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Abstract
Highlight reflected from inhomogeneous objects is the com-
bination of diffuse and specular reflection components. The
presence of highlight causes many algorithms in computer
vision to produce erroneous results. To resolve this problem,
a method to separate diffuse and specular reflection compo-
nents is required. This paper presents such a method, par-
ticularly for objects with uniformly colored surface whose
illumination color is known. The method is principally
based on the distribution of specular and diffuse points in
a two-dimensional chromaticity intensity space. We found
that, by utilizing the space, the problem of reflection com-
ponents separation can be simplified into the problem of
identifying diffuse chromaticity. In our analysis, to iden-
tify the diffuse chromaticity correctly, an analysis on noise
is required, since most real images suffer from it. Unlike
existing methods, the proposed method is able to identify
diffuse chromaticity robustly for any kind of surface rough-
ness and light direction, without requiring diffuse-specular
pixel segmentation. In addition, to enable us to obtain a
pure-white specular component, we present a handy nor-
malization technique that does not require approximated
linear basis functions.

1 Introduction
In the field of computer vision, it is well known that the
presence of specular reflection causes many algorithms to
produce erroneous results. Many algorithms in the field
assume diffuse only reflection and deem specular reflec-
tion as outliers. To resolve the problem, a method to sepa-
rate diffuse and specular reflection component is required.
Once this separation has been accomplished, besides ob-
taining diffuse only reflection, knowledge of specular re-
flection component can be advantageous, since it conveys
useful information about the surface properties such as mi-
croscopic roughness.

Many methods have been proposed to separate reflection
components. Wolff et al. [14] introduced the use of polariz-
ing filter to obtain specular components. Nayar et al. [9] ex-
tended this work by considering colors of an object instead

of using a polarizing filter alone. Generally, methods using
polarizing filters are sufficiently accurate to separate reflec-
tion components; however, using such additional devices is
impractical in some circumstances. Sato et al. [11] intro-
duced a four-dimensional space, temporal-color space, to
analyze the diffuse and specular reflections based solely on
color. While their method requires dense input images with
variation of illuminant directions, it has the ability to sep-
arate the reflection components locally, since each pixel’s
location contains information of diffuse and specular re-
flections. Lin et al. [8], instead of using dense images,
used sparse images under different illumination positions
to resolve the separation problem. They used an analytical
method that combines the finite dimensional basis model
and dichromatic model to form a closed form equation, by
assuming that the sensor sensitivity is narrowband. Their
method also solves reflection component separation locally.
Other methods using multiple images can be found in the
literature [10, 6, 7].

Shafer [12], who proposed the dichromatic reflection
model, was one of the early researchers who used a single
colored image as input. He proposed a separation method
based on parallelogram distribution of colors in RGB space.
Klinker et al. [4] extended this method by introducing a
T-shaped color distribution, which was composed of re-
flectance and illumination color vectors. Separating these
vectors caused the reflection equation to become a closed-
form equation. Unfortunately, for most real images, this T
shape is hardly extractable due to noise, etc. Bajscy et al.
[1] proposed a different approach by introducing a three di-
mensional space composed of lightness, saturation and hue.
In their method, the input image whose illumination color is
known has to be neutralized to pure-white illumination us-
ing a linear basis functions operation. For every neutralized
pixel, the weighting factors of the surface reflectance ba-
sis functions are projected into the three-dimensional space,
where specular and diffuse reflections can be identifiable,
due to the differences in their saturation values. Although
this method is more accurate than the method of Klinker et
al. [4], it requires correct specular-diffuse pixel segmenta-
tion, which is dependent on camera parameters.

