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Abstract

In this paper we investigate some aspects of the interac-
tion between colour constancy and object recognition. We
demonstrate that even under severe changes of illumination,
many objects are reliably recognised if relying only on ge-
ometry and on invariant representation of local colour ap-
pearance. We feel that colour constancy as a preprocessing
step of an object recognition algorithm is important only in
cases when colour is major (or the only available) clue for
object discrimination.

We also show that successful object recognition allows
for ”colour constancy by recognition” – an approach where
the global photometric transformation is estimated from lo-
cally corresponding image patches.

1. Introduction
In this paper we investigate some aspects of the interaction
between colour constancy and object recognition. Colour
constancy is a classical problem that has been recently con-
nected to object recognition [12, 5, 2, 11]. In [5], Funt et
al. propose to judge the quality of colour constancy al-
gorithms by their impact on recognition rates. The ques-
tion ”Is colour constancy good enough (for object recog-
nition)” is posed. For histogram intersection as the recog-
nition method and a wide range of colour constancy algo-
rithms the answer isnegative, i.e. none of the tested colour
constancy algorithms is ”good enough”.

We revisit the issue and show that if a recognition
method relies mainly on geometry and representation of lo-
cal colour appearance invariant to affine transformation of
colour components (equivalent to a diagonal colour con-
stancy model [3] with an offset term), object recognition
can be successful even under severe and unknown change of
illumination. This is experimentally demonstrated on a pub-
lic dataset from the Simon Fraser University, that has been
previously used in colour constancy experiments [1, 2].
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Successful recognition insensitive to illumination allows
us to consider the intuitive approach of ”colour constancy
by recognition”. We show that a straightforward approach
which estimates the colour transformation from local cor-
respondences established in the recognition step is more
precise than the best standard (global, correspondence-less)
colour constancy method. The precision of ”colour con-
stancy by recognition” is measured by the distance (in the
chromatic plane) of the white point under canonical illumi-
nation and the transformed white point of the image under
the unknown illumination. The achieved precision is ap-
proximately three times higher than that of Barnard et al [2].

The result has to be interpreted carefully. Clearly, the
presence of a known object in the scene is a restrictive as-
sumption. Colour constancy is often required in scenes
without known object, e.g. as a part of a white balance
module of a camera. The message is rather that if a known
object is in the scene, much better results of colour con-
stancy can be expected, if the object is recognised. It seems
that two different classes of colour constancy algorithms
might be distinguished: those relying on global or statis-
tical properties and those attempting to recognise object or
object classes (hair, skin) and use constraints on scene illu-
mination imposed by observed colours of known surfaces.
Unlike the former, the latter colour constancy algorithms
are able to deal with non-uniform illumination. In a syn-
thetic experiments, we show that it is possible to partition
the image according to the illuminant.

The rest of the paper is structured as follows. In Sec-
tion 2, we review a recognition method based on the con-
cept of local affine frames. Locally, the image is photomet-
rically normalised to compensate for affine transformation
of each colour channel. The normalisation is detailed in
Section 3 together with the matching strategy for establish-
ing local image-to-image correspondences. An approach to
”colour constancy by recognition” is proposed in Section 4.
A full affine model for the global photometric transforma-
tion is adopted. Two experiments are described in Section 5.
First, the recognition performance of the local affine frame
method is tested in changing lighting conditions. In second



experiment, a colour transformation to a canonical illumi-
nation is estimated and its precision measured. The paper is
concluded in Section 6.

2. Overview of the Matching Process
The outline of the method is following (the first three steps
are visualised in Fig. 1):

1. For every database and query image compute distin-
guished regions (DRs).

2. Construct local affine frames (LAFs) on the regions.

3. Generate intensity representations of local image
patches normalised according to the local affine
frames. and photometrically normalise the intensity
representation.

4. Establish correspondences between frames of query
and database images, by computing the euclidean dis-
tance between the local image intensities, and by find-
ing the nearest match.

5. An estimate of the match score is based on the number
and quality of the established local correspondences.

6. If an object is recognised, global photometric transfor-
mation is estimated between database and query im-
ages

In the rest of this Section we briefly introduce the concepts
of the first two steps, the distinguished regions and the local
affine frames. Remaining steps are discussed in the follow-
ing sections.
Distinguished Regions(DRs) are image elements (subsets
of image pixels), that posses some distinguishing property
that allows their repeated and stable detection over a range
of image formation conditions. In this work we exploit
the distinguished regions introduced in [7], theMaximally
Stable Extremal Regions(MSERs). MSERs are image ele-
ments detected by local thresholding of a greyscale image
and are stable under monotonic transformations of the grey-
values. The transformation between RGB image and the
greyscale image used for region detection can be arbitrary.
We use the intensity component of the colour image as it is
stable under a wide range of illumination changes. But gen-
erally, severe change in illumination can re-order the inten-
sities between the images (the grey-values transformation
may not be monotonic). MSERs will then fail.

