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Abstract

Thispaperintroduces novel surfacemodelregistration
techniquebasedntheHelmholtzreciprocity principle. Ini-
tially, a 3D surfacemodelis genemtedfor anobjectofinter-
est. Two imagesof the objectare thenacquired under con-
trolled lighting condtions. Givenoneof theimagesandan
estimateof the surfacepose Helmholtzrecipiocity is used
to predict the appearanceof the objectsurfaceas seenin
the otherimage. Thispredictionis asaccuiate asonepro-
duadby a completemodelirg of the BRDF of the surface
withoutrequiringthe BRDFto be explicitly measued. The
positionand orientationof the modé are updatedin order
to minimizean appropriate metric of the dissimilarity be-
tweenthe predictedimage andthe observedsecondmage.
Experimetal resultsare demoistratedfor objectspossess-
ing a variety of surfacepropeties.

1. Introduction

In mary applicdionsa 3D surfacemodelof aknown ob-
ject needsto be alignedwith the location and oriertation
of the objectin space.For an objectarbitrarily placedbe-
fore a setof cameras3D to 2D registration is the prablem
of estimatingthe poseof the the modé that bestalignsits
prgectionswith theimages.An impoitantscenaridor the
appication of registrationmethod is aninspectim system
for industrialparts,in which a galwging systemcanbe used
to align a CAD mockel of a known part with imagesof a
newly manugctureditem. Model registrationis alsouse-
ful in themedicd arena.For exampe, CT scansf patients
coud be usedto geneate setsof iso-surficesthat would
thenbealignedwith imagesof the patientson anopeating
tableenalting a systemfor imageguidedsumgery.

If rangeimagesin the coodinatesystemof the cameras
canbe generatedalgorithns suchasICP [1] canbe used.
Rangdmagescanbeacquira usingvariousstratgiessuch
astexturedlight reconstration or derse stereorecorstruc-
tion. Texturedlight techniqessuchaslaserstripingcanbe

confouncedby variows typesof surfacefinishessuchaspol-

ishedmetalandfiberglasscompsites.Densestereoreca-

structionalgoithms usually rely on surfacetexture to es-
tablishimage-teimagecorrespndertes,andtherdoreface
difficulties when dealingwith texturelessobjeds. Recent
adwarcesin densestereoreconstration areableto addess
someof theseassueshut theirimplementationcanbecostly
[4, 14, 1Q].

An alternatve appoachis to view the 3D surfacestruc-
ture asa geneative mocel for theimages.If aninitial es-
timate of the object poseis reasonale, gradent descent
can be usedto improve the poseestimateby minimizing
a measuref the differencebetweerthe geneatedandob-
senedimages. By making simple assumptias regading
the sourceof illumination andthe propertiesof the surface
material,a modé of the surfacecanbe renceredas seen
from a given camea, andthenconparedto the actualim-
ageof the surface.An examge would bethework of Horn
andBachman3], who useda pre-canputedmodel of sur
facetopogaphyandof terrainreflectancedo align satellite
images. Wildes et al [13] took a similar apprach, substi-
tuting the modelingof terrainreflectancey a texture map
of atopogaphicd mapof anareato beregisteredto aerial
imagey. Viola andWells [11] have shavn thatmutud in-
formation(MI) is a goad metric for measurig the differ-
encebetweenmisalignedimages. In that work a stereo
pair is usedto geneate the intensity values of oneimage
basedon the intensity valuesof the other This is done
by projectirg eachpoint on the surface of a given object
into bothimagesandreprgectingthe intensityvaluefound
in the first image into the secondimage Although this
appoachis usuallymore realisticthandirect rendeing of
the surface,it assumes Lambetian mode for surfacere-
flectancewhichis apoorapproxmationfor mostmaterials,
in particularfor thosethatpresenspecularitiesin contrast
to othertechnigies,our appoachdoesnot force us to set-
tle for this appraimation, andtherefae we canapply our
resultsto datasetsthat do not adhee to this mocel. This
goalis achieved by usinga geneative modé basedon the
Helmholtzreciprocity principle, which exploitsthe symme-
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Figure 1. Prediction of pixel intensities with Helmholtz reciprocity and with Lambertian model. Images (a) and (c) are a Helmholtz pair,

(d)

while images (e) and (c) are a Lambertian pair, i.e., the light source was fixed when acquiring these images. The Helmholtz prediction
of (c) using (3) is shown in (b). The image in (d) displays the prediction of (c) using texture mapping assuming the Lambertian model.
The error in the prediction from the Lambertian model is striking, and it is mainly due to its limitations in handling specularities. The

Helmholtz prediction, on the other hand, is visually accurate.

try resultingfrom acquring two imagesby swappingthe
positiors of acameraanda light source.This setupallows
for thegeneratio of reprojetedimages which aresuperior
to the Lambertian,Gouraul [2] or Phong[6] models being
in factin full agreenentwith the bidirectioral reflectane
distribution function(BRDF) of the surface.

