dimensional convex polyhedra is* �,+.-0/213+4�

(assuming both polygon have order

+
points).

Given reference and image gamut with
* �5+4�

points the up-
per bound complexity for computing the set of all plausible
maps is

* �,+467-0/213+4�
.

We sketch 2-dimensional gamut mapping in Figure 1
(i.e. the gamut mapping problem for a 2 sensor camera).
In Figure 1a we show a reference gamut (the closed trian-
gle) and an image containing 2 pixels (the open circles at
(1,1) and (2,1)). In gamut mapping we wish to find the set
of feasible maps that take the two image colors within the
reference gamut. To do this we calculate the maps taking
(1,1) inside the reference gamut and the maps for (2,1). We
then intersect the two mapping sets. This process is illus-
trated in Figure 1b.

In this simple example the overall feasible map set con-
tains many solutions. Yet in color constancy we seek a sin-
gle answer. Thus, at a second stage an optimality criterion
is applied in order to select a single answer. Because the
gamut of the image is, in (2), mapped by a diagonal ma-
trix, the mapped image gamut volume must be proportional
to the determinant of the map. The maximum determinant
map is found at

�8%'9;:=<>%?9;:'�
. So,

�8%'9;:=<>%?9;:'�
is the gamut

mapping solution to color constancy.
The main contribution of this paper is to show that equa-

tion (2) coupled with the specification of optimal estima-
tor can be cast as a convex program. Specifically we show
that (2) implies a set of linear inequalities (defining a convex
region in which the optimum must lie) with respect to which
we can maximize an objective function. We believe there
are two main advantages of convex programming color con-
stancy. First, in convex programming we might explore
many reasonable definitions of optimal feasible map. In this
paper we consider the maximum determinant map proposed
by Forsyth, the map which maximizes the @BA norm (sum
of the diagonal matrix terms) and the @ 6 norm (Euclidean
length of the map). The second advantage is that convex
programming is generally a rapid computational procedure
Indeed, linear programming color constancy (a particular
instantiation of convex programming) is, in a computational
complexity sense, strictly faster than conventional gamut
mapping. Finally we remark that that convex programming
methods are often simple to implement (e.g. the simplex
method) and their operating characteristics are well under-
stood.

Of course we might wonder whether the choice of op-
timality constraints makes much difference. In each case@CA , @ 6 and max determinant norms are all measures of the
magnitude of the map (note the determinant is the cube of
the geometric mean). How much might the solution depend
on the definition of magnitude used? We explore this ques-
tion in Figure 2 where we show that it is possible that the
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Figure 1: In Fig 1a the reference gamut and 2 image points
(1,1) and (2,1) are shown. In 1b the map sets taking (1,1)
and (2,1) inside the reference gamut. The intersection of
maps sets (grey region) and optimal map (dark point) are
also indicated.

optimal map can vary significantly depending on the norm
used.

At the top of Figure 2 a hypothetical feasible set of so-
lutions to color constancy is shown (where as in Figure 1
we, for ease of illustration, consider gamut mapping in 2
dimensions). The top panel shows the set of feasible maps.
Any diagonal matrix parameterized by the

��� <
�
�

coordinate
within the region is bounded by the x and y axes and the up-
per curve is a solution to color constancy. In the 2nd panel
of Figure 2 we move along the x axis and for each x we find
the y in the gamut that maximizes the @ A norm

� � � (this
is always a point on the curve). Thus, as a function of x (the
1st component of the diagonal transform) we can plot the
maximum @ A norm. According to this metric it is clear the
best map overall

�
to choose is in a region around

�
� �����

(but points close to either side of 0.7 are equally good). The
third panel shows a similar plot for the @ 6 norm. Here the
best map is at the ends of the interval (a wide range of points
close to 0 or 1). The last panel shows the maximum deter-
minant

�
� as a function of

�
. Clearly the maximum deter-
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Figure 2: Top: 2-dimensional feasible map set. Second:
the maximum @ A plotted as a function of the first diagonal
component. Third left: maximum @ 6 norm as function of
first diagonal component. Bottom maximum determinant as
a function of the first diagonal component.