For further reference on MSERs see [7] which includes a
formal definition and a detailed description of the extraction
algorithm.
Local affine frames (LAFs, local object-centered coordi-
nate systems) allow normalisation of image patches into

a canonical frame, and enable direct comparison of pho-
tometrically normalised intensity values, eliminating the
need for invariants. For every distinguished region, multi-
ple frames are computed. The actual number of the frames
depends on the region’s complexity. While simple ellipti-
cal regions have no stable frames detected, regions of com-
plex non-convex shape may have tens of frames associated.
Robustness of our approach is thus achieved by 1. select-
ing only stable frames and 2. employing multiple processes
for frame computation. A detailed description of the local
affine frame constructions is given in [8], [9] and [10].

3 Photometric and Geometric Nor-
malisation

Each image is represented by a set of local measurements.
Once local affine frames are established, there is no need
for geometrically invariant descriptors of local appearance.
Any measurement taken relative to the frame is affine in-
variant.
Geometry. The affine transformation between the canoni-
cal frame with originO = (0, 0)T and basis vectorse1 =
(1, 0)T ande2 = (0, 1)T and an established frameF is de-
scribed in homogenous coordinates by a 3 by 3 matrix

AF =

 a1 a2 a3

a4 a5 a6

0 0 1

 .

The image patch (defined in terms of the affine frame)
where the local measurements are taken from is referred to
as a measurement region (MR). The choice of MR shape
and size is arbitrary. Larger MRs have higher discrimina-
tive potential, but are more likely to cover part of an ob-
ject that is not locally planar. Our choice is to use a square
MR centered around a detected LAF, specifically a region
spanning〈−2, 3〉× 〈−2, 3〉 in the frame coordinate system.
Transformed to the image coordinate system, the measure-
ment region of a frameF becomes a parallelogram with
corners at (in homogenous coordinates):

c1 = AF

 −2
−2
1

 , c2 = AF

 −2
3
1

 ,

c3 = AF

 3
−2
1

 , c4 = AF

 3
3
1

 .

Photometry. For the process of establishing local corre-
spondences we utilise a simple photometric model. We as-
sume a linear camera (ie. a camera without gamma-correct-
ion). Specular reflections are ignored. The combined effect



Figure 1: Locally affine invariant image descriptors. Structure of computation.

of different scene illumination and camera and digitiser set-
tings (gain, shutter speed, aperture) is modelled by affine
transformations of individual colour channels. The photo-
metric transformation between two corresponding patches
I andI ′ is considered in the form: r′

g′

b′

 =

 mr 0 0
0 mg 0
0 0 mb

  r
g
b

 +

 nr

ng

nb


The constantsmr, nr, mg, ng, mb, nb differ for individ-
ual correspondences. This model would agree with the
monochromatic reflectance model [6] in the case of narrow
band sensor. It can be viewed as an affine extension of the
diagonal model, that has been shown by Finlayson to be
sufficient in common circumstances [4]1.

To represent the patch invariantly to photometric trans-
formations, intensities are transformed into a canonical
form. The intensities of individual colour channels are
affinely transformed to have zero mean and unit variance.

Let us summarize theNormalisation Procedureof a lo-
cal patch:

1. Establish a local affine frameF .
1At least in conjunction with sensor sharpening [3]

2. Compute the affine transformationAF between the
canonical coordinate system andF .

3. Express the intensities of theF ’s measurement region
in the canonical coordinate system
I ′(x) = I(AF x), x ∈ MR with some discretisa-
tion.

4. Apply the photometric normalisation
Î ′(x) = (I ′(x)− µ)/σ, x ∈ MR
whereµ is the mean andσ is the standard deviation of
I ′ over the MR.

The twelve normalisation parameters (a1 . . . a6, mr, nr,
mg, ng, mb, nb) are stored along with the normalised inten-
sity measurement. When considering a pair of patches for
a correspondence, these twelve parameters are combined to
provide the local transformations (both geometric and pho-
tometric) between the images.

The correspondences are formed by evaluating the cor-
relation coefficient between discretised representations of
the normalised measurement regions. Tentative correspon-
dences are formed if the coefficient is above a predefined
threshold. In a second step, the subsets of geometrically
and photometrically consistent tentative correspondences



(a) (b) (c) (d) (e) (f)

Figure 2: Normalised local correspondences. (a), (f): Query and Database images, (b), (e): Examples of geometrically
normalised MRs (measurement regions), (c), (d): Photometrically normalised MRs

are found. Examples of pairs of corresponding patches
(MRs) are depicted in Figure 2.