Helmholtz recipraity has beenintroducedinto com-
putervision in the contet of denserecanstruction[4, 14].
Although denserecorstructionfollowed by an ICP algo-
rithm canbeusedasaregistrationmethod this papershovs
thatgivenoneimageof aHelmholtzsteregpair andthe sur
facein thecorrectpose thesecondmagein the Helmhdtz
pair can be geneatedin accodanceto the BRDF of the
surface Thus, recastructionfollowedby ICP would bere-
placedby a searctin imagespacewhichis wherethe orig-
inal measurerents(the obseredimages)aremade.More-
over, reconstration of speculassurfacess adifficult prob-
lem, and althowgh possiblesolutiors to the problem have
beenfound [10], they are compuationally expersive. Fi-
nally, if thegoalof theregistraion is to trackthe poseof an
objed, thecompuationalcostof afull 3D recorstructionis
prohibitive, thatbeingthereasorfor why mostmodelbased
trackers rely on making measurmentsdirectly on image
space.

Questionscould be raisedaboutthe practicality of us-
ing a Helmholtzstereorig for registration sinceit requres
carefilly contolled lighting. However, by taking images
with the light soure of the Helmholtzgrid off, a measue
of ambien light is obtaired, which thencanbe subtracted
from theimagesacquiredby the Helmholtzrig. In fact,for
all theexperimentalresultsshavn in this paperthatwasthe
procedureused,andtherewasno attemptto block ambier

light.

In section2 the Helmholtz reciprodgty principle is re-
viewed. Section3 gives a geneal descripion of our reg-
istration method with emplasison the predction of one
imageof anobjectin a Helmhdtz rig given an estimateof
its poseandthe otherimage. That sectionalso discusses
differentmetricsthatcanbe emplgoyedto quartify discrep-
anciesbetweerthe predictedandobseredimages.Exper
imentalresultsaredescribedn section4, andcorclusions
arepresentedh section5.

2. Theoretical Background

Recentworks [4, 14, 10] have successfullymadeuseof
Helmhdtz recipiocity in stereorecorstruction. This prin-
ciple determires that the BRDF of a surface[5] is sym-
metric on the incoming and outgping angles. The original
statementy von Helmholtz[12] referied only to specu-
lar reflectiors. A more generalresultwas statedby Lord
Rayleigh[8]. It is interestingto notethat, for geneic sur
facesthederivation of the Helmholtzrecipiocity principle
from basicphysicshasbeenestablisheanly recertly [9].

TheBRDF of apointp onasurfaceis definedfor alight
ray atanincorming directionvy, to betheratio betweerthe
outgoingradiarceatadirection v, andtheirradiarceof the
light ray, andit is denotel by p(p, v1, vo). Helmhdtz reci-
prodty impliesthatp(p,v1,vs2) = p(p, va, v1). Consider
acameraandapoint light sourcearbitrarily positiored. Let
v, betheunitvectorpointing from p to theopticalcenterc
of thecameraandv theunit vecta poirting from p to the
locationc, of thelight sour@. Theradiance I » receved



Figure 2. Example of Helmholtz prediction. The upper-left
figure shows a coccyx as seen by a camera at ¢;. The
upper-right displays the same object as seen by a camera
at co. The lower-left figure gives a predicted image given
an incorrect pose estimate of the model, and the lower-right
shows image prediction given proper model alignment.

by the camea from p will begivenby [5]
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wheren is the surfacenormal at p andr is a scalefac-
tor. If the positionsof the cameraandthe light sourceare
swappedthenew radiancel, ; recevedby thecamerawill

be
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Substitutig (1) in (2) one cancompte, givenn andthe
measued intensity I ;, an estimateof the intensity of the
corresponéhg pixel valuein theotherimage,given by [4]

La(p) = np(p,vi,v2)n - vy

(3)

From(3) it canbe seerthatby acquirirg a pairof imagesn
which the positionsof the cameraandthe light sourceare
swapped the knowledgeof the surfacenormals allows for

