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Abstract

In this paper, we study computational models and tech-
niques to merge color and shape invariant information to
recognize objects. We propose a feature, which we call
color shape context, and it is a histogram that combines the
spatial (shape) and color information of the image in one
compact representation. This histogram codes the local-
ity of color transitions in an image. Illumination invariant
derivatives are first computed and provide the edges of the
image, which is the shape information of our feature. These
edges are used to obtain similarity (rigid) invariant shape
descriptors. The color transitions that take place on the
edges are coded in an illumination invariant way and are
used as the color information. The color and shape infor-
mation are combined in one multidimensional vector. Our
experiments show that the feature is invariant to the simi-
larity transformations of shape such as translation, rotation
and scaling and also to noise and illumination changes of
color. We conducted our experiments in three databases
whose size ranges from 500 to 7200 images. We report
considerably better results than only color-based or only
shape-based methods. We also found experimentally that
the feature exhibits robustness to viewpoint changes for the
COIL-100 dataset.

Keywords:

Photometric and geometric invariants, color-shape con-
text, object recognition.

1 Introduction

In a general context, object recognition involves the task
of identifying a correspondence between a 3-D object and
some part of a 2-D image taken from an arbitrary viewpoint
in a cluttered real-world scene.

Many practical object recognition systems are
appearance- or model-based. To succeed they address
two major interrelated problems: object representation
and object matching. The representation should be good
enough to allow for reliable and efficient matching.
The recognition consists of matching the stored models
(model-based) or images (appearance-based), encapsulated
in a representation scheme, against the target image to
determine which model (image) corresponds to which
portion of the target image.

Several systems have been developed to deal with the
problem of model-based object recognition by solving the
correspondence problem by tree search. However, the com-
putational complexity is exponential for nontrivial images.
Therefore, in this paper, we focus on appearance-based ob-
ject recognition.

Most of the work on appearance-based object recogni-
tion based on shape information is by matching sets of
shape image features (e.g. edges, corners and lines) be-
tween a query and a target image. In fact, the projective
invariance of cross ratios and its generalization to cross ra-
tios of areas of triangles and volumes of tetrahedra has been
used for viewpoint invariant object recognition and signif-
icant progress has been achieved [20]. Other shape invari-
ants are computed based on moments, Fourier transform co-
efficients, edge curvature and arc length [19], [23]. Unfortu-
nately, shape features are rarely adequate for discriminatory
object recognition of 3-D objects from arbitrary viewpoints.
The shape-based approach is often insufficient especially in
case of large data sets [10]. Another way to appearance-
based object recognition is to use color (reflectance) infor-
mation. It is well known that color provides powerful in-
formation for object recognition, even in the total absence
of shape information. A common recognition scheme is to
represent and match images on the basis of color invariant
histograms [17], [8]. The color-based matching approach
is widely in use in various areas such as object recognition,
content-based image retrieval and video analysis.

Little research has been done on how to combine color
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and shape information for object recognition. Important
work is done by [3], [13] using moment invariants that
combine geometric and photometric changes for planar ob-
jects. Further, in [10] color and shape invariants are com-
bined for object recognition based on geometric algebraic
invariants computed from color co-occurrences. Although
the method is efficient and robust, the discriminative power
decreases by the amount of invariance. Color, shape and
texture are combined in [12] for visual object recognition.
However, the scheme is heavily dependent on severe illumi-
nation changes.

Therefore, in this paper, we study computational models
and techniques to merge color and shapeinvariant informa-
tion to recognize objects in 3D- scenes. Shape deformations
occur by a change in viewpoint, object position etc. Defor-
mations for the color channels occur due to shading, illumi-
nation, shadows etc. To this end, a vector-based framework
is used to index images on the basis of color, shape and com-
posite information. The scheme makes use of a color-shape
context providing a high-discriminative cue in vector form
to be used as an index. In this paper we do not consider
robustness against cluttering and occlusion.

The recognition scheme is designed according to the fol-
lowing principles:1. Generality: the class of objects from
which the images are taken from is the class of multicol-
ored planar objects in 3-D real-world scenes.2. Invariance:
the scheme should be able to deal with images obtained
from arbitrary unknown viewpoints discounting deforma-
tions of the shape (viewpoint, object pose) and color (shad-
owing, shading and illumination).3. Stability: the scheme
should be robust against substantial sensing and measure-
ment noise.

