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Abstract
In machine vision, many methods have been developed to
estimate illumination color. But, few of these methods
deal with multicolored illuminations. To our knowledge,
no method that uses highlights as a main part to analyze
has been proposed for the purpose of handling multicol-
ored illuminations. Although several methods can be ap-
plied for that purpose, they need a separate process for
each highlight region that has the same illumination color.
This requirement is problematic for textured surfaces since,
in different surface colors, whether two regions of high-
light have the same illumination color is difficult to deter-
mine. In this paper, we introduce a method that can handle
both single- and multi-colored illuminations. The method is
principally based on inverse-intensity chromaticity space, a
two-dimensional space that was originally proposed to es-
timate a single color of illumination. We extend the usage
of the space by developing an iterative algorithm to deal
with multicolored illuminations. The method requires only
crude highlight regions of all illumination colors, without
requiring any further segmentation process. Moreover, the
method is still feasible even if the number of illumination
colors is unknown.

1. Introduction
Color appearance of an object is dependent on the color
of the illumination. When the illumination color changes,
the color appearance of an object will change accordingly.
This color inconsistency causes many algorithms in com-
puter vision to produce erroneous results. To overcome this
problem, an algorithm to estimate and reduce illumination
color or usually called color constancy is required. More-
over, once the illumination color is reduced, the object ac-
tual color becomes identifiable.

In machine vision, many methods have been developed
to estimate illumination color. But, few of these methods
deal with multicolored illuminations. In this paper, we de-
scribe how, by analyzing all highlight regions simultane-
ously, we achieve our goal of estimating chromaticity of
multicolored illuminations. This goal is motivated by the
fact that the presence of illumination with different colors
is, in some situations, inevitable.

Generally, based on the reflection model they use, color
constancy methods can be categorized into two classes:

diffuse-based and dichromatic-based methods. Diffuse-
based methods [3, 5, 8, 18, 22, 12, 11] assume that the in-
put image has diffuse only reflection. Consequently, the
presence of specular reflection will cause the methods to
produce erroneous results. Most statistics-based color con-
stancy methods (a term coined by Finlayson et al. [10])
base their algorithm on diffuse only reflection. On the other
hand, dichromatic-based methods [4, 6, 15, 16, 1, 20] as-
sume that the input image has both diffuse and specular
reflection components. Since specular reflection has more
clues to estimate illumination color, in general, compared
to diffuse-based methods, dichromatic-based methods pro-
duce more accurate results.

Methods in dichromatic-based color constancy rely on
the dichromatic reflection model proposed by Shafer [19].
Klinker et al. [13] introduced a method to estimate illumi-
nation color from a uniformly colored surface by extracting
a T-shape color distribution in the RGB space. Lee [15]
proposed a method to estimate illumination chromaticity
using highlights of at least two surface colors. The estima-
tion is accomplished by finding an intersection point of two
or more dichromatic lines in chromaticity space. Parallel
to this, many methods have been proposed in the literature
[4, 21, 23, 9, 10].

The aforementioned methods were originally proposed
to handle a single color of illumination. Although several
dichromatic-based methods can be applied to handle mul-
ticolored illuminations, they require a separate process for
each highlight region whose illumination color is the same.
This requirement is problematic for textured surfaces since,
in different surface colors, whether two regions of highlight
have the same illumination color is difficult to determine.
Few methods have been intentionally proposed to handle
multicolored illuminations. Land et al. [14] introduced a
retinex theory to estimate illumination colors in a matte and
plane surface. Their theory is principally based on the as-
sumption that the intensity change of surface color is larger
than that of illumination color. Finlayson et al. [7] intro-
duced a method that uses a single surface color illuminated
by two different illumination colors. The main idea of their
approach is that, given two different reflected lights (pixels)
produced by the same surface color but different illumina-
tion colors, then by dividing the first pixel with all possible
illumination colors (in which the illumination color that il-
luminates the first pixel exists) and intersecting to the sec-
ond pixel that is also divided by all possible illumination
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colors will produce an intersection point representing the
actual surface color. Barnard et al. [2] utilized the retinex
algorithm [14] to automatically obtain a surface color with
different illumination color, and then used the method of
Finlayson et al. [7] to estimate varying illumination colors.
Recently, Andersen et al. [1] developed a method to asses
the illumination condition covering two light sources. The
method provides an analysis of image chromaticity under
two illumination colors for dichromatic surfaces.

