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Abstract

Thispaperintroducesa novelsurfacemodelregistration
techniquebasedontheHelmholtzreciprocityprinciple. Ini-
tially, a3Dsurfacemodelis generatedfor anobjectof inter-
est.Two imagesof theobjectare thenacquiredunder con-
trolled lighting conditions. Givenoneof theimagesandan
estimateof thesurfacepose, Helmholtzreciprocity is used
to predict the appearanceof the objectsurfaceas seenin
theotherimage. Thispredictionis asaccurateasonepro-
ducedby a completemodeling of theBRDFof thesurface,
withoutrequiringtheBRDFto beexplicitly measured. The
positionandorientationof themodel are updatedin order
to minimizean appropriate metric of the dissimilarity be-
tweenthepredictedimage andtheobservedsecondimage.
Experimental resultsare demonstratedfor objectspossess-
ing a varietyof surfaceproperties.

1. Introduction

In many applicationsa3D surfacemodelof aknown ob-
ject needsto be alignedwith the locationandorientation
of theobjectin space.For an objectarbitrarily placedbe-
fore a setof cameras,3D to 2D registration is theproblem
of estimatingtheposeof the themodel that bestalignsits
projectionswith theimages.An importantscenariofor the
application of registrationmethods is an inspection system
for industrialparts,in which a gauging systemcanbeused
to align a CAD model of a known part with imagesof a
newly manufactureditem. Model registration is alsouse-
ful in themedical arena.For example, CT scansof patients
could be usedto generate setsof iso-surfacesthat would
thenbealignedwith imagesof thepatientson anoperating
tableenabling a systemfor imageguidedsurgery.

If rangeimagesin thecoordinatesystemof thecameras
canbegenerated, algorithms suchasICP [1] canbeused.
Rangeimagescanbeacquired usingvariousstrategiessuch
astexturedlight reconstruction or densestereoreconstruc-
tion. Texturedlight techniquessuchaslaserstripingcanbe

confoundedbyvarioustypesof surfacefinishessuchaspol-
ishedmetalandfiberglasscomposites.Densestereorecon-
structionalgorithms usually rely on surfacetexture to es-
tablishimage-to-imagecorrespondences,andthereforeface
difficulties whendealingwith texturelessobjects. Recent
advancesin densestereoreconstruction areableto address
someof theseissues,but their implementationcanbecostly
[4, 14, 10].

An alternative approachis to view the3D surfacestruc-
tureasa generative model for the images.If an initial es-
timate of the object poseis reasonable, gradient descent
can be usedto improve the poseestimateby minimizing
a measureof thedifferencebetweenthegeneratedandob-
served images. By makingsimpleassumptions regarding
thesourceof illumination andthepropertiesof thesurface
material,a model of the surfacecan be renderedas seen
from a given camera, andthencomparedto theactualim-
ageof thesurface.An example wouldbethework of Horn
andBachman[3], who useda pre-computedmodel of sur-
facetopographyandof terrainreflectanceto align satellite
images.Wildes et al [13] took a similar approach,substi-
tuting themodelingof terrainreflectanceby a texture map
of a topographical mapof anareato beregisteredto aerial
imagery. Viola andWells [11] have shown thatmutual in-
formation (MI) is a good metric for measuring the differ-
encebetweenmisalignedimages. In that work a stereo
pair is usedto generate the intensityvaluesof one image
basedon the intensity valuesof the other. This is done
by projecting eachpoint on the surfaceof a given object
into bothimagesandreprojectingtheintensityvaluefound
in the first image into the secondimage. Although this
approachis usuallymore realistic thandirect rendering of
thesurface,it assumesa Lambertian model for surfacere-
flectance,whichis apoorapproximationfor mostmaterials,
in particularfor thosethatpresentspecularities.In contrast
to othertechniques,our approachdoesnot forceus to set-
tle for this approximation,andtherefore we canapplyour
resultsto datasetsthat do not adhere to this model. This
goal is achieved by usinga generative model basedon the
Helmholtzreciprocityprinciple, whichexploits thesymme-
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Figure 1. Prediction of pixel intensities with Helmholtz reciprocity and with Lambertian model. Images (a) and (c) are a Helmholtz pair,

while images (e) and (c) are a Lambertian pair, i.e., the light source was fixed when acquiring these images. The Helmholtz prediction

of (c) using (3) is shown in (b). The image in (d) displays the prediction of (c) using texture mapping assuming the Lambertian model.