The paper is organized as follows. First, we propose a
scheme to compute illumination invariant derivatives in a
robust way. Then, shape invariance is discussed in Section
3. In Section 4, color and shape invariant information is
combined. Matching is discussed in Section 4.2. Finally,
experiments are given in Section 5.

2 Photometric Invariants for Color Images

The color of an object varies with changes in illuminant
color (Spectral Power Distribution) and geometry (i.e. an-
gle of incidence and reflectance). Hence, in outdoor images,
the color of the illuminant (i.e. daylight) varies with the
time-of-day, cloud cover and other atmospheric conditions.
Consequently, the color of an object may change drastically
due to varying imaging conditions.

2.1 Illumination Invariant Derivatives

Various illumination-independent color ratios have been
proposed [8], [14]. These color ratios are derived from

neighboring points. A drawback, however, is that these
color ratios might be negatively affected by the geometry
and pose of the object.

Therefore, we focus on the following color ratio [9]:

M(C1
~x1

, C1
~x2

, C2
~x1

, C2
~x2

) =
C1

~x1
C2

~x2

C1
~x2

C2
~x1

, C1 6= C2, (1)

expressing the color ratio between two neighboring image
locations, forC1, C2 ∈ {C1, C2, ..., CN} giving the mea-
sured sensor pulse response at different wavelengths, where
~x1 and~x2 denote the image locations of the two neighbor-
ing pixels.

For a standardRGB color camera, we have:

m1(R~x1 , R~x2 , G~x1 , G~x2) =
R~x1G~x2

R~x2G~x1

, (2)

m2(R~x1 , R~x2 , B~x1 , B~x2) =
R~x1B~x2

R~x2B~x1

, (3)

m3(G~x1 , G~x2 , B~x1 , B~x2) =
G~x1B~x2

G~x2B~x1

. (4)

The color ratio is independent of the illumination, a change
in viewpoint, and object geometry [9].

For the ease of exposition, we concentrate onm1 based
on theRG-color bands in the following discussion. Without
loss of generality, all results derived form1 will also hold
for m2 andm3.

Taking the natural logarithm of both sides of Eq. 2 results
for m1 in:

ln m1(R~x1 , R~x2 , G~x1 , G~x2) = ln(
R~x1G~x2

R~x2G~x1
) =

ln R~x1 + ln G~x2 − ln R~x2 − ln G~x1 = ln(
R~x1

G~x1
)− ln(

R~x2

G~x2
)

(5)
Hence, the color ratios can be seen as differences at two
neighboring locations~x1 and~x2 in the image domain of the
logarithm ofR/G:

∇m1(~x1, ~x2) = (ln(
R

G
))~x1 − (ln(

R

G
))~x2 (6)

By taking these differences in a particular direction be-
tween neighboring pixels, the finite-difference differentia-
tion is obtained of the logarithm of imageR/G which is
independent of the illumination color, and also a change in
viewpoint, the object geometry, and illumination intensity.
We have taken the gradient magnitude by applying Canny’s
edge detector (derivative of the Gaussian withσ = 1.0)
on imageln(R/G) with non-maximum suppression in a
standard way to obtain gradient magnitudes at local edge
maxima denoted byGm1(~x), where the Gaussian smooth-
ing suppresses the sensitivity of the color ratios to noise.
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The results obtained so far form1 hold also form2 andm3,
yielding a 3-tuple(Gm1(~x), Gm2(~x), Gm3(~x)) denoting gra-
dient magnitude at local edge maxima in imagesln(R/G),
ln(R/B) and ln(G/B) respectively. For pixels on a uni-
formly colored region (i.e. with fixed surface albedo), in
theory, all three components will be zero whereas at least
one the three components will be non-zero for pixels on lo-
cations where two regions of distinct surface albedo meet.

Higher order derivatives are taken to obtain salient points
such as corners and T-junctions. These higher order deriva-
tives are computed again by Gaussian derivatives applied
on the illumination invariant color model. For the ease of
exposition we concentrate onln m1 in the following discus-
sion.