Figure 3. Another example of Helmholtz prediction, this time
for a doll's head, following the scheme described in the cap-
tion of Fig. 2

ary pixel intensityin oneimageto be predictedfrom the
otherimageregardlessof theBRDF of the surface yielding
moreaccurae resultsthanthesimpleassumptiorof a Lam-
bertiansurface. This adentageis illustratedin Fig. 1. Fig.
1(a)shawvs oneimageof a Helmhdtz pair, the otherimage
shavnin Fig. 1(c). Theresultin (3) wasusedto predictthe
imagein 1(c) from theimagein 1(a),andtheresultis pre-
sentedn imagel(b). A similarpredction wasdore starting
with theimagein 1(e) but usingconstanillumination and
a Lambertianmockel. The resultof this new predction is
shavn in imagel(d). Thefailure of the Lambetian model
in thisexanpleis clear

3. Algorithmsfor Registration

The highdevel procedureto perfam model registration
canbe summaizedin threesteps:predction of the model
appeaance compaisonof thepredctedappeaanceagairst
obseredimagesandrefinenentof themode poseto opti-
mizethematchbetweerthe predictedandobsened images.
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Figure 4. This figure shows the shape of the egms cost function for four objects in a neighborhood of optimal pose alignment.
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Figure 5. This figure shows the shape of the €1, cost function for four objects in a neighborhood of the optimal pose alignment. The

minimum cost for the blade corresponds to a misalignment.

3.1. Helmholtz Prediction

Initially, a light sourceis positionel at ¢, anda cam-
eraat c; capturesanimageof the object. The positions
of the cameraand light sourceare then swapped and a
secondimageis acquired Next, assumehat an estimate
for the poseof the objectmodelis available. For a given
mockl point p, the distancesrom the poirt to the (cali-
brated cameracenterse; andcs canbe easily obtaired.
The pre-ompued surfacenormal n at p is determind di-
rectly from the model. Oncethe viewing directiors v, and
v, associatetb thecameacenters; ande, arecompued,
aray is thencastfrom c¢; to p. Theintensity of the pixe
throughwhich theray passess recoredas; 2, andusing
(3), f271 is computed. For a correctposeestimationfor the
mockl, this predidion correspondgo the intensity of the
imageof p asseenby the cameraat c,. This procedire
is repeatedor eachdatapoint in the mocel, geneating a
predction of theimageasseenfrom c,. It is importantto
obseve thatthis predidion is in agreementwith afull mod-
elingof thesurfacés BRDF, without requring theBRDF to
be explicitly measured

3.2. Image Metrics

The next stepis to determire an appopriatemetric for
the comparisonof themeasurd andpredctedimages.The
most direct way to measue imagedissimilarity is by the
rootmeansquareof pixel differencesegums, givenby:

ERMS = \/% D> (L(wy) - Lzy)? @)

where N is the number of pixels. Fig. 4 shavs nuneri-
cal valuesof this metric for four different objects,eachof
which having unique geometical and textural progerties.
Lett = [0 0 0] incentimeterand® = [0 0 0]
in degrees be vectos repesentingthe correctposeof the
objects. The plots in Fig. 4 shawv the result of (4) when
the poseof the objectis pertubedin arbitrarytranslational
androtatioral directiors, denotel by sAt with ||At|| = 8
cmandsA@ with [|AQ|| = 14°, respectidy, for differ-
ent valuesof the paraneter s, which measurs how big
the pertubed posedeviates from the optimal one. This
correspondsto a onedimensiorl slice of the full six-
dimersional SE(3) manifdd in which the poseparametes
lie, and, therefae, canna offer a full picture of the opti-
mizationlandscapellt is reassuringhowever, thaton this
slice atleastthe correct posecorrespond to a minimum of




(4). Theoriginal cocgo/x imagecanbe seenin Fig. 2, the
doll's headin Fig. 3.

It is clearthatary gradentbasedptimizationalgorithm
would have difficulties converging to the true solutionin
the caseof the fish dataset. As showvn in Fig. 6, thisis a
highly texturedsurfacewith abaclgrourd having thesame
materialandcolor propeties astheforegrourd. This prob-
lem callsfor a differenttype of dissimilarity measue, such
asthe medianof the squareof the pixel differences,which
shoud produceametricer, s morerobustto imageoutliers

€LMS = m(edi?,n{(fz(m,y) — Iy(z,y))*}. (5)

Fig. 5 shavs valuesof er s for the samefour objects.
Notethatthe costcurve for thebladehasa minimum which
is displacedfrom the optimal alignmern position. On the
otherhand theegrums costcurve of the sameobjectis quite
smooth andhasa minimum very closeto the position of
optimal alignmen. The modelis pertubedfrom the opti-
mal positionin thesameway asusedto produceFig. 4. The
blade shavn in Fig. 7, is almosttextureless,which could
explain theshapeof er,mg for this object. Theseresultssug-
gestthatregistrationshouldbe performedusinge rms when
dealingwith objectscharaterizedby smooth,textureless
surfaces, andep,vs is prefered whenhighly textured sur
facesareconcened.