In this paper, our goal is to separate the reflection com-
ponents of uniformly colored surfaces from a single input
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image without specular-diffuse pixel segmentation. To ac-
complish this, we base the method on chromaticity, particu-
larly on the distribution of specular and diffuse points in the
chromaticity intensity space. Briefly, the method is as fol-
lows. Given a single uniformly colored image taken under
uniformly colored illumination, we first identify the diffuse
pixel candidates based on color ratio and noise analysis, par-
ticularly camera noise. We normalize both input image and
diffuse pixel candidates simply by dividing their pixels val-
ues with known illumination chromaticity. To obtain illumi-
nation chromaticity from a uniformly colored surface, color
constancy algorithms proposed by Tan et al. [13] can be
used. From the normalized diffuse candidates, we estimate
the diffuse chromaticity using histogram analysis. By hav-
ing the normalized image and the normalized diffuse chro-
maticity, the separation can be done straightforwardly using
a specular-to-diffuse mechanism, a new mechanism which
we introduce. In the last step, we renormalize the reflection
components to obtain the actual reflection components.

There are several advantages of our method: first, diffuse
chromaticity detection is done without requiring segmenta-
tion process. Second, the method uses simple and hands-on
illumination color normalization. Third, it produces robust
and accurate results for all kinds of surface roughness and
light directions.

The rest of the paper is organized as follows. In Section
2, we discuss image color formation of dielectric inhomo-
geneous objects. In Section 3, we explain the method in
detail, describing the derivation of the theory and the algo-
rithm for separating diffuse and specular reflection compo-
nents. We provide a brief description of the implementation
of the method and experimental results for real images, in
Section 4. Finally in Section 5, we offer our conclusions.

2 Reflection Models
Considering the dichromatic reflection model and image
formation of a digital camera, we can describe image in-
tensity as:

Ic(x) = wd(x)
∫

Ω

S(λ)E(λ)qc(λ)dλ +

ws(x)
∫

Ω

E(λ)qc(λ)dλ (1)

where x = {x, y}, the two dimensional image coordinates,
qc is the three-element-vector of sensor sensitivity and c
represents the type of sensors (r, g, and b). wd(x) and ws(x)
are the weighting factors for diffuse and specular reflection,
respectively; their values depend on the geometric structure
at location x. S(λ) is the diffuse spectral reflectance func-
tion. E(λ) is the spectral energy distribution function of
illumination. These two spectral functions are independent
of the spatial location (x) because we assume a uniform sur-
face color as well as a uniform illumination color. The in-
tegration is done over the visible spectrum (Ω). Note that
we ignore the camera gain and camera noise in the above

model, and assume that the model follows the neutral inter-
face reflection (NIR) assumption [5].

For the sake of simplicity, Equation (1) can be written
as:

Ic(x) = wd(x)Bc + ws(x)Gc (2)

where Bc =
∫
Ω

Sd(λ)E(λ)qc(λ)dλ; and Gc =∫
Ω

E(λ)qc(λ)dλ. The first part of the right side of the equa-
tion represents the diffuse reflection component, while the
second part represents the specular reflection component.

Chromaticity Our separation method is also based on
chromaticity, which is defined as:

σc(x) =
Ic(x)
ΣIi(x)

(3)

where ΣIi(x) = Ir(x) + Ig(x) + Ib(x).
By considering the chromaticity definition in Equation

(3), for diffuse only reflection component (ws = 0), the
chromaticity becomes independent from the diffuse geo-
metrical parameter wd. We call this diffuse chromaticity
(Λc) with definition:

Λc =
Bc

ΣBi
(4)

On the other hand, for specular only reflection component
(wd = 0), the chromaticity is independent from the specular
geometrical parameter (ws), which we call specular chro-
maticity (Γc):

Γc =
Gc

ΣGi
(5)

By considering Equation (4) and (5), consequently Equation
(2) can be written as:

Ic(x) = md(x)Λc + ms(x)Γc (6)

where

md(x) = wd(x)ΣBi (7)
ms(x) = ws(x)ΣGI (8)

We can also set Σσi = ΣΛi = ΣΓi = 1, without loss of
generality. As a result, we have three types of chromatic-
ity: image chromaticity (σc), diffuse chromaticity (Λc) and
specular chromaticity (Γc). The image chromaticity is di-
rectly obtained from the input image using Equation (3).

