Recovery of Chromaticity Image Free from Shadows via Illumination Invariance
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Abstract image is processed to locate, and subsequently remove

shadows. In the original method [1], the output of the al-
A recent method for recovering a greyscale image that is gorithm is a greyscale image. Although shadows have been
free from shadow effects is extended such that the recoveredemoved, so too has colour. In [3], colour is put back via us-
image is a colour image, in the sense that 2-dimensionaling the shadow-free image to guide integrating edges from
chromaticity information is recovered. First, the effect of the input colour image. Here, we mean to extend the sim-
lighting change, and thus to a large degree shadowing, is pler method [1] from greyscale output to output which is
removed by projecting logarithms of 2D colour band-ratio partially colour, in that we recover 2-dimensional colour,

chromaticities into a direction that is independent of light- ajong a 1D curve, in the form ahromaticityp , defined as
ing change. The resulting 2-vector colour does not con- [5]

tain the contribution of the original lighting in the input im-

age, so this is restored by considering the chromaticity for p = {rgb} = {R,GB}(R+G+B) (1)
bright pixels. The resulting image is improved by regression Although not a full-colour result, as in [3], 2D colour in the
of the chromaticity onto the original image, with promising form of chromaticity is still useful. To begin with, for a

results. Lambertian surface chromaticity removes shading and in-
tensity from images. That is, a shaded sphere, say, will
1. Introduction appear as a disk. This can lead to images that seem some-

what surprising, since they convey colour information only.

Recently a new image processing procedure was deviseg, example, a crumpled piece of paper in Fig. 1(a), with
for creating an illumination-invariant image from an input shading, is reduced to colour-only information in Fig. 1(b).

colour image [1, 2, 3]. Illumination conditions confound Firstly, since the paper colour, the background, and the
many computer vision algorithms. In particular, shadows jy|5ck ink all have approximately the same chromaticity

in an image can cause segmentation, tracking, or recogniie_g_, forR = G = B, the chromaticity i 1/3,1/3,1/3) the

tion algorithms to fail. An illumination-invariantimage is  p|ack letters recede from our attention: on the other hand,
of great utility in a wide range of problems in both computer ks that differ only by brightness are now seen as having

vision and computer graphics. the same essential colour information.
An interesting feature of this problem is thsttadows

are approximately but accurately described as a change of
lighting. Hence, it is possible to cast the problem of remov-
ing shadows from images into an equivalent statement about
removing (and possibly later restoring) the effects of light-
ing in imagery. Although shadow removal is not always
perfect, the effect of shadows is so greatly attenuated that
many algorithms can easily benefit from the new method,;
e.g., a shadow-free active contour based tracking method

(b)

shows that the snake can without difficulty follow an object Figure 1: 3D colour versus 2D chromaticity.
and not its shadow, using the new approach to illumination
colour invariance [4]. Recovery of the chromaticity is a useful computer vi-

In the shadow removal method devised, a 3-band coloursion task, in and of itself, and that is the task we address



here. By the definition of chromaticity in eq. (1), we see
that the chromaticity is not true colour, but is in fact just
2-dimensional since the componentspofare not indepen-

dent:
3
k=1

Here we mean to extend the illumination invariant image
from 1D greyscale, as in [1], to the type of 2D colour image
in Fig. 1(b).

The method in [1] is in essence a kind of calibration
scheme for a particular colour camera. A camera is cal- ol A f
ibrated by imaging a (colorful) target, under several dif- *

log(B/G)

¥

ferent illuminants. An invariant image is derived based on ’ Y. ¥ -
the idea that under Planckian lighting, and for camera sen- # f‘: Q :‘#*w
sors that are more or less narrowband (as for an ideal delta- i ihd ’ .
function sensor camera) a 2D scatter plot of the logarithms
of ratios R/G versusB/G produce a set of approximately
straight lines (this is the case for any model of illumination
that changes light colour by exponentiatiation of a power of )
temperature]". Each line corresponds to a single patch of .
the target; each point on a line corresponds to a particular IR *a*
illuminant. For a given camera, all such lines are essentially - .
parallel. ) T

Fig. 2(a) shows log-chromaticities for the 24 surfaces of T
a Macbeth ColorChecker Chart, (the six neutral patches all (c)

belong to the same cluster). If we now vary the lighting Figure 2: (a): Macbeth ColorChecker Chart image under a

gnd_plot median val_ues for each patch, we sge the CUVeSanckian light. (b): Log-chromaticities of the 24 patches.

in Fig. 2(b). These images were captured using an exper-, .. . o .