Most color constancy methods, besides having problems
with the number of illumination colors, also have problems
with the number of surfaces colors. Most of them can-
not handle both uniformly colored surfaces and highly tex-
tured surfaces in a single integrated framework. Statistics-
based methods require many surface colors, and become er-
ror prone when there are only few surface colors. In con-
trast, dichromatic-based methods can successfully handle
uniformly colored surfaces, but cannot be applied to highly
textured surfaces since they require precise color segmen-
tation [20]. Fortunately, this problem can be resolved by
utilizing inverse-intensity chromaticity space introduced by
Tan et al. [20]. The space is effective to estimate illumina-
tion chromaticity for both uniformly colored surfaces and
highly textured surfaces. However, in [20], the space was
proposed solely to estimate a single color of illumination.

In this paper, we extend the usage of inverse-intensity
chromaticity space to handle multicolored illuminations by
retaining its capability to handle various numbers of surface
colors. The basic idea of our method is to remove specular
clusters that have the same illumination color in the space
one by one iteratively while estimating each illumination
color. Given crude highlight regions, this process is done
without requiring any segmentation process. In inverse-
intensity chromaticity space, Tan et al. found that specular
clusters are composed of straight lines that head for a certain
value at y-axis, which the value is identical to illumination
chromaticity. Thus, by finding each straight line using the
Hough transform, we can remove each cluster that has the
same illumination color. Moreover, we do not assume that
the number of illumination colors is known. As a result,
besides estimating illumination chromaticity, the method is
also able to estimate the number of illumination colors. We
set our analysis on highlight regions that can be obtained
by thresholding the intensity and saturation values follow-
ing the method proposed by Lehmann et al. [17]. While the
ability to work on rough estimates of highlight regions is
one of the advantages of our method, the highlight regions
identification is still an open challenging problem. In addi-
tion, since no assumption of the illumination chromaticity
is used, the method is also effective for all possible colors
of illumination.

The rest of the paper is organized as follows: in Sec-
tion 2, image color formation of inhomogeneous materials
is discussed. In Section 3, we first review inverse-intensity
chromaticity space, and then explain the usage of the space
to handle multicolored illuminations. We provide experi-
mental results for real images in Section 4. Finally in Sec-
tion 5, we conclude our paper.

2 Reflection Model
An image of dielectric inhomogeneous objects taken by a
digital color camera, according to the dichromatic reflection
model [19], can be described as:

Ic(x) = wd(x)
∫

Ω

S(λ, x)E(λ, x)qc(λ)dλ +

ws(x)
∫

Ω

E(λ, x)qc(λ)dλ (1)

where x = {x, y}, the two dimensional image coordinates;
wd(x) and ws(x) are the weighting factors for diffuse and
specular reflection, respectively; their values depend on the
geometric structure at location x. S(λ, x) is the spectral
reflectance function; E(λ, x) is the spectral energy distri-
bution function of the illumination; qc is the three-element-
vector of sensor sensitivity and index c represents the type
of sensors (r, g, and b). The integration is done over the
visible spectrum (Ω). Note that we ignore the camera noise
and gain in the above equation.

For the sake of simplicity, equation (1) is written as:

Ic(x) = wd(x)Bc(x) + ws(x)Gc(x) (2)

where Bc(x) =
∫
Ω Sd(λ, x)E(λ, x)qc(λ)dλ; and Gc(x) =∫

Ω
E(λ, x)qc(λ)dλ. The first part of the right side of the

equation represents the diffuse reflection component, while
the second part represents the specular reflection compo-
nent.

3 Estimation Method
This section will be divided into two parts: first, a review of
inverse-intensity chromaticity space to estimate a single il-
lumination chromaticity, and second, an implementation of
inverse-intensity chromaticity space to deal with multicol-
ored illuminations using an iterative algorithm.