To compute higher order derivatives, we apply the partial
derivatives of the Gaussian up to order 2 for imageln R

G . Let
{∇m1x

,∇m1y
,∇m1xx

,∇m1yy
,∇m1xy

}σ denote the set of
the first five partial Gaussian derivatives. From these par-
tial derivatives, we have computed the Laplacian and the
Hessian. Note that the Laplacian operator finds its roots in
the modeling of certain psychophysical processes in mam-
malian vision and hence is suited to compute ’visual salient’
points.

2.2 Noise Robustness of Illumination Invariant
Derivatives

The above defined illumination derivatives may become
unstable when intensity is low. In fact, these derivatives are
undefined at the black point (R = G = B = 0) and they
become very unstable at this singularity, where a small per-
turbation in theRGB-values (e.g. due to noise) will cause
a large jump in the transformed values. As a consequence,
false color constant derivatives are introduced due to sen-
sor noise. These false gradients can be eliminated by de-
termining a threshold value corresponding to the minimum
acceptable gradient modulus. We aim at providing a method
to determine automatically this threshold by computing the
uncertainty for the color constant gradients through noise
propagation as follows.

Additive Gaussian noise is widely used to model thermal
noise and is the limiting behavior of photon counting noise
and film grain noise. Therefore, in this paper, we assume
that sensor noise is normally distributed.

Then, for an indirect measurement, the true value of a
measurandu is related to itsN arguments, denoted byuj ,
as follows

u = q(u1, u2, · · · , uN ) (7)

Assume that the estimatêu of the measurandu can
be obtained by substitution of̂uj for uj . Then, when
û1, · · · , ûN are measured with corresponding standard de-
viationsσû1 , · · · , σûN

, we obtain [18]

û = q(û1, · · · , ûN ). (8)

Then, it follows that if the uncertainties in̂u1, · · · , ûN are
independent, random and relatively small, the predicted un-
certainty inq is given by [18]

σq =

√√√√
N∑

j=1

(
∂q

∂ûi
σûi)

2 (9)

the so-called squares-root sum method. Although (9) is de-
duced for random errors, it is used as an universal formula
for various kinds of errors.

Focusing on the first derivative, the substitution of (6) in
(9) gives the uncertainty for the illumination invariant coor-
dinates

σ∇m1
(~x1, ~x2) =

√√√√σ2
R~x1

R2
~x1

+
σ2

G~x1

G2
~x1

+
σ2

R~x2

R2
~x2

+
σ2

G~x2

G2
~x2

(10)

Assuming normally distributed random quantities, the stan-
dard way to calculate the standard deviationsσR, σG, and
σB is to compute the mean and variance estimates derived
from a homogeneously colored surface patches in an image
under controlled imaging conditions.

From the analytical study of Eq.10, it can be derived that
color ratio becomes unstable around the black pointR =
G = B = 0.

Further, to propagate the uncertainties from these color
components through the Gaussian gradient modulus, the un-
certainty in the gradient modulus is determined by convolv-
ing the confidence map with the Gaussian coefficients. As
a consequence, we obtain:

σ∇F ≤
∑

i

[
(∂ci/∂x) · σ∂ci/∂x + (∂ci/∂y) · σ∂ci/∂y

]
√∑

i [(∂ci/∂x) + (∂ci/∂y)]
,

(11)
wherei is the dimensionality of the color space andci is the
notation for particular color channels. In this way, the ef-
fect of measurement uncertainty due to noise is propagated
through the color constant ratio gradient.

For a Gaussian distribution 99% of the values fall within
a 3σ margin. If a gradient modulus is detected which ex-
ceeds3σ∇F , we assume that there is 1% chance that this
gradient modulus corresponds to no color transition.