minant overall is again near 0.7. Only the maximum deter-
minant criterion gives a unique maximum.
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The reader should be aware that we chose the feasible
set shown at the top of Figure 2 in order to arrive at dif-
ferent outcomes given our three optimality criterion. How-
ever, experiments demonstrate that real constancy results do
differ dependent on which criterion is used: we found that
optimizing the @ A norm leads to the best constancy per-
formance. This, from our point of view, is serendipitous:
the fastest convex programming solution to color constancy
also delivers the best performance.

In casting gamut mapping as convex programming we
note that existing gamut mapping algorithms probably use
convex programming to find the optimal map from the com-
puted map set (we say probably because the implementation
of optimal map selection is never discussed in the litera-
ture). For example maximizing � � � � � subject to � � �����
belonging to the set of feasible maps is naturally solved as
a linear program.

2. Gamut Mapping
Formally, the reference gamut

�
is defined as:� ��� � � � �5:?�

where
�

are RGBs recorded for surfaces viewed under the
reference light.

� ����� A
< � 6 < ���	� < � 
�� �  �

The function �
�&�

returns the set of all convex combinations
of
�

. An RGB

�
is in

�
if it is a convex combination of the

points in
�

:�
�


�
��� A�� � � �

< 
�
��� A�� � �

��<
� ��� �

���'�
Suppose that if

��� � � denotes the set
�

with the  th RGB
removed then, without loss of generality, we can choose

�
such that

� ������ � ��� � �
� ���?�

In this case
�

is the set of points on the convex hull of the
reference gamut. We make this choice as the complexity of
gamut mapping depends on the size of

�
(and � below).

Let � denote the

+
points on the convex hull of the set

of image RGBs (it is these RGBs we wish to map inside the
reference gamut):

� ���! A
<  6 < ���	� <  
�� �

�
�

The image gamut " is defined as:

" �#� � �
� ��$?�

A triple of scalars % taking the & th point of the convex
hull of the image gamut inside

�
satisfies:

%' ('*)
�
%
�  + $ � ��,'�

where the function diag places the 3 components of % along
the diagonal of a diagonal matrix. Equivalently we can in-
terchange the positions of % and  + and write:

%' ('*)
�  + � %

$ � ���
�
�

Let ( + � � %2 ('-)
�  + � �/. A . Then

%
$
( + �

���'� �
The meaning of (11) is that the set of maps taking the& th image gamut point into the reference gamut is a diago-

nal matrix transform from the reference gamut
�

: the map-
ping set is itself a bounded 3-dimensional convex region.
Formally the set of maps 0 +

taking the & th point on the
convex hull of the image gamut is defined as:

0 + �#� � � ( + � A
<
( + � 1

<
�	���
<
( + � 12�

� ����%2�
By intersecting the

+
individual mapping sets we arrive

at the feasible set of maps i.e. any map in the feasible set
maps all  � inside the reference gamut:

0 �
13
��� A 0 + ��� :'�

Of course if a diagonal transform in 0 takes the points� within the reference gamut then it follows that convex
combinations of � are also mapped inside

�
. 0 is exactly

the set of maps that takes " inside
�

.
In order to find a single member of 0 as an illuminant

estimate we must introduce an optimality criterion. For ex-
ample we might find the %

$
0 such that 4 % 4 A is maximized

(where 4��54 A denotes L1 norm). Equation (14) is a formal
statement of the gamut mapping problem.

