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Abstract

A recent method for recovering a greyscale image that is
free from shadow effects is extended such that the recovered
image is a colour image, in the sense that 2-dimensional
chromaticity information is recovered. First, the effect of
lighting change, and thus to a large degree shadowing, is
removed by projecting logarithms of 2D colour band-ratio
chromaticities into a direction that is independent of light-
ing change. The resulting 2-vector colour does not con-
tain the contribution of the original lighting in the input im-
age, so this is restored by considering the chromaticity for
bright pixels. The resulting image is improved by regression
of the chromaticity onto the original image, with promising
results.

1. Introduction

Recently a new image processing procedure was devised
for creating an illumination-invariant image from an input
colour image [1, 2, 3]. Illumination conditions confound
many computer vision algorithms. In particular, shadows
in an image can cause segmentation, tracking, or recogni-
tion algorithms to fail. An illumination-invariant image is
of great utility in a wide range of problems in both computer
vision and computer graphics.

An interesting feature of this problem is thatshadows
are approximately but accurately described as a change of
lighting. Hence, it is possible to cast the problem of remov-
ing shadows from images into an equivalent statement about
removing (and possibly later restoring) the effects of light-
ing in imagery. Although shadow removal is not always
perfect, the effect of shadows is so greatly attenuated that
many algorithms can easily benefit from the new method;
e.g., a shadow-free active contour based tracking method
shows that the snake can without difficulty follow an object
and not its shadow, using the new approach to illumination
colour invariance [4].

In the shadow removal method devised, a 3-band colour

image is processed to locate, and subsequently remove
shadows. In the original method [1], the output of the al-
gorithm is a greyscale image. Although shadows have been
removed, so too has colour. In [3], colour is put back via us-
ing the shadow-free image to guide integrating edges from
the input colour image. Here, we mean to extend the sim-
pler method [1] from greyscale output to output which is
partially colour, in that we recover 2-dimensional colour,
along a 1D curve, in the form ofchromaticityρ , defined as
[5]

ρ = {r, g, b} ≡ {R, G, B}/(R + G + B) (1)

Although not a full-colour result, as in [3], 2D colour in the
form of chromaticity is still useful. To begin with, for a
Lambertian surface chromaticity removes shading and in-
tensity from images. That is, a shaded sphere, say, will
appear as a disk. This can lead to images that seem some-
what surprising, since they convey colour information only.
For example, a crumpled piece of paper in Fig. 1(a), with
shading, is reduced to colour-only information in Fig. 1(b).
Firstly, since the paper colour, the background, and the
black ink all have approximately the same chromaticity
(e.g., forR = G = B, the chromaticity is{1/3,1/3,1/3}) the
black letters recede from our attention; on the other hand,
inks that differ only by brightness are now seen as having
the same essential colour information.

(a) (b)

Figure 1: 3D colour versus 2D chromaticity.

Recovery of the chromaticity is a useful computer vi-
sion task, in and of itself, and that is the task we address



here. By the definition of chromaticityρ in eq. (1), we see
that the chromaticity is not true colour, but is in fact just
2-dimensional since the components ofρ are not indepen-
dent:

3∑
k=1

ρk = 1 (2)

Here we mean to extend the illumination invariant image
from 1D greyscale, as in [1], to the type of 2D colour image
in Fig. 1(b).

The method in [1] is in essence a kind of calibration
scheme for a particular colour camera. A camera is cal-
ibrated by imaging a (colorful) target, under several dif-
ferent illuminants. An invariant image is derived based on
the idea that under Planckian lighting, and for camera sen-
sors that are more or less narrowband (as for an ideal delta-
function sensor camera) a 2D scatter plot of the logarithms
of ratiosR/G versusB/G produce a set of approximately
straight lines (this is the case for any model of illumination
that changes light colour by exponentiatiation of a power of
temperature,T . Each line corresponds to a single patch of
the target; each point on a line corresponds to a particular
illuminant. For a given camera, all such lines are essentially
parallel.