4. Estimating the Photometric Trans-
formation

Local measurements are constructed with invariance to di-
agonal (or affine extension of diagonal) photometric trans-
formations, as described in Section 3. At local scale, such
a simple photometric model is sufficient to establish corre-
spondences. Global colour transformation is computed after
the correspondences are found, using full affine model. By
considering only the image regions that were put into cor-
respondence, the global transformation is found indepen-
dently of any background clutter or occluding objects.
Establishing Pixel-to-Pixel Correspondences. Every es-
tablished correspondence locally maps a pair of regions.
Assuming that local geometric deformations are sufficiently
well approximated by 2D affine transformations, pixel cor-
respondences are obtained by sampling the images with
respect to the local coordinate systems of corresponding
LAFS. This can be interpreted as a regular sampling of the
geometrically normalised MRs depicted in Figure 2 (b) and
(e). In our implementation, we sample the MRs on a regular
6× 6 grid, obtaining thus 36 pixel-correspondences per ev-
ery frame-correspondence. For a typical object, the number
of pixel-correspondences is in the order of thousands.
Computing the Photometrical Transformation. With
thousands of corresponding pixels available, the global pho-
tometric transformation can be calculated in a more compli-
cated form than the diagonal, without the risk of overfitting.
We compute the transformation in its affine form, i.e. r′

g′

b′

 =

 m1 m2 m3

m4 m5 m6

m7 m8 m9

  r
g
b

 +

 nr

ng

nb


The transformation coefficients are obtained by least

Method Recognition rate

LAFs 89.1 %
Hist. Intersection, no CC 42.3%
Hist. Intersection, manual CC 87.7%
Hist. Intersection, best CC 80.9%
Hist. Intersection, worst CC 15.5%

Table 1: Summary of the recognition experiment

squares fitting, i.e. the sum of square differences between
transformed colours of query pixels and colours of corre-
sponding database pixels is minimised.

5. Experiments

Dataset. The experiments were realised on a publicly avail-
able dataset published by Barnard [1]. The dataset contains
images of 20 different objects, every object is taken under
11 illuminants. The total number of images in the dataset is
thus 220. The illuminants were chosen to cover the range
of common illumination conditions. For each image, chro-
maticity of the white point is provided. It was obtained by
temporarily placing a sheet of white paper in the scene.

The object recognition task is simplified by the fact that
the objects are placed on black background (ie. there is
no background clutter, the objects can be segmented out)
and the objects are unoccluded. However, the objects were
taken in different poses, and between some views there is
no common part of the surface visible.
Experimental Protocol. The training database (the set
of known images) contains a single image of every ob-
ject. We have used the images taken under illuminant ’syl-
50MR16Q’. All the database images are shown in Figure 3.
To follow the experimental setup from [2], all 220 images
are used as queries, ie. the set of queries contains also the
database images. Every query image is matched against ev-



Figure 3: All 20 database images.

ery database image. As there are no images of non-database
objects, the database image with the highest score is always
selected (forced match).

We manually selected those query – database image pairs
where the object was successfully recognised. The global
colour transformation between the query and the database
images was estimated based on the photometric transforma-
tions computed from corresponding regions, as described in
Section 4. The transformation was estimated as full affine,
i.e. with 12 degrees of freedom. Note that the query-to-
database photometric transformation can not be used to es-
timate the colour of the illuminant (ie. the white point) since
image taken under ”white light” are not part of the database.

The precision of the estimated global photometric trans-
formation is verified by transforming the provided white
paper colour of the query image. Ideally, the transformed
colour should be equal to the white paper colour of the
matched database image. As it is not, the precision of the es-
timate is measured by computing the euclidean distance be-
tween chromaticities of the transformed query white point
and the database white point.
Results. Results of the recognition experiments are
sumarised in Table 1. Our method (LAFs) is compared
to results published in [2]. In [2], query images are first
adjusted by one of a rather exhaustive set of 23 colour con-
stancy algorithms. The matching is then done on the ad-
justed images by the histogram intersection method.

The first row of Table 1 shows the recognition rate of our
method, second row of the histogram intersection method
without any colour constancy being applied. The third row
shows results for manual colour constancy, where the query
images were transformed so that the manually measured
white points match. The remaining two rows report re-

Illuminant Recogn. rate WP error

ph-ulm 17/20, 85% 0.015
solux-3500+3202 19/20, 95% 0.011
solux-3500 19/20, 95% 0.006
solux-4100+3202 17/20, 85% 0.013
solux-4100 20/20, 100% 0.008
solux-4700+3202 12/20, 60% 0.021
solux-4700 19/20, 95% 0.012
syl-50MR16Q+3202 18/20, 90% 0.009
syl-50MR16Q 20/20, 100% –
syl-cwf 16/20, 80% 0.010
syl-wwf 19/20, 95% 0.013
average 89% 0.012

best method in [2] 81% 0.038

Table 2: Recognition rate and illuminant colour estimation

sults for the best (non-diagonal, coefficient-rule) and the
worst (color-in-perspective) of the 23 colour constancy al-
gorithms. Our recognition performance is superior to any
of the results presented in [2].