3 Geometric Invariant Transformation

In this section, shape transformations are discussed to
measure shape properties of a set of coordinates (i.e. edges,
corners and T-junctions) of an image object independent
of a coordinate transformation. To this end, we consider
the edges, computed from the illumination invariant deriva-
tives proposed in previous section, as the spatial informa-
tion which is normalized by the aspect ratio given in fol-
lowing Section.
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3.1 Affine Deformations and Inverse Transforma-
tion

The geometric deformations considered in this paper are
up to affine transformations:

~x′ = A~x + B (12)

where a point~x = (x, y) in one image is transformed into
the corresponding point~x′ = (x′, y′) in the second image,
with transformation matrix:

A =
[

a11 a12

a21 a22

]
, B =

[
b1

b2

]
(13)

This transformation is consider to approximate the projec-
tive transformation of 3-D planar objects , therefore is valid
when the object is relative far away from the camera.

It is known that the spatial moment is defined as:

Mu(m, n) =
J∑

j=1

K∑

k=1

xm
k yn

j f(j, k) (14)

Further, the ratio’sxk = M(1,0)
M(0,0) , yk = M(0,1)

M(0,0) de-
fine the centroid. Transforming the image with respect to
b = [xk yk]T yields invariance to translation. The principle
axis is obtained by rotating the axis of the central moments
until M11 is zero. Then, the angleθ between the original
and the principle axis, is defined as follows [15]:

tan 2θ =
2M11

M20 −M02
(15)

This angle may be computed with respect to the minor or
the major principal axis. To determine the unique orienta-
tion,we require the additional condition thatM20 > M02

andM30 = 0. Setting the rotation matrix to

A =
[

cos θ − sin θ
sin θ cos θ

]
(16)

will provide rotation invariance.
A change in scale by a factor ofδ in the x-direction and

γ in the y-direction is given by

M
′
u(m,n) = δm+1γn+1Mu(m,n)

where

M
′
u(0, 0) = Mu(0, 0) = 1 andM

′
u(2, 0) = M

′
u(0, 2)

then we obtainδ = 1/γ where

δ = (Mu(0, 2)/Mu(2, 0))0.25 (17)

Setting the transformation matrix to

A =
[

δ 0
0 1/δ

]
(18)

we obtain aspect ratio normalization.
In conclusion, we normalize our spatial information with

respect to translation, rotation and aspect-ratio using a col-
lection of low-order moments. The scale invariance and the
robustness to affine transformation are discussed in the fol-
lowing section.

4 Indexing and Matching

In this section, we propose an alternative indexing
scheme to combine shape and color information. The
scheme is called the color-shape context which is related
to the shape context proposed by [1] for shape matching.
The difference is that the color-shape context combines both
color and spatial information into one unifying indexing
framework. Moreover, the scheme is robust to affine de-
formations of shape and color.

Let the image database consist of a set{Id}Nb

d=1 of color
images. Color-shape contexts are created for each imageId

to represent the distribution of quantized invariant values in
a multidimensional invariant space. Color-shape contexts
are formed on the basis of color, shape and combination of
both.

4.1 Color-Shape Representation Scheme

The color-shape framework is as follows. For a color
imageI : R2 → R3, illumination invariant edges are com-
puted to obtain a binary imageE : R2 → {0, 1}. Then at
the edge points we define:

~pn = (x, y,m1,m2,m3)| E(x, y) = 1 (19)

wherex, y are pixel coordinates in imageE andm1,m2,m3

are the color invariant ratios calculated in imageI. Further,
~pn ∈ R5.

We can decompose each of these~pn vectors as follows:

~pn = ~pSn + ~pCn (20)

where:

~pSn = (x, y, 0, 0, 0)
~pCn = (0, 0,m1, m2, m3)

Note that the setP = {p1, p2, . . . , pn} of n points in a
5-dimensional space representing both the shape and color
information in the image. Each of thesen points is now
considered to represent a vector originating from a central
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point. To provide noise robustness, we consider the distri-
bution of these vectors over relative positions. Then, the
color-shape contexthc

P of setP is defined as the coarse his-
togram of the distribution of allpn vectors, as defined in
Eq.20, over the relative positionc. In other words, the his-
togram of the decomposed and quantized versions of thepn

vectors, with respect to the distance and orientation from a
central pointc, is called color-shape context of the image.
The vector~pS is represented by its polar coordinates while
the vector~pC is represented with its spherical coordinates.