3.1 Inverse-intensity chromaticity space: a
review

Inverse intensity chromaticity space [20] is principally
based on the correlation between chromaticity and inten-
sity. Chromaticity or also commonly called normalized rgb
is defined as:

σc(x) =
Ic(x)
ΣIi(x)

(3)

where ΣIi(x) = Ir(x) + Ig(x) + Ib(x).
By considering the chromaticity definition (σc) in Equa-

tion (3) and image intensity definition (Ic) in Equation (2),
for diffuse only reflection component (ws = 0), the chro-
maticity becomes independent from the diffuse geometrical
parameter wd, since it is factored out by using Equation (3).
We call this diffuse chromaticity (Λc) with definition:

Λc(x) =
Bc(x)
ΣBi(x)

(4)
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On the other hand, for specular only reflection component
(wd = 0), the chromaticity is independent from the specular
geometrical parameter (ws), which we call specular chro-
maticity (Γc):

Γc(x) =
Gc(x)
ΣGi(x)

(5)

By considering Equation (4) and (5), consequently Equation
(2) can be written as:

Ic(x) = md(x)Λc(x) + ms(x)Γc(x) (6)

where

md(x) = wd(x)ΣBi(x) (7)
ms(x) = ws(x)ΣGi(x) (8)

We can also set Σσi(x) = ΣΛi(x) = ΣΓi(x) = 1, without
loss of generality. Note that, we assume the camera out-
put is linear to the flux of incoming light intensity. Since,
in our method, only using that assumption can the above
chromaticity definitions be applied to estimate illumination
chromaticity. As a result, we have three types of chromatic-
ity: image chromaticity (σc), diffuse chromaticity (Λc) and
specular chromaticity (Γc). The image chromaticity is di-
rectly obtained from the input image using Equation (3). In
addition, based on the NIR assumption, we can regard the
specular chromaticity (Γc) as illumination chromaticity.

By plugging the reflection equation (6) into the
chromaticity definition (3), and by further derivation,
a linear correlation of image chromaticity (σc), light
chromaticity(Γc), and inverse intensity ( 1

ΣIi
) can be ob-

tained:

σc = p
1

ΣIi
+ Γc (9)

where p = md(Λc − Γc). The equation is the most basic
equation in the illumination chromaticity estimation method
in [20]. It obviously shows that by knowing the values of
p, the illumination chromaticity (Γc) can be directly deter-
mined, since σc and ΣIi can be obtained from the input im-
age. Hence, the problem is, how can we know the values of
p which in most situations vary as they depends on md? Tan
et al. [20] pointed out that in inverse intensity chromatic-
ity space, specular points form a number of straight lines,
where each line has a gradient which is identical to p. Fig-
ure 1.b shows the specular points of a synthetic image with
a uniformly colored surface in inverse-intensity chromatic-
ity space. By focusing on the specular cluster in Figure 1.b,
they asserted, according to Equation 9, that the cluster is
composed of a number of straight lines that head for the
same value at y-axis as illustrated in Figure 3.a.

Figure 2.b shows the projection of highlighted regions of
a synthetic image with a multicolored surface into inverse-
intensity chromaticity space. The estimation process for
multicolored surfaces is exactly the same as that for a uni-
formly colored surface since, instead of being concerned
with each cluster, they were concerned with the direction of
every straight line inside the clusters.

Figure 1: Synthetic image with uniformly colored surface. b.
Projection of the diffuse and specular pixels into inverse-intensity
chromaticity space, with σc representing the green channel

Figure 2: a. Synthetic image with two surface colors. b. Specular
points in inverse-intensity chromaticity space, with σc represent-
ing the green channel

Hough transform and intersection counting To es-
timate the illumination chromaticity (Γc) from inverse-
intensity chromaticity space, the method utilizes the Hough
transform. Figure 4.a shows the transformation from
inverse-intensity chromaticity space into the Hough space,
where its x-axis represents Γc and its y-axis represents p.
Since Γc is a normalized value, the range of its value is
from 0 to 1 (0 < Γc < 1).

Using the Hough transform alone does not give a solu-
tion, because the values of p which are not constant through-
out the image cause the intersection point of lines in the

Figure 3: a. Sketch of specular points of a single surface color in
inverse-intensity chromaticity space. b. Sketch of specular points
of two surface colors in inverse-intensity chromaticity space.
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Figure 4: a. Projection of points in Figure 1.b into the Hough
space. b. Sketch of intersected lines in the Hough space.