687:9%
$
0 4 % 4 A

���  �

3. Gamut mapping and convex pro-
gramming

Both the reference and image gamuts and the mapping sets
are all 3-d convex polyhedra. So, one of the central ques-
tions that must be addressed in gamut mapping is the rep-
resentation of of these convex sets. It is normal practice to
represent convex sets as convex combinations of the vertices
of the convex hull (as we reviewed in the last section). Al-
ternately, we can represent the interior of the convex hull as
the intersection of a set of half spaces. As we shall see this
second representation leads to a natural convex program-
ming formulation of (14).
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To make this second representation clear consider the 2-d
triangle is shown in Figure 1a. The interior of the triangle is
defined by convex combinations of the vertices (0,0), (2,0)
and (1,1). Let us now consider the line joining (2,0) and
(1,1). This line can be written as � � � � � %

or
� � � � �� %

. It is straightforward to show that points that fall below
this line (e.g. (0,0)) that

� � � ��� � %
and points above

the line
� � � ��� � %

. As such we say that
� � � ��� � %

defines the half space (it splits the plane into 2) containing
all points below the line. Clearly then we can define the
interior of the triangle by the intersection of 3 half spaces:� � � � � � %� � � � �� � �

��� �2�

In 3-dimensions, half-spaces are defined by plane equa-
tions of the form

'
� ��� � ���	� ��


���!�'�
A 3-dimensional convex hull that has

+
vertices has �

faces where � is
* �,+4�

(proportional to the number of ver-
tices). Thus, we can write the reference gamut

�
as:

� � � � � � � ' A 	 ��� A 
 ��� A � ��
 A' 6 	 ��� 6 
 ��� 6 � ��
 6'�� 	 ��� � 
 ��� � � ��
 �
���

�
�

where � 	 
 � � is a point in the reference gamut. Let us
define an ���

:
matrix � and place in the  th row: � ' � � � � � � .

Further let 
 be an ���

�
vector whose  th component is

equal to 
 � . If � is an RGB within the reference gamut then
the following must be true:

� � ��

���!$'�

Let %2 ('-)
�
%
�  denote an image rgb transformed by a di-

agonal matrix which is within the reference gamut. Then by
substitution:

� %' '-)
�
%
�  ��


���!,'�
or equivalently interchanging % and  :

� %' '-)
�  � % ��


�&%
�
�

It follows that the gamut of maps for the & th point on the
convex hull of the image gamut " can be written as (Equa-
tion 12 can be rewritten as):

0 + � � %' '-)
�  + � % ��


�&% � �
Assuming there are

* � �
�

points on the image gamut
then there

* � �
�

sets of inequalities of the form (20) and so

* � �
6��

inequalities in total. Taken together these inequal-
ities demarcate the set of maps which take all the image
colors inside the reference gamut. We call this set, denoted0 , the feasible map set:

0 ��� % ���
�&%'%2�

where � has the matrices � %2 ('-)
�  + � stacked one on top

of the other and � is a vector with multiple copies of the
vector 
 .

Of course we must find a single diagonal map % in 0 .
One way we can do this is to optimize some property e.g.
find the % in 0 with maximum @BA norm. Maximizing an
objective function (such as @ A norm) subject to linear in-
equalities is called convex programming. By changing the
objective function we can explore different variants of con-
vex programming color constancy.

1. Maximum @ A norm

Maximize % A � % 6 � %�� subject to the constraint that

� % ���
This is a linear program whose solution can be found
in
* � �

6 �
(where there are

* � �
6 �

inequality con-
straints). In fact there are several linear time algo-
rithms, see for example[Cla56], but even the simple
Simplex search algorithm has expected linear com-
plexity in the number of constraints[Chv83].

2. Maximum @ 6 norm

Maximize %
6
A � %

66 � %
6
� subject to the constraint that

� % ���
This is a quadratic programming problem. For the
given objective function the optimal solution can be
found in

* � �
6 -0/21

�

�
(since the max @ 6 solution is

always a vertex and vertices can be solved for in this
time bound). In experiments we found a search based
Quadratic Programming method to be as fast as linear
programming.