. . ) o (c): Band-ratio chromaticities for 7 patches, imaged under

imental HP912 Digital Still Camera, modified to generate . o .

. . ) .14 different Planckian illuminants.

linear output with no gamma correction. We can see that in

fact this straight line hypothesis is indeed essentially car-

ried through in practice. We call the direction of these

straight lines thecharacteristic directionfor a particular

camera. (Note that gamma-correction does not change the

the straight line theory [3].) Now the definition of a greyscale, 1D, invariant image is
Consider the image in Fig. 3(a), that includes a region Straightforward: suppose the characteristic directioa is

with strong shadowing. Now let us define a set of 2D band- on acalibrationlog-log plot such as Fig. 3(c). Then project-

10g(B/G)

ratio chromaticitiesy, defined via ing any pixelx’ onto the orthogonal direction, v | u,
produces a greyscale image which is invariant to the light-
x = {R/G,B/G} ®3) ing, as illustrated in Fig. 3(c). Fig. 3(b) shows the result of

this projection for the real image as the set of blue points

(as opposed to the;tbased chromaticitiep given in S )
drojecting onto the line.

ed. (1)). Suppose we denote the 2-vector logarithms of thes
2D quantities ax’:
The chromaticityy’ is seen easily in separate images for

X' = {log(R/G),log(B/G)} (4)  each of the two channels in eq. (4). These are shown in
Fig. 4(a,b). As well, in Fig. 4(c) the invariant image re-
sulting from projection onto the direction is shown: we
see that indeed the strong shadowing has effectively been
removed.

Then if we plotx’ in a scatter plot, for the image in
Fig. 3(a), we obtain the plot Fig. 3(b), witk’ shown as
red points.



©

Figure 4: (a,b): Band-ratio log chromaticitieg’; (a):
log(R/G); (b): log(B/G). (c): Invariant image, resulting
from projectingy’ onto the direction orthogonal to the cam-
era’s characteristic direction.

ities as well.) The spectrum of Planckian illumination is
characterized by a single paramefe(temperature). For
Lambertian surfaces, and for distant lighting and distant
viewing such that orthographic projection is valid, the chro-
maticity x removes both shading and intensity. Let’s reca-
pitulate how the linear behaviour gf with lighting change
results from the assumptions of Planckian lighting, Lamber-
tian surfaces, and a narrowband camera. Consider the RGB
log(R/G) colour R formed at a pixel for illumination with spectral
© power distributionE(\) impinging on a surface with sur-
face spectral reflectance functiéif)). If the three camera
Figure 3: (a): Colour image. (b): Plot of log-chromaticities sensor sensitivity functions form a 9@t()), then we have
log(R/G) versuslog(B/G). (c): Projection orthogonal to
camera’s characteristic direction produces greyscale image £k = @ /E(/\)S()\)Qk(/\)dA s k=R,G,B, (5
invariant to lighting.

log(B/G)

whereo is Lambertian shading — surface normal dotted
into illumination direction.