3 Separation Method
In this section, we first deal with input images that have a
pure-white specular component (Γr = Γg = Γb). Then, we
encounter more realistic images where Γr �= Γg �= Γb by
utilizing a normalization technique.
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Figure 1: (a) Synthetic image (b) The projection of the synthetic
image pixels into the chromaticity intensity space (c) Specular-to-
diffuse mechanism. The intersection point is equal to the diffuse
component of the specular pixel

3.1 Specular-to-diffuse mechanism
The algorithm of specular-to-diffuse mechanism is based on
maximum chromaticity and intensity values of specular and
diffuse pixels. We define maximum chromaticity as:

σ̃(x) =
max(Ir(x), Ig(x), Ib(x))

ΣIi(x)
(9)

By assuming a uniformly colored surface lit with a sin-
gle colored illumination, in a two-dimensional space: chro-
maticity intensity space, where its x-axes representing σ̃
and its y-axes representing Ĩ (with Ĩ is the image intensity
of certain color channel that is the same to the color channel
of σ̃), the diffuse pixels are always located at the right side
of the specular pixels, due to the maximum chromaticity
definition in Equation (9). Also, using either the chromatic-
ity or the maximum chromaticity definition, the chromatic-
ity values of the diffuse points will be constant, regardless of
the variance of md. In contrast, the chromaticity values of
specular points will vary with regard to the variance of ms,
as shown in Figure 1.b. From these different characteristics
of specular and diffuse points in the chromaticity intensity
space, we devised the specular-to-diffuse mechanism. The
details are as follows.

When two pixels, a specular pixel Ic(x1) and a diffuse
pixel Ic(x2), with the same surface color are projected into
the chromaticity intensity space, the maximum chromatic-
ity (σ̃) of the diffuse point will be bigger than that of the
specular point. If the color of the specular component is
pure white: Γr(x1) = Γg(x1) = Γb(x1), by subtracting
all channels of the specular pixel’s intensity using a small
scalar number iteratively, and then projecting them into the
space, we will find that the points form a curved line, as
shown in Figure 1.c. This curved line follows the below

Equation (see the Appendix for complete derivation):

Ĩ = md(Λ̃ − Γ̃)(
σ̃

σ̃ − Γ̃
) (10)

where Λ̃ and Γ̃ are the diffuse chromaticity and specular
chromaticity of certain color channel that is the same to the
color channel of σ̃, respectively.

In Figure 1.c. we can observe that a certain point in the
curved line intersects with a vertical line representing the
chromaticity value of the diffuse point. At this intersec-
tion, ms of the specular pixel equals zero. Consequently,
the intersection point becomes crucial, because the point in-
dicates the diffuse component of the specular pixel. Math-
ematically, the intersection point (the diffuse component of
the specular pixel) can be calculated as follows.

As mentioned in Section 2, the sum of illumination chro-
maticity for all color channels is equal to one (ΣΓi = 1),
hence if Γr = Γg = Γb then Γc = 1

3 . From Equation
(8), we can obtain that md equals to ΣIdiff

i (the total inten-
sity of diffuse component for all color channels), because
wdΣBi is identical to ΣIdiff

i . Therefore, based on Equa-
tion (10) we can derive the total diffuse intensity of specular
pixels as:

ΣIdiff
i =

Ĩ(3σ̃ − 1)
σ̃(3Λ̃ − 1)

(11)

To calculate ΣIdiff
i (x1), the value of Λ̃(x1) is required.

This value can be obtained from the diffuse pixel Ic(x2),
since if the two pixels have the same surface color, then
Λ̃(x1) = σ̃(x2). Having calculated ΣIdiff

i (x1), the spec-
ular component is obtained using:

ms(x1) =
ΣIi(x1) − ΣIdiff

i (x1)
3

(12)

Finally, by subtracting the specular component (ms) from
the specular pixel intensity (Ic) the diffuse component be-
comes obtainable:

Idiff
c (x1) = Ic(x1) − ms(x1) (13)

Based on the above mechanism, therefore the problem of
reflection component separation can be simplified into the
problem of finding diffuse chromaticity. For synthetic im-
ages, which have no noise, the diffuse chromaticity values
are constant and thus trivial to find. Figure 1.b, shows the
distribution of synthetic image pixels in the chromaticity-
intensity space. By considering the maximum chromatic-
ity definition (9), we can obtain the diffuse chromaticity
from the biggest chromaticity value (the extreme right of
the point cloud). Then, we can accomplish the separation
in straightforward manner using the above mechanism with
regard to the diffuse chromaticity. Figure 2.b∼c show the
separation result.