To construct the color-shape context of each imageI
using a relative positionc, we first translate the vectors~pSn

with respect to pointc and then the following histogram is
computed:

hc
P(k) =

#{q : q ∈ bin(k)}
n

(21)

whereq ∈ P andbin(k) is a bin corresponding to a partition
of the feature space. This bin is defined as a Cartesian prod-
uct of the spatial and color bins. For partitioning the spatial
space, we compute the log-polar with equally spaced radial
bins. An equally-spaced bins scheme is used to partition the
3-D color invariant space.

Note that the color-shape context feature is rotation,
scale, translation and aspect ratio change invariant. Fur-
ther, the color-shape context has intrinsic robustness against
small amounts of displacement noise, since it is based on
the distribution of illumination invariant derivatives instead
of their exact positions. Total affine invariance, which
would include skew invariance, is not claimed, but the ex-
perimental results show that the feature is robust to affine
transformations.

4.2 Matching in simple scenes

For object recognition in simple scenes (i.e. one object
per image) we set the relative positionc as the center of
gravity of the spatial information. Note that the shape in-
formation is normalized and that the center of gravity is at
the origin (0, 0). To achieve scale invariance we normal-
ize all |~pSn | with respect to the mean distance between all
point pairs inE . Let’s consider an imagea with correspond-
ing color-shape contextha. Becauseha(k) ∈ [0, 1] and∑

k ha(k) = 1, the cost function to compute the distance
with another color-shape contexthb is given by:

Cab =
1
2

K∑

k=1

(ha(k)− hb(k))2

(ha(k) + hb(k))
(22)

The complexity of this operation is only dependent on
the number ofK which is constant for all images in the
database and is usually small. Note that the color-shape

context feature is rotation, scale, translation and aspect ra-
tio change invariant. Furthermore, the color-shape context
exhibits intrinsic robustness against small amounts of dis-
placement noise, since it is based on the distribution of il-
lumination invariant derivatives instead of their exact posi-
tions.

4.3 Matching in complex scenes

For object recognition in complex scenes, which may
contain cluttering and occlusion, a modified matching strat-
egy is adopted. The reason is that the framework based on
moments, used to determine the center and the scale of the
color-shape context, can no longer be used since the edge
points may belong to more than one object. To this end,
we build multiple representations of color-shape context per
image and match them with a modified distance function.
The multiple color-shape contexts are build at different cen-
ters, scales and orientations. The modification of the cost
function aims at reducing the influence of large costs in-
troduced at occlusions. More specifically, we introduce an
occlusion field that indicates in which spatial cell occlusion
occurs and modify the cost function in order to reduce the
cost of matching when the occlusion fields are spatially co-
herent.

More specifically, the occlusion field of spatial cellk is
defined as:

Ok =
{

1 : dk/qk > T
0 : dk/qk ≤ T

wheredk denotes the accumulated cost of matching in the
spatial cellk and is defined as :

dk =
1
2

∑

{n | f(n)=k}

(ha(n)− hb(n))2

(ha(n) + hb(n))

where f(n) denotes a mapping from the index of the color-
shape context to the appropriate spatial cell indexk. qk

denotes the percentage of points of the two images in the
spatial cellk and is defined as:

qk =
∑

{n | f(n)=k}
(ha(n) + hb(n))

The cost function is now as follows:

C
′
ab = Cab −

∑

k

Ok
1
|Nk|

∑

l∈Nk

(dk − TqkOl) (23)

whereNk is the 4-neighborhood of spatial cellk. The way
thatC

′
ab is defined is that it assigns a cost at the occluded

spatial cellk that varies betweenqkT anddk depending on
the spatial coherency of the occlusion fields in the neigh-
borhood ofk. In the extreme cases, if none of thel ∈ Nk is
occluded the local cost at the spatial cellk is dk while if all
l ∈ Nk are occluded it isqkT .
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5 Experiments

In this section, we consider the performance of the pro-
posed object recognition scheme. Therefore, in section 5.1,
the dataset and matching quality are discussed. Then, in the
remaining sections, we test our object recognition scheme
on two different datasets with respect to viewing and illu-
mination conditions.