The error in the prediction from the Lambertian model is striking, and it is mainly due to its limitations in handling specularities. The

Helmholtz prediction, on the other hand, is visually accurate.

try resultingfrom acquiring two imagesby swappingthe
positions of a cameraanda light source.This setupallows
for thegeneration of reprojectedimages whicharesuperior
to theLambertian,Gouraud [2] or Phong[6] models,being
in fact in full agreement with the bidirectional reflectance
distribution function(BRDF) of thesurface.

Helmholtz reciprocity has been introduced into com-
putervision in thecontext of densereconstruction[4, 14].
Although densereconstruction followed by an ICP algo-
rithmcanbeusedasaregistrationmethod, thispapershows
thatgivenoneimageof aHelmholtzstereopairandthesur-
facein thecorrectpose,thesecondimagein theHelmholtz
pair can be generated in accordanceto the BRDF of the
surface. Thus, reconstructionfollowedby ICPwouldbere-
placedby asearchin imagespace,which is wheretheorig-
inal measurements(theobservedimages)aremade.More-
over, reconstruction of specularsurfacesis a difficult prob-
lem, andalthough possiblesolutions to the problem have
beenfound [10], they arecomputationally expensive. Fi-
nally, if thegoalof theregistration is to tracktheposeof an
object, thecomputationalcostof a full 3D reconstructionis
prohibitive,thatbeingthereasonfor whymostmodel-based
trackers rely on making measurementsdirectly on image
space.

Questionscould be raisedaboutthe practicalityof us-
ing a Helmholtzstereorig for registration, sinceit requires
carefully controlled lighting. However, by taking images
with the light source of the Helmholtzgrid off, a measure
of ambient light is obtained,which thencanbesubtracted
from theimagesacquiredby theHelmholtzrig. In fact,for
all theexperimentalresultsshown in thispaperthatwasthe
procedureused,andtherewasno attemptto block ambient

light.
In section2 the Helmholtz reciprocity principle is re-

viewed. Section3 gives a general description of our reg-
istration method, with emphasison the prediction of one
imageof anobjectin a Helmholtz rig given anestimateof
its poseand the other image. That sectionalsodiscusses
differentmetricsthatcanbeemployedto quantify discrep-
anciesbetweenthepredictedandobservedimages.Exper-
imentalresultsaredescribedin section4, andconclusions
arepresentedin section5.

2. Theoretical Background

Recentworks [4, 14, 10] have successfullymadeuseof
Helmholtz reciprocity in stereoreconstruction. This prin-
ciple determines that the BRDF of a surface[5] is sym-
metricon the incoming andoutgoing angles.Theoriginal
statementby von Helmholtz [12] referred only to specu-
lar reflections. A more generalresultwasstatedby Lord
Rayleigh[8]. It is interestingto notethat, for generic sur-
faces,thederivation of theHelmholtzreciprocity principle
from basicphysicshasbeenestablishedonly recently [9].

TheBRDFof apoint � onasurfaceis defined,for alight
rayat anincoming direction ��� , to betheratiobetweenthe
outgoingradianceatadirection ��� andtheirradianceof the
light ray, andit is denoted by �
	����
� � ������� . Helmholtz reci-
procity impliesthat ��	������ � �
���������
	����
�����
� � � . Consider
acameraandapoint light sourcearbitrarily positioned.Let� � betheunit vectorpointing from � to theopticalcenter� �
of thecamera, and � � theunit vector pointing from � to the
location � � of the light source. The radiance ����� � received



Figure 2. Example of Helmholtz prediction. The upper-left

figure shows a coccyx as seen by a camera at � � . The

upper-right displays the same object as seen by a camera

at ��� . The lower-left figure gives a predicted image given

an incorrect pose estimate of the model, and the lower-right

shows image prediction given proper model alignment.