Fig. 2(a) shows log-chromaticities for the 24 surfaces of
a Macbeth ColorChecker Chart, (the six neutral patches all
belong to the same cluster). If we now vary the lighting
and plot median values for each patch, we see the curves
in Fig. 2(b). These images were captured using an exper-
imental HP912 Digital Still Camera, modified to generate
linear output with no gamma correction. We can see that in
fact this straight line hypothesis is indeed essentially car-
ried through in practice. We call the direction of these
straight lines thecharacteristic directionfor a particular
camera. (Note that gamma-correction does not change the
the straight line theory [3].)

Consider the image in Fig. 3(a), that includes a region
with strong shadowing. Now let us define a set of 2D band-
ratio chromaticities,χ, defined via

χ = {R/G, B/G} (3)

(as opposed to the L1-based chromaticitiesρ given in
eq. (1)). Suppose we denote the 2-vector logarithms of these
2D quantities asχ′:

χ′ = {log(R/G), log(B/G)} (4)

Then if we plot χ′ in a scatter plot, for the image in
Fig. 3(a), we obtain the plot Fig. 3(b), withχ′ shown as
red points.

(a)
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Figure 2: (a): Macbeth ColorChecker Chart image under a
Planckian light. (b): Log-chromaticities of the 24 patches.
(c): Band-ratio chromaticities for 7 patches, imaged under
14 different Planckian illuminants.

Now the definition of a greyscale, 1D, invariant image is
straightforward: suppose the characteristic direction isu ,
on acalibration log-log plot such as Fig. 3(c). Then project-
ing any pixelχ′ onto the orthogonal directionv , v ⊥ u ,
produces a greyscale image which is invariant to the light-
ing, as illustrated in Fig. 3(c). Fig. 3(b) shows the result of
this projection for the real image as the set of blue points
projecting onto thev line.

The chromaticityχ′ is seen easily in separate images for
each of the two channels in eq. (4). These are shown in
Fig. 4(a,b). As well, in Fig. 4(c) the invariant image re-
sulting from projection onto thev direction is shown: we
see that indeed the strong shadowing has effectively been
removed.
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Figure 3: (a): Colour image. (b): Plot of log-chromaticities
log(R/G) versuslog(B/G). (c): Projection orthogonal to
camera’s characteristic direction produces greyscale image
invariant to lighting.

2. Invariant Greyscale Image Forma-
tion

Suppose we consider a 3-sensor camera with fairly narrow-
band sensors (in [2] we considered 4-sensor cameras, in or-
der to remove not just intensity and shading, but specular-

(a) (b)

(c)

Figure 4: (a,b): Band-ratio log chromaticitiesχ′; (a):
log(R/G); (b): log(B/G). (c): Invariant image, resulting
from projectingχ′ onto the direction orthogonal to the cam-
era’s characteristic direction.

ities as well.) The spectrum of Planckian illumination is
characterized by a single parameterT (temperature). For
Lambertian surfaces, and for distant lighting and distant
viewing such that orthographic projection is valid, the chro-
maticityχ removes both shading and intensity. Let’s reca-
pitulate how the linear behaviour ofχ′ with lighting change
results from the assumptions of Planckian lighting, Lamber-
tian surfaces, and a narrowband camera. Consider the RGB
colour R formed at a pixel for illumination with spectral
power distributionE(λ) impinging on a surface with sur-
face spectral reflectance functionS(λ). If the three camera
sensor sensitivity functions form a setQ (λ), then we have

Rk = σ

∫
E(λ)S(λ)Qk(λ)dλ , k = R, G, B , (5)

whereσ is Lambertian shading — surface normal dotted
into illumination direction.