Further, for comparison, the illumination invariant
derivativesm1m2m3 are used as a direct index resulting
in a 3-dimensional histogram. In this context, pixels from
the same boundary will generate the same gradient value
and hence accumulate in the same histogram bin. As a con-
sequence, the total accumulation for a particular histogram
bin represents a measure of the boundary length between
two homogeneously painted surface patches. Because each
non zero bin indicates the presence of a distinct boundary,
the histogram is indicative for the boundary variety in view.

For a measure of match quality, let rankrQi denote
the position of the correct match for test imageQi, i =
1, ..., N2, in the ordered list ofN1 match values. The rank
rQi ranges fromr = 1 from a perfect match tor = N1 for
the worst possible match.

Then, for one experiment, the average ranking percentile
is defined by:

r = (
1

N2

N2∑

i=1

N1 − rQi

N1 − 1
)100% (24)

5.1 The Datasets

For comparison reasons, we have selected two different
datasets: Amsterdam and Columbia - COIL-100, which are
publicly available and often used in the context of object
recognition [10], [21].

Figure 1. Various images which are included
in the Amsterdam image dataset of 500 images.
The images are representative for the images in
the dataset. Objects were recorded in isolation
(one per image).

Amsterdam Dataset: In Fig. 1, various images from the
image database are shown. These images are recorded by
the SONY XC-003P CCD color camera and the Matrox
Magic Color frame grabber. Two light sources of aver-
age day-light color are used to illuminate the objects in the
scene. The database consists ofN1 = 500 target images

taken from colored objects, tools, toys, food cans, art arti-
facts etc. Objects were recorded in isolation (one per im-
age). The size of the images are 256x256 with 8 bits per
color. The images show a considerable amount of shad-
ows, shading, and highlights. A second, independent set
(the query set) ofN2 = 70 query or test recordings was
made of randomly chosen objects already in the database.
These objects were recorded again one per image with a
new, arbitrary position and orientation with respect to the
camera, some recorded upside down, some rotated, some at
different distances.

COIL-100: In order to test the performance of our algo-
rithm against variability in appearance, the COIL-100 has
been selected which have been collected at the Columbia
University. For these experiments, we aim at multi-view ob-
ject recognition i.e. there are various images taken from the
object (i.e. back, front, from aside etc.), see Fig. 2. How-
ever, a number of objects in the database are single-colored
and therefore hard to recognize.

5.2 Viewpoint Robustness

To test the effect of change in viewpoint we used the
COIL-100 dataset. This dataset consist of 7200 images
from 100 objects which have been put perpendicularly in
front of the camera and in total 72 recordings were gener-
ated by varying the angle between the camera with 5 de-
grees with respect to the object, see Fig. 2. We conducted
our experiment as following, we gave as a query a view of
an object ranging from 0 to 70 degrees (15 different views)
and the method had to recognize the corresponding object
from the 0 degrees views of all 100 objects. This was done
for all 100 objects and for all 15 views of each object. We

Figure 2. Different images recorded from the
same object under varying viewpoint. The
COIL-100 database consisting of 7200 images
of 100 different objects with 72 different views
each.

concentrate on the quality of the recognition rate with re-
spect to varying viewpoint differentiated by color informa-
tion, shape information, and the integration of both. There-
fore, we first study to what extent the proposed framework
is viewpoint independent. In the mean time, we research on
whether the combination of color and shape invariant infor-
mation will outperform the matching scheme based on only
color or shape. To this end, we have constructed three dif-
ferent color-shape context histograms. Firstly, we have in-
cluded both color and shape invariant information denoted
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byHCS. Secondly, only color is considered which will be
given byHC. Thirdly, we used only shape information de-
noted byHS. Also, we have included in our experiment
the well-known, color-based method of Histogram Intersec-
tion [17] denoted byHIRGB . WithHIinv−rgb we denote
the results of the Histogram Intersection when the images
have been initially transformed to the normalizedrgb color
space. The performance of the recognition scheme is given

40
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Figure 3. The discriminative power of the
color-shape matching process under varying
viewpoint differentiated by color information,
shape information, and the integration of both.
The average ranking percentile of color-shape,
color, and shape contexts are denoted byrHCS