by thecamera from � will begivenby [5]

����� � 	�� �!�#"$��	������%����� � �'&)(*� � +, ����-.� , � � (1)

where & is the surfacenormal at � and " is a scalefac-
tor. If thepositionsof the cameraandthe light sourceare
swapped, thenew radiance��� � � receivedby thecamerawill
be � � � �/	�� �!�#"$��	������%����� � �'&)(*�%� +, � � -.� , �10 (2)

Substituting (1) in (2) onecancompute, given & and the
measured intensity �2� � � , an estimateof the intensityof the
corresponding pixel valuein theotherimage,given by [4]3����� � �4� � � � &5(�� � , ����-6� , �&5(�� � , �7�8-6� , ��0 (3)

From(3) it canbeseenthatby acquiring apairof imagesin
which thepositionsof the cameraandthe light sourceare
swapped, theknowledgeof thesurfacenormals allows for

Figure 3. Another example of Helmholtz prediction, this time

for a doll’s head, following the scheme described in the cap-

tion of Fig. 2

any pixel intensity in oneimageto be predictedfrom the
otherimageregardlessof theBRDFof thesurface, yielding
moreaccurate resultsthanthesimpleassumptionof aLam-
bertiansurface.This advantageis illustratedin Fig. 1. Fig.
1(a)shows oneimageof a Helmholtz pair, theotherimage
shown in Fig. 1(c). Theresultin (3) wasusedto predictthe
imagein 1(c) from the imagein 1(a),andtheresultis pre-
sentedin image1(b). A similarprediction wasdonestarting
with theimagein 1(e), but usingconstantillumination and
a Lambertianmodel. The result of this new prediction is
shown in image1(d). Thefailureof theLambertian model
in this example is clear.

3. Algorithms for Registration

The high-level procedureto perform model registration
canbesummarized in threesteps:prediction of themodel
appearance,comparisonof thepredictedappearanceagainst
observedimages,andrefinementof themodel poseto opti-
mizethematchbetweenthepredictedandobserved images.
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Figure 4. This figure shows the shape of the 9;:
<8= cost function for four objects in a neighborhood of optimal pose alignment.
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Figure 5. This figure shows the shape of the 9
>�<8= cost function for four objects in a neighborhood of the optimal pose alignment. The

minimum cost for the blade corresponds to a misalignment.

3.1. Helmholtz Prediction

Initially, a light sourceis positioned at �?� , anda cam-
era at � � capturesan imageof the object. The positions
of the cameraand light sourceare then swapped, and a
secondimageis acquired. Next, assumethat an estimate
for the poseof the objectmodel is available. For a given
model point � , the distancesfrom the point to the (cali-
brated) cameracenters�?� and � � can be easily obtained.
Thepre-computedsurfacenormal & at � is determined di-
rectly from themodel.Oncetheviewing directions �@� and� � associatedto thecameracenters�?� and� � arecomputed,
a ray is thencastfrom � � to � . The intensityof the pixel
throughwhich theray passesis recordedas � ��� � , andusing
(3),

3� � � � is computed.For a correctposeestimationfor the
model, this prediction correspondsto the intensity of the
imageof � as seenby the cameraat �A� . This procedure
is repeatedfor eachdatapoint in the model, generating a
prediction of the imageasseenfrom �
� . It is important to
observethatthisprediction is in agreementwith afull mod-
elingof thesurface’sBRDF, without requiring theBRDFto
beexplicitly measured.

3.2. Image Metrics

The next stepis to determine an appropriatemetric for
thecomparisonof themeasured andpredictedimages.The
most direct way to measure imagedissimilarity is by the
rootmeansquareof pixel differences,9 :
<8= , givenby:

9 :�<8= � B +CED2FGD/H 	�� � 	�IJ��KL�M- 3� � 	�I%��KL��� � (4)

where
C

is the number of pixels. Fig. 4 shows numeri-
cal valuesof this metric for four different objects,eachof
which having unique geometrical and textural properties.