3.3. Pose Optimization

Oncea predction of themodé appearances compared
aganstanactualimage thedifferencebetweerthetwo can
be usedto drive an optimization algoithm thatwill refine
the poseof the model. This canbe carriedout by optimiz-
ing ary of the costfunctionsin (4) or (5), where I>(x,y),
for all pixel coodinates(z, ), is afunctionof thesamepa-
rametes R andt, correspading to a rotatiin matrix and
a translationvectorwith respectto the initial poseof the
mocel. The depenleny of Iy(z,y) on the oriertation R
andlocationt of the model is madeexplicit in (3), since

Algorithm 1 Model registratian.
1. Captureimageof objed with cameraat ¢; andlight
sourceatcy
2: Captureimageof objed with cameraat ¢, and light
sourceatc;
. Initialize estimationof poseof objectmocel
: while Convergencehasnot beenreachedio
Estimateémageseerby cameraatcs
Compue distancemetric betweenpredided image
andactualimage
. Updateestimateof model poseto optimizemetric
8: end while

Figure 6. Example of Helmholtz prediction, following the
scheme described in the caption of Fig. 2.

p = p(R,t), n = n(R), and(z,y) arethe coodinates
of the projectian of the point p, i.e., (z,y) = x = x(p).
Therdore thepose(R, t) of themodelcanbeobtdnedas

(Ra £) = argmax (I2 (X(p(Ra t)))
(R,t) = (6)

— Lx(p)(R, 1))’

or

(f{, t) = argmax median{ (L2 (x(p(R., t)))
(R,t) P ) (7)
— L(x(p)(R,t)))*}.

In theexampesshavnin thiswork theoptimizationmetha
adoptedto solve (6) or (7) wasconjwategradent[7], with
derivativescomputedvia finite differences,although mary
otheroptions arepossible.A summay of the algorithm is
shavnin Alg. 1.

To begin the optimizatian processit is necessaryo have
aninitial estimationof the posethatis closeenaighto the
true position so that the optimizationalgoiithm will con-
verge. For the registration of industrial partsit is usually
the casethat a goodinitial guessis readily available. For



Figure 8. The figures in the top row show the projection of the point cloud of a misaligned 3D model on its corresponding image. The
bottom row shows the projection after Helmholtz registration. The initial position and orientation for the model in columns (a), (b) and
©) were t = [222]T cmand w = [10 10 10]T degrees. For (d), t = [1 1 1]T cmand w = [5 5 5]T degrees.

tracking applicatiosit is customay to postpoe theinitial-

ization problem, and at every iterationthe current estima-
tion of the poseprovidesan initial guessfor the next iter-

ationthatshouldbe closeto the groundtruth. Finally, the
technquepresentedhereis in noworseshapehanmethod
suchasregistraion by maximizationof mutualinformation,
whichalsorequre a goodestimateof initial pose[11].

Becausethe Helmhdtz recipraity prindple yields an
exad geneative modd, there should be zero difference
betweenthe predcted and obsered imagesgiven perfect
alignment. Generally therewill be a discrepany between
the predictedimage and the actualimage as seenby the
camea at c,. This is a result of model mis-alignnent,
which can be quantified using RMS (the roat of mean
squaed differences),LMS (the medianof squareddiffer-
ences)or Ml (muual information). With a properly cho-
senmetric,conjuategradien is usedto updatehemodel’s
transfomationmatrix After the mocel is re-positiored in
thesceneanotheipredctedimageis generategandthecost
of the current oriertationis agan computed. This seriesof
stepsis repeatedintil convergenceis reached Algorithm 1

summaizesthesesteps,andsection3.2 providesa discus-
sionof thevarious imagecomprisonmetrics.