If the camera sensorQk(λ) is exactly a Dirac delta func-
tion Qk(λ) = qkδ(λ− λk), then eq. (5) becomes simply

Rk = σ E(λk)S(λk)qk . (6)

Now suppose lighting can be approximated by Planck’s
law, in Wien’s approximation [5], for temperatureT (rea-
sonable for the range of typical lights 2,500-10,000◦K):



E(λ, T ) ' I c1λ
−5e−

c2
T λ . (7)

with constantsc1 andc2. The overall light intensity isI.
In this approximation, from (6) the RGB colourRk, k =

1 . . . 3, is simply given by

Rk = σ I c1λ
−5
k e

− c2
T λk S(λk)qk . (8)

Let us now form the band-ratio 2-vector chromaticities
χ,

χk = Rk/Rp , k = 1..2 (9)

wherep is one of the channels andk indexes over the re-
maining responses. We could usep = 2 (i.e., divide by
Green) and so calculateχ1 = R/G andχ2 = B/G, or
divide by another channel, or by the geometric mean of
R,G,B, 3

√
RGB [3]. We see from eq. (8) that forming the

chromaticity effectively removes intensity and shading in-
formation. If we now form the log of (9), then

χ′k ≡ log(χk) = log(sk/sp) + (ek − ep)/T , (10)

with sk ≡ c1λ
−5
k S(λk)qk andek ≡ −c2/λk. Thus eq. (10)

is a straight line parameterized byT . Its equation is

χ2 − log(s2/sp) = (χ1 − log(s1/sp))
(e2 − ep)
(e1 − ep)

. (11)

Notice that the 2-vector direction(ek − ep) is independent
of the surface, although the line for a particular surface has
an offset that depends onsk.

The invariant image is that formed by projecting loga-
rithms of chromaticity,χ′k, k = 1, 2, into the directione ⊥

orthogonal to the vectore ≡ (ek − ep). Vectorv in the
diagram Fig. 3(c) is now seen to be this directione ⊥. The
result of projection is a single scalar valueI′, and the in-
variant image results from exponentiation of the result to
greyscaleI:

I ′ = χ′ · e ⊥ ,

I = exp(I ′) .
(12)

3. Invariant Chromaticity Image For-
mation

We now make a simple yet important observation. Con-
sider the blue line of points projected onto thee ⊥ vector,
in Fig. 3(b). While the valueI ′ along thee ⊥ line is indeed
our looked-for invariant, we have so far neglected the fact
that the line ofχ′ points in fact does contain colour infor-
mation. As the blue line extends over log-ratio chromaticity
space, the colour of the pixel changes.

All we need to do to visualize this colour change is re-
place out projection of the 2-vectors onto thee ⊥ direction
by multiplication of the 2-vectors with a2×2 projectorPe⊥

that takes chromaticity valuese ⊥ into the 1D directione ⊥

but preserves the vector components. That is, we define a
colour 2-vector illumination invariant via

χ̃′ ≡ Pe⊥χ′,

Pe⊥ = e ⊥(e ⊥)T

‖e ⊥‖

(13)

The relationship to the original, greyscale imageI ′ is thus

I ′ = χ̃′ · e ⊥

Note that when we go back to a correlate of RGB colour
— the L1 normalized chromaticityρ — the colour along
the “Greyscale image” line in Fig. 3(c) changes along the
projection line.

However, we do have a problem. From eq. (10), by pro-
jecting orthogonal to 2-vector(ek− ep) we have effectively
removed all lighting from the image, leaving behind what
amounts to an intrinsic, reflectance-only based image. The
best we hope to do is recover an approximation of theorig-
inal image’s chromaticityfor pixels outside the shadows,
and to do so we must put back some version of the offset
in each pixel that we have removed by projection. Fig. 5
shows a simple scheme for carrying out this objective. To
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Figure 5: Restoring illumination to projected chromatici-
ties.

begin with, we identify the brightest pixels in the original



input colour image, as these are most likely to not be in
shade (we used the top 1%, here). Then we add enough of
the characteristic direction vector(ek−ep) to best match the
correct chromaticities of these brightest pixels with the es-
timated, illumination free, recovered chromaticitiesχ̃′, and
then go to exponentiated values:

χ̃′ → χ̃′ + χ′
extralight ,

χ̃ = exp(χ̃′)
(14)

The diagram shows a few pixels, from outside of shadow
regions.

However, since we are accustomed to viewing L1 chro-
maticity images, such as Fig. 1(b), we should also go from
band-ratio chromaticityχ back to chromaticityρ . We have
from eq. (1) that

ρ = {R, G, B}/(R + G + B)

= {χ1, 1, χ2}/(χ1 + 1 + χ2)
(15)

so that in fact knowingχ gives usρ as well.