Table 2 shows how individual illuminants affect recogni-
tion rate of the LAF method. There is no significant differ-
ence in the performance, except for the ’solux-4700+3202’
illuminant (4700K incandescent light plus a blue filter).
The recognition failures here are not due to the illuminant
colour, but due to the low intensity of the images captured
under this light. The third column of Table 2 shows the
precision of the global photometric transformation estima-
tion. For comparison, a white point estimation error of the
best performing method from [2] is quoted. Our estimates
are on average three times more precise, but note that only



Figure 4: Examples of recognition failures. The objects are not recognised due to different pose, not due to illumination.

(a) (b) (c)

Figure 5: Scene with multiple illuminants: (a) an synthetic query image, two differently illuminated halves joined, (b) found
correspondences clustered by local photometric transformation, (c) corresponding database image

correctly recognised images are included. Estimation based
on mismatched objects may produce arbitrary photometric
transformation.

Figure 4 shows all our recognition failures in queries for
the first four database objects. The query images differ from
the database images not only in the illumination, but, more
significantly, in the object pose. The balls are rotated so
that their visual appearance is substantially different from
the database images. The blocks-object was turned upside-
down, producing a ’mirror’ image of itself, which is not
recognised by our method. Refer to Figure 3 to see the
differences between database images and the unrecognised
queries.

Multiple Illuminants . In a final experiment, we demon-
strate that our recognition system can handle objects viewed
under multiple illuminants at the same time, as can be the
case eg. when a shadow is cast over part of an object. Fig-

ure 5 (a) shows our query image, which was obtained by
artificially merging two images of the object. The process
of image description and matching is invariant to local illu-
mination, the presence of multiple illuminants thus have no
effect on the obtained correspondences, except for LAFs
that are on the boundary of differently illuminated object
areas.

Correspondences are clustered by their local photometric
transformation. Each such cluster represents a global trans-
formation caused by one of the illuminants. In Figure 5
(b) two clusters of correspondences are shown as green and
white dots respectively. With a single exception, the corre-
spondences are correctly separated according to the illumi-
nant.

Summary. We have experimentally shown that our
geometry-based object recognition method outperforms the
methods described in [2], ie. the histogram intersec-



tion algorithm applied after colour constancy correction.
The recognition rate of our system was almost indepen-
dent of the illuminant, changes in objects’ poses had a
much stronger impact on the results. When an object
was correctly recognised, even a straightforward least-
squares algorithm was able to estimate the global photomet-
ric transformation three times more precisely than the best
correspondence-less colour constancy method published in
[2].

Finally, an experiment on a scene where different parts
of the image are illuminated by different light sources was
shown. Computing global colour transformation to a canon-
ical illumination in such a scene is an ill-posed task. The
image was however successfully recognised, partitioned ac-
cording to the colour of incident light and the illumina-
tion for each part was correctly estimated by the proposed
method.

6. Conclusions
In this paper we have revisited the connection between
colour constancy and object recognition. We have demon-
strated that for many objects a recognition method relying
mainly on geometry and invariant representation of local
colour appearance can be successful even under severe and
unknown changes of illumination. Successful object recog-
nition allows for ”colour constancy by recognition” – an ap-
proach where the global photometric transformation is es-
timated from locally corresponding image patches. In our
experiments, such estimate was three times more precise
than that of any global colour constancy method published.
Since the used recognition method is based on matching of
local features, it is insensitive to object occlusion and back-
ground clutter. The colour constancy by recognition ap-
proach is thus sucessfull even in situations when the known
object occupy only a small portion of otherwise unknown
scene.

We conclude that if the known objects in the scene have
strong geometric features, recognition can provide good
colour constancy. On the other hand, if the objects do
not have distinctive parts, or if their structure is not pre-
served (e.g. by non-rigid object deformation), recognition
by colour or by texture becomes necessary. In this case,
colour constancy can support recognition.
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[10] Šťeṕan Obdřzálek and Jǐrı́ Matas. Object recognition using
local affine frames on distinguished regions. InThe British
Machine Vision Conference (BMVC02), September 2002.

[11] David Slater and Glenn Healey. The illumination-invariant
recognition of 3d objects using local color invariants.IEEE
Transactions on Pattern Analysis and Machine Intelligence,
18(2):206–210, 1996.

[12] M. Swain and D. Ballard. Color indexing. InInternational
Journal of Computer Vision, vol. 7, no. 1, pages 11–32, 1991.