3. Maximum determinant (max volume)

Maximize % A % 6 % � subject to the constraint that

� % ���
Here we maximize the determinant of the diagonal
matrix taking the image gamut within the reference
gamut. Unfortunately, determinant maximization is
a more difficult problem and while the maximum
can be found, it is found at significant computational
cost[VBW98] (it is significantly slower than linear or
quadratic programming).
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The complexity of the linear programming formulation
is particularly favourable. The time to find the optimal solu-
tion is of the same order as the time it takes to enumerate the
plane constraints. However, if we were to calculate the fea-
sible set 0 prior to maximizing the @BA normal (the normal
procedure in gamut mapping) we would need to intersect all* � �

6 �
planes. It is known that the optimal algorithm for

computing the intersection of

+
planes in 3-space has com-

plexity
* �,+.-0/21 +4�

[PM79]. it follows then that to compute
the vertices in 0 costs

* � �
67-0/21

�

6 �
� * � �

6 -0/21
�

�
.

Thus, carrying out an explicit computation of the feasible
region is strictly more expensive

* � �
6 -0/21

�

�
than the lin-

ear programming formulation proposed above (
* � �

6 �
).

A couple of further comments on complexity are useful
here. First, the complexity results quoted for plane intersec-
tion are for the general case. In gamut mapping the planes
generated for different image RGBs are related to one an-
other (by a diagonal matrix). Perhaps, plane intersection
for gamut mapping has lower complexity? Also, it has been
shown (e.g. see [FHH01]) that a discrete approximation to
gamut mapping has a very fast implementation. The com-
plexity result above however remains important as it says
something fundamental about the hardness of gamut map-
ping per se independent of implementation.

4. Experiments

A priori we know that the convex programming color con-
stancy method should work. After all, it can be viewed as an
alternate, albeit flexible, implementation of Forsyth’s gamut
mapping algorithm. However, experiments will cast light
on whether a max @ A norm, max @ 6 norm or max deter-
minant criterion affords the best constancy performance (or
whether indeed the criterion makes much difference).

We begin by running a test on synthetic images using the
dataset proposed by Barnard[BMFC02]. This dataset con-
sists of 1995 reflectances, 81 illuminants and the spectral
sensitivity curves of a SONY DXC-930 digital camera. Us-
ing numerical integration we can create a set of RGBs for a
range of surfaces viewed under one of the illuminants.

To form the reference gamut we calculated the con-
vex hull of 1995 RGBs for all the surfaces viewed under
a cool white fluorescent light (Sylvania 50MR16Q). The
convex hull is represented in the plane format set forth
in (18). We now randomly selected � surfaces (where
� �  < $=< �!� < :?% <�� 

) and 1 of the 81 illuminants. Then �
RGBs are generated using numerical integration. The ver-
tices of the image gamut is calculated and these are used
to set up the convex programs. We then solve for the opti-
mal diagonal map taking the image gamut into the reference
gamut. For each value of k we repeat this experiment 1000
times.

In order to evaluate color constancy performance we

must measure in some way our estimate of the illuminant.
Note, that the diagonal matrix mapping image RGBs into
the reference gamut is not a direct measure of illumination
but it is indirectly related to it. In particular if � � and  �
are respectively the RGB of a white surface under reference
and image illuminants and the map to the reference light is
denoted ( then it should follow that � ��� (  � (assuming
the algorithm is working well). Equally ( . A � � �� � . We
define our estimate of the white point of the image illumi-
nant to be � � � ( . A � � . The error in in the estimate is
calculated:

recovery error � '
+
)�� 


�
� �
<  � � �&%2:'�

In Figure 3, we plot recovery error (averaged over 1000
cases) for 4, 8 ,16, 32 and 64 surfaces for convex program-
ming color constancy where we maximize the @ A norm, the@ 6 norm and the determinant. Clearly, all methods return
comparable constancy performance though the @ A norm is
perhaps a little better overall and the @ 6 norm a little worse.
That @ A is at least as good as the other optimality criteria is
encouraging since @ A optimization is computationally eas-
ier than @ 6 or determinant maximization.
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Figure 3: Recovery error as a function of the number of
surfaces in a scene. Solid line for max @ A norm, dashed
line for max @ 6 norm and dotted line for max determinant.