4. Experimental Results

In order to validate the technige introducedhere, a
seriesof experimentswith real datawas perfomed. A
Helmhdtz stereopair was set up by placing point light
sourcesscloseaspossibleto theopticalcenterof two iden-
tical camerasbut avoiding the lights from beingoccluced
by thecamerashemseles. Threeimagesvereacquiedfor
the objeds shown in fig. 8: onewith the point sourcesoff,
to measue amhbentlight, andtwo imagedor alternatdight
andcamea positions.Thebackgourd imagewasthensub-
tractedfrom eachimagein theHelmhdtz pair. A 3D model
for eachobjectwasobtaired by sweepinghe objectwith a
laserstripe and perfaming stereoreconstragtion. The 3D
poirts of the modelwere then perturted from their origi-
nal positionby a translationof 2.0 cmin eachof the z, y
and z directions,and by a rotationof 10° arourd eachof
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Figure 9. This figure shows the mutual information between a predicted and actual image for both the Helmholtz generative model and

the Lambertian image approximation scheme. Note that for both the fish and the doll's head, the Lambertian approach fails to indicate

the optimal model pose while the Helmholtz scheme succeeds in doing so for all four objects.

Figure 7. Example of Helmholtz prediction, following the
scheme described in the caption of Fig. 2.

thez, y andz axes. Obsene thatthis correspndsto a to-
tal translationof 6.9 cm anda rotationof 17.3°. Sincethe
cameasusedn the3D model reconstrationwerethesame
usedfor theregistration,optimalalignmentis obtairedwith
zerotranslatiorandrotation Thematrix R wasrepesented
through an exponentialmap i.e., R = exp([w] x ), where
[w]x is the anti-synmetric matrix built from the entriesof

w suchthat[w]xx = w x xVx, w is the vectorarourd

whichtherotatin is performed,andthe magnitude of w is

therotatian angle.Usingthealgoithm describedn section
3 with ez )5 asthe metric, goodalignment (final transla-
tion < 2 mm andfinal rotation< 1°) wasachieved for all

datasetswith the exceion of thefish. This objecthadto

beinitializedwith translation®f 1.0cmin z, y andz direc-
tions, aswell aswith rotatiors of 5° arourd the z, y andz

axes.This correspondto atotal translatiorof 1.7cmanda
rotationof 8.8°. As aquickexperimentto verify therobust-
nessof the registrationto theinitial poseof the modé, the
initial translatios androtatiors appliedto the modelswere
multiplied by —1, andtheregistrationalgaithm wasrerwn.

Again, corvergencewithin 2 mmand1° wasobtainel. Fig.

8 shaws initial andfinal posesfor eachobject. The diffi-

culty in corvergercefor the fish model canbe attributedto

two factors:the clutteredbaclgrourd (which hasthe same
texture asthefish) andthe smallsizeof the object.

5. Conclusion

This paperintrodwces a techniqie for registering 3D
mockels to 2D imagesbasedon Helmhdtz recipraity. By
exploiting this principle the algorithm can predictthe ap-
pearace of the backprojededmockl in agreemat with its
BRDF without having to explicitly know theBRDF. Thisis
agreatadvantag overtechniqieswhich assume Lamber
tian mocel, valid only for certaintypesof surfaces.In par
ticular, suchalgoithms arenot capalke of handing shinry
or specularsurfaces,asdemastratedin Fig. 1. After the
appeaanceof the modelhasbeenpredicted a suitableim-
agemetricis usedto quantifythediscrepacy betweemre-
dicted and obsered images. Since the predictel image
shouldbe in agreemat with the BRDF of the objed, this
discrepacy can be attributed to misalignrent of the ob-
ject, andit cantherefae drive a searchfor optimal regis-
tration paraneters.The effectivenesf this algoithm was



demanstratedn a numbe of registrationexpelimentswith
differentobjects.

An interestingpoint canbe madeabou combinirg mu-
tual informationwith the methodintroducedin this paper
Thestrengthof mutwal informationcomesrom thefactthat
it doesnotperforma poirt to point compaisonof predicted
andmeasuredmages but ratherscoreshe overall similar
ity betweerthe global distribution of intensities accordng
to

EMI — H[Iz] +H[_[2] —H[IQ,IQ], (8)

where H[z] is the entropy of the randbm varialle z. In a
preliminary expeliment,thevalueof (8) wasevaluatedin a

similar fashionto that usedto produceFigs. 4 and5, with

imagesproducedby a Helmholtz stereorig. Additionally,

the experimentwas repralucedwith a fixed light source,
andassumingaLambetian mockel. Theresultsareshavnin

Fig. 9. In all casesthetechnige developedherehasshavn

to provide, in entry units, moreinformation than using
a Lambetian model. Additionally, the Lambetian scheme
failedto indentify the corre¢ modelposefor boththe fish

andthe doll's head whereaghe optimizationlandscapédor

theHelmhdtz methodis muchmorewell behaed
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