For real images, unfortunately, instead of forming a con-
stant chromaticity values, the diffuse pixels’ chromaticity
varies within a considerably wide range (Figure 2.e). This
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Figure 2: (a) Synthetic image (b) Diffuse component (c) Spec-
ular component (d) The projection of synthetic image pixel into
chromaticity-intensity space (e) The projection of real image pixel
into chromaticity-intensity space

is due to imaging noises and surface non-uniformity (al-
though human perception perceives a uniform color, in fact
in the real world, there is still surface non-uniformity due to
dust, imperfect painting, etc.). Therefore, to correctly and
robustly obtain the diffuse chromaticity, we must include
those noises in our analysis.

Note that the specular-to-diffuse mechanism requires lin-
earity between the camera output and the flux of incoming
light intensity. And, in this paper, the mechanism will be
used for two purposes: first, to identify diffuse candidates
and second, to calculate diffuse components of specular pix-
els.

3.2 Color Ratio and Noise Analysis
In order to analyze both camera noise and surface non-
uniformity, we first need to group image pixels based on
their color ratio values. We define color ratio as:

u =
Ir + Ib − 2Ig

Ig + Ib − 2Ir
(14)

the location parameter x is removed, since we work on
each pixel independently. For pure-white specular reflec-
tion component where Γr = Γg = Γb, u can be expressed
as: u = Λr+Λb−2Λg

Λg+Λb−2Λr
. One of the important properties of u

is its independence from shadows, shading and specularity.
The independence from shadow is fulfilled if the ambient
illumination has the same spectral energy distribution to the
direct illumination [2].

Using a color ratio (u) definition, we create a two-
dimensional space: u-intensity space, with u as its x-axis
and Ĩ as its y-axes. By projecting all pixels of a real im-
age into this space, we obtain a cloud of points as shown in

Figure 3: (a) The projection of the pixels of Figure 2.d into u-
intensity space (b) Result of plotting pixels obtained from one
straight line in u-intensity space (vertical line in Figure a) into
chromaticity intensity space.

Figure 3.a. Ideally, if the surface color is perfectly unique
and there is no noise from the camera, we should observe
only a single straight line in this space. However, as can
be seen in the figure, this does not hold true for real im-
ages. This is mainly due to the slight variation of surface
color and illumination color, which are insensitive to hu-
man eyes, as well as the noise produced through the camera
sensing process. In our analysis, however, we assume the
variance of illumination color is small, and neglect it. Thus,
the variance of the color ratio in the space is caused by sur-
face non-uniformity and camera noise.

By considering the camera noise, Equation (6) becomes:

Ic(x) =
[
md(x)Λc + ms(x)Γc

]
θc(x) + φc(x) (15)

where θc(x) and φc(x) are the first and second types of
camera noise in the three sensor channels, respectively. The
two types of camera noise depend on the position of the im-
age x, indicating that the noise can be different for each
location in the image. The above model is a simplifica-
tion of a more complex model proposed by Healey et al.
[3]. According to that model, there are two types of camera
noise, namely, noise that is dependent on incoming inten-
sity, and noise that is independent of incoming intensity.
In our simplified model, θc is identical to the intensity-
dependent noise, implying θr(x) �= θg(x) �= θb(x); since,
after passing through color filters, non-white light’s intensi-
ties are different for each color channel. While, φc is iden-
tical to the intensity-independent noise, implying φr(x) =
φg(x) = φb(x).

4



Based on the simplified noise model in Equation (15),
we can consider that the variance of u in Figure 3.a origi-
nates from non-constant values of Λc and θc. Furthermore,
if we extract all pixels that have the same value of u, which
means pixels that have the same values of both Λc and θc

(all points inside the vertical line illustrated in Figure 3.a),
and project them into the chromaticity intensity space, we
will find that the specular and diffuse distributions have the
same characteristic, i.e., both of them form curved lines, as
shown in Figure 3.b. This is an unexpected characteristic,
since we have learned that only specular pixels form curved
lines. To understand the diffuse pixels characteristic, further
analysis is required.