In Figure 4, we plot the recovery error for the max RGB
and grey-world algorithms (see introduction for a descrip-
tion) and show for comparison the performance of the @ A
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convex programming method. It is clear that the grey world
method delivers poor constancy and that as there are more
surfaces in a scene the performance of the max rgb algo-
rithm and convex programming converge; though, convex
programming is always provides significantly better esti-
mates. This is as we might expect as eventually, if we
choose enough surfaces it is likely the conditions for max
rgb to produce good constancy (see discussion in the intro-
duction).
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Figure 4: Recovery error as a function of the number of
surfaces in a scene. Solid line for max @ A norm, dashed
line for grey world and dotted line for max rgb.

In a second experiment we wished to evaluate convex
programming color constancy on real images. To this end,
we used the Simon Fraser Calibrated test set comprising 321
images[BMFC02]. These images are of 30 objects viewed
under up to 11 colored lights (almost all objects are imaged
under all 11 lights). We preprocess images to remove very
dark and very bright pixels. Specifically all images are nor-
malized by applying a single scalar such that the brightest
image value (in either the red, green or blue channel) is 255.
We then reject any pixels where R, G or B is less than 5 or
larger than 245. The lower hard threshold helps attenuate
the effect of image noise and the large threshold helps to
deal with images containing specular highlights or where
there is clipping.

Again cool white fluorescent (Sylvania 50MR16Q) is
used as our reference illuminant. We take all 11 images
and apply the hard thresholding described above and then

Algorithm Recovery Error
Convex programming ( @BA ) 5.54
Convex programming ( @ 6 ) 5.53
Convex programming (max det) 5.54
Grey world 13.57
Max RGB 12.27

build the canonical gamut. For each of the remaining 291
images we compute convex programming color constancy
and also the max RGB and grey world estimates of the illu-
minant color. Along with each image in the Simon Fraser
Data set there is a measurement of the RGB of the white
patch (for the 11 viewing illuminants). Thus, we can calcu-
late the recovery error as before. Results are summarized in
Table 1.

Clearly convex programming affords significantly better
constancy performance than the simple grey world or max
rgb algorithms. The figure of 5.5 is a little lower than the 5.8
degree angular error quoted for the max volume color con-
stancy that Barnard arrives at in[Bar99] but a little higher
than the 4.7 he reports in[BMCF02, BCF02]. This variation
in performance is due to two factors: the definition of the
reference gamut and the nature of the preprocessing. Con-
vex programming color constancy is formally equivalent to
conventional gamut mapping and so given the same inputs
(the same reference gamut and the same preprocessed im-
ages), we must arrive at the same solution.

5. Conclusion
Gamut mapping algorithms are among the most promising
solutions to color constancy. However, they are quite com-
plex: they have high computational complexity and, not in-
significantly, they are difficult to implement. In this paper
we have shown that one variant of gamut mapping can be
implemented as a linear program. Not only is linear pro-
gramming less complex both in terms of complexity and
the difficulty of implementation but it also helps us bet-
ter understand gamut mapping per se. Indeed, we show
that gamut mapping is intrinsically a constraint satisfaction
problem where we attempt to find an optimal illuminant es-
timate subject to linear inequalities which are intrinsic to
the problem. The linear programming solution is a special
case where we use a linear objective function. However,
we also show it is possible to optimize an @ 6 norm and a
volume-based norm.

We calculate color constancy performance for the Simon
Fraser Data set and show that convex programming color
constancy provides results consistent with previous imple-
mentations of gamut mapping. Moreover, the performance
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of the @ A norm (or linear programming solution to color
constancy) is better (for the synthetic test data and no worse
for real images) than the other objective functions.

Acknowledgments

The authors gratefully acknowledge the support of the
Hewlett Packard Corporation. Ruixia Xu is grateful for the
financial support of the University of East Anglia.

References

[Bar99] K. Barnard. Practical olour constancy, 1999.
PhD thesis, Simon Fraser University, School of
Computing Science.