,

rHC
and rHS

respectively. Also, the average

ranking percentile of the Histogram Intersec-
tion with and without conversion to normalized
rgb color space is denoted withHIinv−rgb and
HIRGB respectively.

in Fig. 3. When the performance of different invariant im-
age indices is compared, we conclude that matching based
on both color invariants produces the highest discrimina-
tive power. Excellent discriminative performance is shown:
97% of the images are still recognizable up to 70 degrees of
a change in viewpoint. The matching based on both color
and shape invariants produces also excellent results with
95% of the images are still recognizable up to 70 degrees of
a change in viewpoint. Shape-based invariant recognition
yields poor discriminative power with72% at 70 degrees of
viewpoint change.

In conclusion, recognition based on our framework us-
ing color invariant and both shape and color invariant in-
formation produces the highest discriminative power. The
small performance gain in using only color denotes the lack
of robustness of the shape invariant part of our framework
to viewpoint change. Our method always outperform the
Histogram Intersection method even when the images have
been transformed to the normalizedrgb color space. Fi-
nally, color-shape based recognition is almost as robust to
a change in viewpoint as the color based recognition. Even

when the object-side is nearly vanishing, object identifica-
tion is still acceptable.

5.3 Illumination Robustness

The effect of a change in the illumination intensity is
equal to the multiplication of eachRGB-color by a uni-
form scalar factorα. To measure the sensitivity of the
color-shape context,RGB-images of the Amsterdam test
set are multiplied by a constant factor varying overα ∈ {
0.3, 0.5, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.5, 1.7}. The dis-
criminative power of the histogram matching process dif-
ferentiated plotted against illumination intensity is shown in
Fig. 4. The color-shape context is to a large degree robust
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Figure 4. The discriminative power of the
color-shape matching process plotted against
the varying illumination intensity.

to illumination intensity changes even if the shape based
recognition is not. To measure the sensitivity of our method

Figure 5. 2 objects under varying illumination
intensity generating each 4 images with SNR∈
{ 24, 12, 6, 3}.

with respect to varying SNR, 10 objects were randomly cho-
sen from the Amsterdam image dataset. Then, each object
has been recorded again under a global change in illumi-
nation intensity (i.e. dimming the light source) generating
images with SNR∈ {24, 12, 6, 3}, see Fig. 5. These low-
intensity images can be seen as images of snap shot quality,
a good representation of views from everyday life as it ap-
pears in home video, the news, and consumer digital pho-
tography in general. The discriminative power of the color-
shape matching process plotted against the varying SNR is
shown in Fig. 6.

For 3 < SNR < 12, the results show a rapid decrease
in the performance. For these SNR’s, the color-shape based
recognition scheme still outperforms the shape based recog-
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Figure 6. The discriminative power of the
color-shape matching process plotted against
the varying SNR.

nition. For SNR< 3, the performance of all methods in-
cline. This is because the images are getting too dark to
recognize anything at all (color and shape).

In conclusion, the method is robust to low signal-to-
noise ratios but can not outperform the color based recog-
nition since the other part of its components does not per-
forms well. Even when the object is nearly visible, object
identification is still sufficient. Again, the matching based
on both shape and color invariants produces good discrimi-
native power but not as good as the color-based approach.

5.4 Occlusion Cluttering Robustness

To test our method for complex scenes, we used a sub-
set of the Amsterdam dataset. An image which contained
multiple objects and occlusion was used as the query. The
dataset was 100 randomly selected images, including two
instances of an occluded object. The average ranking per-
centile for these two queries was 99%. Note that despite
the cluttering and the quite large amount of occlusion the
method was capable to identify the object.

Figure 7. Left: Image containing cluttering and oc-
clusion. Right: The objects that were retrieved from
a dataset of 100 objects.

6 Conclusions

In this paper, we proposed computational models and
techniques to merge color and shapeinvariant information
to recognize objects. A vector-based framework is proposed
to index images on the basis of illumination (color) invari-
ants and viewpoint (shape) invariants. From the experimen-
tal results it is shown that the method is able to recognize

rigid objects in 3-D complex scenes robust to illumination,
viewpoint and noise.
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