Diffuse Pixels Distribution Considering the camera
noise model, the definition of u for diffuse pixels becomes:

u =
md(Λrθr + Λbθb − 2Λgθg) + (φr + φb − 2φg)
md(Λgθg + Λbθb − 2Λrθr) + (φg + φb − 2φr)

(16)

If we have two pixels, based on the last equation, they will
have the same value of u, if their combination of Λc and θc

are identical, since φr(x) = φg(x) = φb(x). Moreover, if
we focus on φc, in fact, there are two possible conditions of
φc to produce the same u, namely:

1. φ1
c = φ2

c

2. φ1
c �= φ2

c , but ∆1
g = ∆2

g and ∆1
r = ∆2

r

where ∆g = φr + φb − 2φg and ∆r = φg + φb − 2φr, and
the supercript 1 and 2 represent the first and second pixel,
respectively.

While the above two conditions produce the same value
of u, in the chromaticity-intensity space their distributions
are different. The first condition, which means two pixels
have identical chromaticity value, will cause the projected
points either to occupy the same location in the chromatic-
ity intensity space or to form a vertical distribution due to
the different pixel intensities. While, the second condition
will causes the projected points of the diffuse pixels to have
different locations in chromaticity axis (x-axis). If there are
a number of pixels in the second condition, then they will
form a curved line distribution, behaving like the projected
points of specular pixels (φc behaves like ms).

As a result, the presence of the second condition explains
the curve lines of diffuse points in chromaticity-intensity
space. The number of curved lines in the space is deter-
mined by the number of different md, and the range of
chromaticity values depends on camera noise characteris-
tics which could be different from camera to camera.

Curved Lines Properties For further analysis, we can
rewrite the noise model for diffuse pixels as: Ic(x) =
Dc(x) + φ(x); where Dc is the combination of the diffuse
component and the first type of camera noise (θc). Sub-
script c is removed from φ, since its values are identical
for all color channels, making φ a scalar value. Consid-
ering φ as a scalar values that vary from pixel to pixel, it

becomes more obvious that φ behaves like ms of specu-
lar pixel. As a result, we can identify diffuse points in the
chromaticity-intensity space using the specular-to-diffuse
mechanism. This identification is crucial in estimating dif-
fuse chromaticity.

For specular pixels, we can rewrite the noise model as:
Ic(x) = Dc(x) + Sc(x); where Sc = msΓcθc + φ. If
the difference of θc for each color channel is considerably
large (θr �= θg �= θb), the specular component (Sc) will be
different for each color channel, even if Γr = Γg = Γb.
This implies that the specular-to-diffuse mechanism cannot
identify the specular curved lines, and thus it benefits us,
because we can differentiate them from diffuse curved lines,
which means, we become able to identify the diffuse points
robustly. Unfortunately, if in case θr ≈ θg ≈ θb and Γr ≈
Γg ≈ Γb, the mechanism will identify the specular curved
lines, and consequently it produces a potential problem in
estimating diffuse chromaticity. Subsection 3.3 will discuss
the solution of this problem.

Note that, the noise characteristics explained in this sec-
tion can be found if the camera output is linear to incoming
light intensity and φr ≈ φg ≈ φb. In addition, in case a
camera does not have the second type of camera noise, the
diffuse chromaticity identification becomes more straight-
forward as the diffuse points will form a vertical line in the
chromaticity intensity space.

3.3 Diffuse Pixels Identification
Having characterized the diffuse distribution and identified
each of them using the specular-to-diffuse mechanism, we
can determine the actual diffuse candidates by choosing a
certain point in every diffuse curved line. By assuming φ
is a positive number, then the actual diffuse pixels (diffuse
pixels that are not suffered from the second type of noise)
are pixels that have φ = 0. Consequently, the actual dif-
fuse pixels can be chosen from the smallest intensity points
(the points that have the biggest chromaticity in each curved
line). However, since several curved lines might have no
point whose φ = 0, we can not claim that all smallest points
in the curved lines to be the actual diffuse pixels; thus, we
call them diffuse candidates. Figure 4 shows the diffuse
candidates from all curved lines of all groups of u.