Let NO�QPSRTRUR/V�W in centimetersand XY�ZP[RURTR2V*W
in degrees be vectors representingthe correctposeof the
objects. The plots in Fig. 4 show the result of (4) when
theposeof theobjectis perturbedin arbitrarytranslational
androtational directions, denoted by \/].N with

, ].N , �_^
cm and \/]`X with

, ]`X , � +�acb , respectively, for differ-
ent valuesof the parameter \ , which measures how big
the perturbed posedeviates from the optimal one. This
correspondsto a one-dimensional slice of the full six-
dimensionalSE(3)manifold in which the poseparameters
lie, and, therefore, cannot offer a full pictureof the opti-
mizationlandscape.It is reassuring, however, that on this
sliceat leastthecorrect posecorresponds to a minimum of



(4). The original coccyx imagecanbe seenin Fig. 2, the
doll’s headin Fig. 3.

It is clearthatany gradientbasedoptimizationalgorithm
would have difficulties converging to the true solution in
the caseof the fish dataset. As shown in Fig. 6, this is a
highly texturedsurface,with abackground having thesame
materialandcolor propertiesastheforeground. This prob-
lem callsfor a differenttypeof dissimilaritymeasure,such
asthemedianof thesquareof thepixel differences,which
should produceametric 9 >7<8= morerobustto imageoutliers

9 >�<8= �edgf�hcikj�lm F � H*npo 	q� � 	�IJ�
KL�M- 3� � 	�IJ��KL�
� ��r 0 (5)

Fig. 5 shows valuesof 9 >�<8= for thesamefour objects.
Notethatthecostcurvefor thebladehasaminimum which
is displacedfrom the optimal alignment position. On the
otherhand, the 9�:
<8= costcurve of thesameobjectis quite
smooth, andhasa minimum very closeto the positionof
optimal alignment. The modelis perturbedfrom the opti-
malpositionin thesamewayasusedto produceFig.4. The
blade, shown in Fig. 7, is almosttextureless,which could
explain theshapeof 9 >�<8= for thisobject. Theseresultssug-
gestthatregistrationshouldbeperformedusing 9 :�<8= when
dealingwith objectscharacterizedby smooth,textureless
surfaces, and 9 >�<8= is preferred whenhighly texturedsur-
facesareconcerned.

3.3. Pose Optimization

Oncea prediction of themodel appearanceis compared
againstanactualimage,thedifferencebetweenthetwo can
be usedto drive an optimization algorithm that will refine
theposeof themodel. This canbecarriedout by optimiz-
ing any of the costfunctions in (4) or (5), where

3�*�$	�IJ�
KL� ,
for all pixel coordinates	�IJ��KL� , is a functionof thesamepa-
rameters s and N , corresponding to a rotation matrix and
a translationvectorwith respectto the initial poseof the
model. The dependency of

3� � 	�IJ�
Kc� on the orientation s
andlocation N of the model is madeexplicit in (3), since

Algorithm 1 Model registration.
1: Captureimageof object with cameraat �
� and light

sourceat � �
2: Captureimageof object with cameraat � � and light

sourceat �c�
3: Initialize estimationof poseof objectmodel
4: while Convergencehasnotbeenreacheddo
5: Estimateimageseenby cameraat �c�
6: Compute distancemetric betweenpredicted image

andactualimage
7: Updateestimateof model poseto optimizemetric
8: end while

Figure 6. Example of Helmholtz prediction, following the

scheme described in the caption of Fig. 2.

�G�t�u	�s)��N�� , &v�w&�	qsx� , and 	�I%��KL� are the coordinates
of the projection of the point � , i.e., 	�IJ��KL�y�{z|�{z}	�� � .
Therefore thepose	 3s~� 3N�� of themodelcanbeobtainedas

	 3s~� 3N2�}�4j��
�!dgj��mk� � � n D*� 	��*�$	�z}	���	qs~��N2���
�
- 3� � z}	�� �*	�s)��N2��� � (6)

or

	 3s~� 3N2�!�#j��
��dOj/�m�� � � n dyf�hci�j�l� o 	�� � 	�z}	���	qs~��N2���
�
- 3�*��	�z}	�� �*	�s)��N2����� � r 0 (7)

In theexamplesshown in thiswork theoptimizationmethod
adoptedto solve (6) or (7) wasconjugategradient [7], with
derivativescomputedvia finite differences,although many
otheroptions arepossible.A summary of thealgorithm is
shown in Alg. 1.