Figure 6: Projection line becomes a curve in L1 chromatic-
ity spaceρ .

Fig. 7(b) shows the effect of restoration of an estimate
of the 2-vector offset required to put the original image’s
lighting back into the recovered chromaticity. We see that
the suggested method has indeed done quite well, compared
to the shadowed, original version Fig. 7(a).

However, the result is still not as accurate as it could pos-
sibly be, and in fact we can correct this result by perform-
ing a regression of the resulting chromaticityρ back to the
brightest quartile, say, in the original image. To do so, we
can transform the chromaticityρ via a3× 3 matrixM that
serves to map these pixels back to valuesρ from the input

image. Since the result should again be a chromaticity, so
that eq. (2) is still obeyed, we should use a constrained op-
timization such that the sum of each columnM i of M is
unity; as well, since the range of any chromaticityρ is [0,1],
elements of matrixM should also be constrained to lie in
this interval.

An optimization of this type is as follows:

min
∑

(ρ orig, brightest quartile−M ρ̃ )2

with constraints




∑
M i = 1, i = 1..3,

convex sum

0 ≤ M ≤ 1
range of chromaticity

(16)

The result of this additional step on the image in Fig. 7(b)
is shown in Fig. 7(c). While we cannot easily obtain an er-
ror value for the chromaticity in this resulting image, since
we are really concerned with both non-shadowed and shad-
owed pixels and we do not have ground truth for the latter,
nevertheless clearly the colour of pixels is closer to the cor-
rect colour in non-shadowed pixels in the original image,
especially in the colour of the footpath in the image. The
rms error for the non-shadowed regions, the high-brightness
pixels, is always reduced by the algorithm by about 50% as
a result of the regression step. Fig. 6 shows how the projec-
tion line in Fig. 3(b) becomes a curve, after the transform
back to L1 chromaticityρ given by eq. (15).

Figs. 8 and Figs. 9 show more results, using the above
procedure. Clearly, the method does show usefulness since
an approximation of correct chromaticity is indeed seen to
be recovered.

In Fig. 8, the input image has a large shadow area, and
this is effectively removed by the method. As well, the re-
covered chromaticity quite well approximates the correct
chromaticity for non-shadowed regions. For example, in
Fig. 8(c), the chromaticity of the sky colour is actually very
close to that in Fig. 8(b) — this is not apparent to the eye
unless one crops the region of interest out of the image, be-
cause of the simultaneous contrast effect in human vision.

As well, if we apply the algorithm to a general input im-
age, as in Fig. 9, one that has incidental shadows but is not
a shadow testper se, we see that the algorithm does indeed
recover an approximation of shadow-free chromaticity.

4. Conclusions
We have set out and demonstrated a method for recovering
an image in 2D colour that is invariant to lighting change,



and hence more or less resistant to shadowing effects, ex-
tending previous methods from the recovery of a greyscale
image to the recovery of shadow-free chromaticity images.
The method consists of using all the information contained
in the projection of the image into the lighting direction,
and thus retaining 2D colour, followed by carefully restor-
ing lighting to the image so as to best match the original.
Results are seen to be promising. However, one area not
addressed so far is how well the method performs in the
face of blocking effects due to JPEG artifacts. As well, we
are of course also interested in applying the method to un-
sourced images from uncalibrated sources. We shall pursue
these research directions elsewhere.
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Figure 7: (a): Original chromaticity for input colour image.
(b): Result of projection followed by restoration of char-
acteristic direction contribution derived from bright pixels.
(c): Correction by regression of restored chromaticity to
first quartile of original image.



(a) (b)

(c) (d)

Figure 8: (a): Input colour image. (b): Chromaticity for input colour image, including chromaticity in shadowed regions. (c):
Result of projection and restoration of light, plus regression. The chromaticity of the sky region, for example, is close to the
correct value. (d): Greyscale invariant.
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Figure 9: Use of the algorithm on general input. (a): Input colour image. (b): Original chromaticity for input colour image.
(c): Result of projection and restoration of light, plus regression. (d): Greyscale invariant.