Choosing diffuse candidates from the lowest intensity of
each curved line also enables us to avoid possible problems
caused by certain specular distribution (posed in the previ-
ous section), namely when θr ≈ θg ≈ θb and Γr ≈ Γg ≈
Γb, which makes us not able to differentiate the specular
points’ curved lines from that of the diffuse points. The rea-
son why we can avoid the problem is because most of the
lowest intensity of every specular curved line whose Sc is
approximately scalar, also ideally indicates the actual dif-
fuse point. In cases where there are specular curved lines
that have no diffuse points, we deem them to be outliers
whose number is usually smaller than the number of diffuse
candidates.

Finally, to obtain a unique value of chromaticity from
diffuse pixel candidates, we simply use histogram analysis.
Figure 4 illustrates the candidates in chromaticity-intensity
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Figure 4: Diffuse candidates amongst input pixels, darker points
represent diffuse candidates. Vertical line indicates the single
value of diffuse chromaticity obtained using histogram analysis

space and its single estimated diffuse chromaticity.

3.4 Non-White Illumination and Normaliza-
tion

In the real world, finding a pure-white specular compo-
nent (Sc) is almost impossible. Most light sources are
not wavelength-independent. Moreover, even if the light
source is pure white, because of sensor sensitivity and cam-
era noise, the value of the specular component will different
for each color channel. Although in this case, the difference
is smaller as opposed to non-white illumination.

With this condition, for the first purpose of the mech-
anism (identifying diffuse candidates), non-white specular
components can benefit us, because it makes diffuse can-
didate identification more robust. Note that the illumina-
tion and sensor sensitivity does not affect the second type of
noise (φ). Thus, we can still identify diffuse pixels whatever
the illumination spectral distribution functions may be. In
other words, it means that the identification of diffuse can-
didates under non-white and white illumination is exactly
the same.

For the second purpose (reflection components separa-
tion: calculating diffuse components of specular pixels),
the mechanism requires Sc identical for all channels. Thus,
we have to make Sc become a scalar value, which requires
normalization process. We propose a simple normaliza-
tion without using color basis functions, namely, by divid-
ing each pixel’s RGB with illumination chromaticity. Color
constancy algorithms for uniformly colored surface [13] can
be used to estimate the illumination chromaticity.

Having obtained the estimated illumination chromaticity
(Γest

c ), the normalized image intensity becomes:

Îc(x) = md(x)Λ̂c(x) + ms(x)Γ̂c(x) + φ̂(x) (17)

where Îc(x) = Ic(x)
Γest

c
; Λ̂c(x) = Λcθc(x)

Γest
c

; Γ̂c(x) =
Γcθc(x)

Γest
c

; φ̂(x) = φ(x)
Γest

c
. Approximately, we can assume

Γ̂c = 1 and φ̂ = 0, and the equation becomes:

Îc(x) = md(x)Λ̂c(x) + ms(x) (18)

Having normalized both input image pixels and diffuse
pixels candidates, and then computing the normalized dif-
fuse chromaticity, we can directly separate normalized dif-
fuse and specular components using the specular-to-diffuse
mechanism. Finally, in order to obtain the actual diffuse and
specular components, we have to renormalize the separated
reflection component by multiplying them by the illumina-
tion chromaticity (Γest

c ).

4 Experimental Results
This section briefly describes the implementation of the pro-
posed method, and then presents several experimental re-
sults on real input images.