} If the camera sensa@p, () is exactly a Dirac delta func-

tion Ri = 0 EQOw)S(A)ak - (6)

Suppose we consider a 3-sensor camera with fairly narrow- Now suppose lighting can be approximated by Planck’s
band sensors (in [2] we considered 4-sensor cameras, in orlaw, in Wien’s approximation [5], for temperatute (rea-
der to remove not just intensity and shading, but specular-sonable for the range of typical lights 2,500-10,%0



ENT) ~ Ieh e 75 . 7)

with constantsg; andcs. The overall light intensity id.
In this approximation, from (6) the RGB coloiy;, k =
1...3,is simply given by

Re = o Ieih%e T SO 8)

Let us now form the band-ratio 2-vector chromaticities

X

Xk = Rk/Rp,k:1.2 (9)

wherep is one of the channels aridindexes over the re-
maining responses. We could uge= 2 (i.e., divide by
Green) and so calculate;, = R/G andy. = B/G, or
divide by another channel, or by the geometric mean of
R,G,B, YRGB [3]. We see from eq. (8) that forming the
chromaticity effectively removes intensity and shading in-
formation. If we now form the log of (9), then

Xi = log(xk) = log(sk/sp) + (ex —€p)/T, (10)

with s, = c1\;, °S(\x)qx andey, = —c2/Ax. Thus eq. (10)
is a straight line parameterized By Its equation is

-

. (11)
Notice that the 2-vector directiofe, — e,) is independent
of the surfacealthough the line for a particular surface has
an offset that depends ap.

The invariant image is that formed by projecting loga-
rithms of chromaticityy},, k = 1,2, into the directiore -
orthogonal to the vectoe (ex — ep). Vectorwv in the
diagram Fig. 3(c) is now seen to be this direction. The
result of projection is a single scalar valig and the in-
variant image results from exponentiation of the result to
greyscale’:

T = Xl.eJ_
’ 12
7 = exp(T). (12)

3. Invariant Chromaticity Image For-

mation

We now make a simple yet important observation. Con-
sider the blue line of points projected onto e vector,

in Fig. 3(b). While the valug’ along thee * line is indeed
our looked-for invariant, we have so far neglected the fact
that the line ofy’ points in fact does contain colour infor-
mation. As the blue line extends over log-ratio chromaticity
space, the colour of the pixel changes.

All we need to do to visualize this colour change is re-
place out projection of the 2-vectors onto #e- direction
by multiplication of the 2-vectors with 2x 2 projectorP, .
that takes chromaticity values® into the 1D directiore +
but preserves the vector components. That is, we define a
colour 2-vector illumination invariant via

Xl = Peixla

(13)
e L(e L)T

Per = =qeT

The relationship to the original, greyscale images thus

7 = 52/ et

Note that when we go back to a correlate of RGB colour
— the L; normalized chromaticityp — the colour along
the “Greyscale image” line in Fig. 3(c) changes along the
projection line.

However, we do have a problem. From eq. (10), by pro-
jecting orthogonal to 2-vectde;, — e,,) we have effectively
removed all lighting from the image, leaving behind what
amounts to an intrinsic, reflectance-only based image. The
best we hope to do is recover an approximation oftig-
inal image’s chromaticityfor pixels outside the shadows,
and to do so we must put back some version of the offset
in each pixel that we have removed by projection. Fig. 5
shows a simple scheme for carrying out this objective. To

1

0.5
orthog to e—direction

#- e-direction
0

-15 L L L L I I
15
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Figure 5:
ties.

Restoring illumination to projected chromatici-

begin with, we identify the brightest pixels in the original



input colour image, as these are most likely to not be in image. Since the result should again be a chromaticity, so
shade (we used the top 1%, here). Then we add enough ofhat eq. (2) is still obeyed, we should use a constrained op-
the characteristic direction vect@r, —e,,) to best match the  timization such that the sum of each colutvi; of M is
correct chromaticities of these brightest pixels with the es- unity; as well, since the range of any chromatigitis [0,1],
timated, illumination free, recovered chromaticitjé’s and elements of matrix\Z should also be constrained to lie in
then go to exponentiated values: this interval.

~ ~ An optimization of this type is as follows:
Xl - Xl + X;.T/tralight7
B (14) min 3P orig, brightest quartile- M £ )
X = exp(x’)
S>M,; =1,i=1.3,

The diagram shows a few pixels, from outside of shadow
convex sum (16)

regions.