To begin theoptimization processit is necessaryto have
aninitial estimationof theposethat is closeenoughto the
true positionso that the optimizationalgorithm will con-
verge. For the registration of industrialpartsit is usually
the casethat a goodinitial guessis readily available. For



(a) (b) (c) (d)

Figure 8. The figures in the top row show the projection of the point cloud of a misaligned 3D model on its corresponding image. The

bottom row shows the projection after Helmholtz registration. The initial position and orientation for the model in columns (a), (b) and

(c) were N��_� �����/� W cm and �G�_� + R + R + R � W degrees. For (d), N���� +�+�+ � W cm and �G�_� �����/� W degrees.

tracking applicationsit is customary to postpone theinitial-
ization problem, andat every iterationthe current estima-
tion of the poseprovidesan initial guessfor the next iter-
ation thatshouldbecloseto the ground truth. Finally, the
techniquepresentedhereis in noworseshapethanmethods
suchasregistration bymaximizationof mutualinformation,
whichalsorequire agoodestimateof initial pose[11].

Becausethe Helmholtz reciprocity principle yields an
exact generative model, there should be zero difference
betweenthe predicted andobserved imagesgiven perfect
alignment. Generally, therewill bea discrepancy between
the predictedimageand the actual imageas seenby the
camera at � � . This is a result of model mis-alignment,
which can be quantified using RMS (the root of mean
squared differences),LMS (the medianof squareddiffer-
ences),or MI (mutual information). With a properly cho-
senmetric,conjugategradient is usedto updatethemodel’s
transformationmatrix. After the model is re-positioned in
thescene,anotherpredictedimageisgenerated, andthecost
of thecurrent orientationis again computed.This seriesof
stepsis repeateduntil convergenceis reached.Algorithm 1

summarizesthesesteps,andsection3.2providesa discus-
sionof thevarious imagecomparisonmetrics.

4. Experimental Results

In order to validate the technique introducedhere, a
seriesof experimentswith real data was performed. A
Helmholtz stereopair was set up by placing point light
sourcesascloseaspossibleto theopticalcenterof two iden-
tical cameras,but avoiding the lights from beingoccluded
by thecamerasthemselves.Threeimageswereacquiredfor
theobjects shown in fig. 8: onewith thepoint sourcesoff,
to measureambient light, andtwo imagesfor alternatelight
andcamerapositions.Thebackground imagewasthensub-
tractedfrom eachimagein theHelmholtz pair. A 3D model
for eachobjectwasobtainedby sweepingtheobjectwith a
laserstripeandperforming stereoreconstruction. The 3D
points of the modelwere thenperturbed from their origi-
nal positionby a translationof 2.0 cm in eachof the I , K
and � directions,andby a rotationof + R b around eachof



Coccyx Doll’s Head Fish Blade

−1 −0.5 0 0.5 1
0.01

0.02

0.03

0.04

0.05

0.06

0.07

deviation from optimal location

m
ut

ua
l i

nf
or

m
at

io
n

Mutual Information for Coccyx Image

Helmholtz
Lambertian

−1 −0.5 0 0.5 1
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

deviation from optimal location

m
ut

ua
l i

nf
or

m
at

io
n

Mutual Information for Doll Image

Helmholtz
Lambertian

−1 −0.5 0 0.5 1
0

0.005

0.01

0.015

0.02

0.025

0.03

deviation from optimal location

m
ut

ua
l i

nf
or

m
at

io
n

Mutual Information for Fish Image

Helmholtz
Lambertian

−1 −0.5 0 0.5 1
0.005

0.01

0.015

0.02

0.025

0.03

0.035

deviation from optimal location

m
ut

ua
l i

nf
or

m
at

io
n

Mutual Information for Blade Image

Helmholtz
Lambertian

Figure 9. This figure shows the mutual information between a predicted and actual image for both the Helmholtz generative model and

the Lambertian image approximation scheme. Note that for both the fish and the doll’s head, the Lambertian approach fails to indicate

the optimal model pose while the Helmholtz scheme succeeds in doing so for all four objects.