Given an input image of uniformly colored surfaces,
first, we group the pixels of the image based on their color
ratio (u) values. Then, for every group of u, we identify the
diffuse candidates. We normalize all diffuse candidates as
well as the input image using estimated illumination chro-
maticity. Based on the normalized diffuse candidates and
histogram analysis, we calculate a unique value of the dif-
fuse chromaticity. Having determined the normalized dif-
fuse chromaticity, we separate the normalized input image
by using the specular-to-diffuse mechanism, producing nor-
malized diffuse and specular components. Lastly, to obtain
the actual components, we multiply both normalized com-
ponents by the estimated illumination chromaticity.

We have conducted several tests on real images captured
using three different CCD cameras: a SONY DXC-9000
(a progressive 3 CCD digital camera), a Victor KY-F70 (a
progressive 3 CCD digital camera), and a SONY XC-55 (a
monochrome digital camera with external color filters). To
estimate illumination chromaticity, we used an illumination
chromaticity estimation algorithm [13] and alternatively a
white reference from Photo Research Reflectance Standard
model SRS-3. As target objects, we used convex objects to
avoid interreflection.

Figure 5.a shows characteristics of diffuse pixels affected
by camera noise of a Victor KY-F70; the object is a head
model image under incandescent light. The darker points
indicate the diffuse pixel candidates, and the vertical line is
perpendicular to the diffuse chromaticity value. Although
there occur some points that, due to ambient light in shadow
regions, produce unknown distribution, the diffuse chro-
maticity is still correctly obtained. Thus, for considerable
amount of ambient light, the proposed method is still robust.
The separation result of the head model captured using this
camera is shown in Figure 5c∼d. The SONY XC-55 cam-
era also has the camera noise characteristic we described as
shown in Figure 6.a, and its separation result is shown in
Figure 6c∼d. Figure 7.a shows an image of a sandal with
high specularity (more than that of the head model) under
incandescent light (T=2800 K). Using correct illumination
chromaticity, the separation can be done accurately (Figure
7.b and 7.c). Some noise in the upper-right of the sandal
is caused by saturated pixels. In the current framework we
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Figure 5: (a) Characteristic of diffuse pixels affected by camera
noise of Victor KY-F70 on head model image. (b) Input image (c)
diffuse reflection component, (d). specular reflection component

do not deal with saturated or clipped pixels. Figure 7.d∼f
show a head model under multiple incandescent lights and
its separation results. Finally, figure 7.g ∼ i show a toy
model under solux halogen and its separation results.

5 Conclusion

We have proposed a method to separate diffuse and spec-
ular reflection components. Unlike previous methods, our
method is principally based on analyzing specular and dif-
fuse pixel distribution in the chromaticity-intensity space,
as well as on analyzing noise. To identify diffuse chromatic-
ity and to separate reflection components, we introduced the
specular-to-diffuse mechanism. The experimental results
on real images taken by several different cameras show that
the method is robust for all kinds of surface roughness as
well as illumination directions.
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Figure 6: (a) Characteristic of diffuse pixels affected by camera
noise of SONY XC-55 on head model image. (b) Input image (c)
diffuse reflection component (d) specular reflection component

Appendix
Derivation of the correlation between illumination chro-
maticity and image chromaticity.

σc(x) =
md(x)Λc + ms(x)Γc

md(x)ΣΛi + ms(x)ΣΓi

For local (pixel based) operation the location (x) can be
removed, then:

σ̃ =
mdΛ̃ + msΓ̃

md + ms

ms(σ̃ − Γ̃c) = mdΛ̃ − σ̃md

ms =
σ̃md − mdΛ̃

Γ̃ − σ̃

Substituting ms in the definition of Ic with ms in the last
equation:

Ĩ = md(Λ̃ − Γ̃)(
σ̃

σ̃ − Γ̃
)
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Figure 7: Top row:(a) Input image with high specularity under
incandescent light captured using SONY DXC-9000 (b) diffuse
reflection component, few noises occur at the right-top of the san-
dal is due to saturated intensity of the input image (c) specular
reflection component; Middle row: (d) Input image with relatively
low specularity under multiple incandescent lamps captured using
SONY DXC-9000 (e) diffuse reflection component (f) specular re-
flection component; Bottom row: (g) Input image with very low
specularity under solux halogen captured using SONY DXC-9000
(h) diffuse reflection component (i) specular reflection component
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