However, since we are accustomed to viewingchro-
maticity images, such as Fig. 1(b), we should also go from
band-ratio chromaticity back to chromaticity . We have
from eq. (1) that The result of this additional step on the image in Fig. 7(b)
is shown in Fig. 7(c). While we cannot easily obtain an er-
ror value for the chromaticity in this resulting image, since
we are really concerned with both non-shadowed and shad-
{asLoxe}/ O+ 14 x2) owed pixels and we do not have ground truth for the latter,
so that in fact knowingy gives usp as well. nevertheless clearly the colour of pixels is closer to the cor-

rect colour in non-shadowed pixels in the original image,
especially in the colour of the footpath in the image. The
rms error for the non-shadowed regions, the high-brightness

with constraint
0<M <1
range of chromaticity

p = {R.G.B}/(R+G+B)
(15)

02 pixels, is always reduced by the algorithm by about 50% as
g 0. a result of the regression step. Fig. 6 shows how the projec-
E tion line in Fig. 3(b) becomes a curve, after the transform
018 back to Ly chromaticityp given by eq. (15).
o1 Figs. 8 and Figs. 9 show more results, using the above

- 05 procedure. Clearly, the method does show usefulness since
o N © 045 an approximation of correct chromaticity is indeed seen to
¥ 0z 035 py=RIRHGE) be recovered.

In Fig. 8, the input image has a large shadow area, and
Figure 6: Projection line becomes a curve indhromatic-  this is effectively removed by the method. As well, the re-
ity spacep . covered chromaticity quite well approximates the correct
chromaticity for non-shadowed regions. For example, in
Fig. 8(c), the chromaticity of the sky colour is actually very
close to that in Fig. 8(b) — this is not apparent to the eye
unless one crops the region of interest out of the image, be-

?f kt}hg 2—ve(i(t9r Oﬁiet required to EUt thg 9”9mal |mag(ra]s cause of the simultaneous contrast effect in human vision.
ighting back into the recovered chromaticity. We see that ¢ well, if we apply the algorithm to a general input im-

the suggested meth_od has indged d_one quite well, comparegge' as in Fig. 9, one that has incidental shadows but is not
to the shadowed, original version Fig. 7(a).

However, the result is still not as accurate as it could pos-
sibly be, and in fact we can correct this result by perform-
ing a regression of the resulting chromatigitypack to the
brightest quartile, say, in the original image. To do so, we
can transform the chromaticigyvia a3 x 3 matrix M that We have set out and demonstrated a method for recovering
serves to map these pixels back to valpdsom the input an image in 2D colour that is invariant to lighting change,

g
¥y
8
L /.
(=]
o

Fig. 7(b) shows the effect of restoration of an estimate

a shadow tegper se we see that the algorithm does indeed
recover an approximation of shadow-free chromaticity.

4. Conclusions



and hence more or less resistant to shadowing effects, ex-
tending previous methods from the recovery of a greyscale
image to the recovery of shadow-free chromaticity images.
The method consists of using all the information contained
in the projection of the image into the lighting direction,
and thus retaining 2D colour, followed by carefully restor-
ing lighting to the image so as to best match the original.
Results are seen to be promising. However, one area not
addressed so far is how well the method performs in the
face of blocking effects due to JPEG artifacts. As well, we
are of course also interested in applying the method to un-
sourced images from uncalibrated sources. We shall pursue
these research directions elsewhere.
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Figure 7: (a): Original chromaticity for input colour image.
(b): Result of projection followed by restoration of char-
acteristic direction contribution derived from bright pixels.
(c): Correction by regression of restored chromaticity to
first quartile of original image.



(@ (b)

(© (d)

Figure 8: (a): Input colour image. (b): Chromaticity for input colour image, including chromaticity in shadowed regions. (c):
Result of projection and restoration of light, plus regression. The chromaticity of the sky region, for example, is close to the
correct value. (d): Greyscale invariant.



(a) (b)

(© (d)

Figure 9: Use of the algorithm on general input. (a): Input colour image. (b): Original chromaticity for input colour image.
(c): Result of projection and restoration of light, plus regression. (d): Greyscale invariant.