Figure 7. Example of Helmholtz prediction, following the

scheme described in the caption of Fig. 2.

the I , K and � axes. Observe that this correspondsto a to-
tal translationof 6.9 cm anda rotationof +2� 0 � b . Sincethe
camerasusedin the3D model reconstructionwerethesame
usedfor theregistration,optimalalignmentis obtainedwith
zerotranslationandrotation. Thematrix s wasrepresented
through an exponentialmap, i.e., s���f��c�J	�� �g�2��� , where� �g��� is theanti-symmetricmatrix built from theentriesof

� suchthat � �g�
�
z��t����z
��z , � is the vectoraround
which therotation is performed,andthemagnitudeof � is
therotation angle.Usingthealgorithm describedin section
3 with 9��A�g� asthe metric, goodalignment (final transla-
tion   2 mm andfinal rotation   + b ) wasachieved for all
datasetswith theexception of thefish. This objecthadto
beinitializedwith translationsof 1.0cmin I , K and � direc-
tions,aswell aswith rotations of � b around the I , K and �
axes.Thiscorresponds to atotal translationof 1.7cmanda
rotationof ^ 0 ^ b . As aquickexperimentto verify therobust-
nessof theregistrationto the initial poseof themodel, the
initial translations androtations appliedto themodelswere
multipliedby - + , andtheregistrationalgorithm wasrerun.
Again, convergencewithin 2 mmand + b wasobtained. Fig.
8 shows initial andfinal posesfor eachobject. The diffi-
culty in convergencefor thefish model canbeattributedto
two factors:theclutteredbackground (which hasthesame
texture asthefish)andthesmallsizeof theobject.

5. Conclusion

This paper introduces a technique for registering 3D
models to 2D imagesbasedon Helmholtz reciprocity. By
exploiting this principle the algorithm canpredict the ap-
pearanceof theback-projectedmodel in agreement with its
BRDF without having to explicitly know theBRDF. This is
agreatadvantageover techniqueswhichassumeaLamber-
tian model, valid only for certaintypesof surfaces.In par-
ticular, suchalgorithmsarenot capable of handling shinny
or specularsurfaces,asdemonstratedin Fig. 1. After the
appearanceof themodelhasbeenpredicted, a suitableim-
agemetricis usedto quantifythediscrepancy betweenpre-
dicted and observed images. Since the predicted image
shouldbe in agreement with the BRDF of the object, this
discrepancy can be attributed to misalignment of the ob-
ject, and it cantherefore drive a searchfor optimal regis-
trationparameters.Theeffectivenessof this algorithm was



demonstratedin a number of registrationexperimentswith
differentobjects.

An interestingpoint canbemadeabout combining mu-
tual informationwith the methodintroducedin this paper.
Thestrengthof mutual informationcomesfromthefactthat
it doesnotperformapoint to point comparisonof predicted
andmeasuredimages,but ratherscorestheoverall similar-
ity betweentheglobal distribution of intensities,according
to 9 <u¡ �#¢£� � � ��¤¥¢£� 3� � �
-6¢£� � � � 3� � �¦� (8)

where ¢£� IL� is the entropy of the random variable I . In a
preliminary experiment,thevalueof (8) wasevaluatedin a
similar fashionto that usedto produceFigs.4 and5, with
imagesproducedby a Helmholtzstereorig. Additionally,
the experimentwas reproducedwith a fixed light source,
andassumingaLambertianmodel. Theresultsareshown in
Fig.9. In all cases,thetechniquedevelopedherehasshown
to provide, in entropy units, more information thanusing
a Lambertian model. Additionally, theLambertian scheme
failed to indentify thecorrect modelposefor both thefish
andthedoll’shead,whereastheoptimizationlandscapefor
theHelmholtz methodis muchmorewell behaved.
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