[BCF02] K. Barnard, V. Cardei, and B.V. Funt. A
comparison of computational color constancy
algorithms-part i: Methodology and experi-
ments with synthesized data. IEEE Trans-
actions on Image Processing, 11(9):972–983,
September 2002.

[BF97] David H. Brainard and William T. Freeman.
Bayesian color constancy. Journal of the Op-
tical Society of America, A, 14(7):1393–1411,
1997.

[BMCF02] K. Barnard, L. Martin, A. Coath, and B.V.
Funt. A comparison of computational color
constancy algorithms-part ii: Experiments with
image data. IEEE Transactions on Image Pro-
cessing, 11(9):985–996, September 2002.

[BMFC02] K. Barnard, L. Martin, B. Funt, and A. Coath.
A data set for colour research. COLOR re-
search and applications, 27(3):147–151, 2002.

[Buc80] G. Buchsbaum. A spatial processor model
for object colour perception. Journal of the
Franklin Institute, 310:1–26, 1980.

[Chv83] V. Chvatal. Linear Programming. Freeman,
1983.

[Cla56] K.L. Clarkson. A las vegas algorithm for linear
programming when the dimension is small. In
Foundations of Computer Science, 452-456.

[DI94] M. D’Zmura and G. Iverson. Probabalis-
tic color constancy. In R.D. Luce, M. M.
D’Zmura, D. Hoffman, G. Iverson, and K.
Romney, editors, Geometric Representations of
Perceptual Phenomena: Papers in Honor of
Tarow Indow’s 70th Birthday. Laurence Erl-
baum Associates, 1994.

[FDF94] G.D. Finlayson, M.S. Drew, and B.V. Funt.
Spectral sharpening: sensor transformations for
improved color constancy. J. Opt. Soc. Am. A,
11(5):1553–1563, May 1994.

[FH99] G.D. Finlayson and S.D. Hordley. Colour con-
stancy with error bars. In IEE conference on
Image Processing and Applications, 1999.

[FHH01] G.D. Finlayson, S.D. Hordley, and P.M. Hubel.
Color by correlation: A simple, unifying
framework for color constancy. IEEE Trans-
actions on pattern analysis and machine intel-
ligence, 23(11):1209–1221, November 2001.

[Fin97] G.D. Finlayson. Retinex viewed as a gamut
mapping theory of colour constancy. In The
8th Congress of the International Colour Asso-
ciation, 1997. to appear.

[For90] D. Forsyth. A novel algorithm for color con-
stancy. Int. J. Comput. Vision, 5:5–36, 1990.

[GJT88] R. Gershon, A.D. Jepson, and J.K. Tsotsos.
From � �

<
)
<
� � to surface reflectance: Comput-

ing color constant descriptors in images. Per-
ception, pages 755–758, 1988.

[Lan77] E.H. Land. The retinex theory of color vision.
Scientific American, pages 108–129, 1977.

[MW86] L.T. Maloney and B.A. Wandell. Color con-
stancy: a method for recovering surface spec-
tral reflectance. J. Opt. Soc. Am. A, 3:29–33,
1986.

[PM79] F. Preparata and D. Muller. Finding the inter-
section of n halfspaces in time o(nlogn). Theo-
retical Computer Science, 8:45–55, 1979.

[RHT01] C. Rosenberg, M. Hebert, and S. Thrun. Color
constancy using kl-divergence. In ICCV01,
pages I: 239–246, 2001.

[Sap98] G. Sapiro. Bilinear voting. In IEEE Interna-
tional Conference on Computer Vision, pages
178–183, 1998.

[VBW98] L. Vandenberghe, S. Boyd, and S.P. Wu. De-
terminant maximization with linear matrix in-
equality constraints. SIAM Journal on Ma-
trix Analysis and Applications, 19(2):499–533,
1998.

[Yui87] A. Yuille. A method for computing spectral re-
flectance. Biological Cybernetics, 56:195–201,
1987.

8