Figure 5: a. Intersections counting distribution in the green chan-
nel of chromaticity. b. Normalization result of the input synthetic
image into pure white illumination with regard to the illumination
chromaticity estimation. The estimated illumination chromatic-
ity is as follows: Γr = 0.5354, Γb = 0.3032, Γb = 0.1618,
the ground-truth values are: Γr = 0.5358, Γb = 0.3037, Γb =
0.1604

Hough space not to be located at a single location. For-
tunately, even if the values of p vary, the values of Γc are
constant. Thus, in principle, all intersections will be con-
centrated at a single value of Γc. These intersections are
indicated by a thick solid line in Figure 4.a.

As a result, by projecting the total number of intersec-
tions of each Γc into a two-dimensional space, illumination-
chromaticity count space, with y-axis representing the
count of intersections and x-axis representing Γc, the actual
value of Γc can be robustly estimated. Figure 5.a shows
the distribution of the count numbers of intersections in the
space, where the distribution forms a Gaussian-like distri-
bution. The peak of the distribution lies at the actual value
of Γc.

3.2 Multicolored Illuminations
In this subsection, we extend the usage of inverse-intensity
space to handle multicolored illuminations. Theoretically,
when an inhomogeneous object is lit by two light sources
that have different color and sufficiently separated position,
a certain surface region viewed from a certain position will
exhibit highlight. This highlight, according to the Torrance-
Sparrow reflection model [24], is mostly caused by one of
the two illuminants. Thus, we can safely assume that the
specular reflection component of a point on the surface is

Figure 6: Synthetic image with a single surface color lit by two
different colors of illuminants. b. Projection of the diffuse and
specular pixels into chromaticity-intensity space, with σc repre-
senting the red channel

Figure 7: a. Projection of points in the red-channel inverse-
intensity chromaticity space into the Hough space b. Intersection
counting distribution in the red channel of chromaticity

identical to one of the illumination colors. Mathematically,
it can be described as:

Ic(x) = wd

∫
Ω

S(λ, x)
[
E1(λ, x) + E2(λ, x)

]
qc(λ)dλ + (10)

∫
Ω

E1(λ, x)qc(λ)dλ

where E1 and E2 denote the first and second illumination
colors, respectively.

The difference between Equation (10) and Equation (1)
is the presence of the E2 inside diffuse reflection compo-
nent. This difference, fortunately, does not change the cor-
relation described in Equation (9), since in inverse-intensity
chromaticity space, E2 does not affect the direction of the
specular cluster; the direction is still determined by E1.
This phenomenon also occurs when more than two colors
of illumination are present.

By projecting the pixels of an image lit by multicol-
ored illuminations into inverse-intensity space, we will ob-
tain several clusters that head in several directions instead
of one direction, as shown in Figure 6.b. As a result, the
Hough transform of the points in the space produces two
clusters with different places of intersections (Figure 7.a).
By counting the intersection distribution, we will obtain
several peaks which the number depends on the number of
illumination color, as shown in Figure 7.b.

Having observed the distribution in Figure 7.b, one may
consider to find the peaks of the Gaussian-like distribution,
in order to estimate the values of illumination chromaticity
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Figure 8: a. Second iteration in inverse intensity chromaticity
space after identifying first illumination chromaticity. The brighter
cluster is the pixels illuminated by the first illumination color b.
Second iteration in intersection counting distribution in the red
channel of chromaticity. The darker distribution is the distribution
of second illumination chromaticity.

(Γc). While this direct solution probably works for syn-
thetic images, unfortunately, it is extremely difficult for real
images, since most real images suffer from noise, making
the peak of one illumination color overlap with the distribu-
tion of other illumination colors. Another direct solution is
to cluster all points in inverse-intensity chromaticity space
using, for example, the nearest neighbors algorithm. Yet,
even this solution is also a weak solution, since it leads to
a segmentation problem, which is problematic if there are
many surface colors as well as noise.

Iterative algorithm To overcome the problems, we de-
vised a more accurate and robust approach by using an it-
erative algorithm. Pseudo-code (3.1) shows the underlying
idea of the algorithm.

The detail of the algorithm is as follows. In the first
step, like the method that handles a single illumination
color, we project the highlight regions (N ) into inverse-
intensity chromaticity space (Figure 6.b). We transform the
projection points into Hough space (Figure 7.a), and ob-
tain the highest intersection counting in the illumination-
chromaticity counting space (Figure 7.b). Then, we set the
x-axis location of the highest counting as the first illumina-
tion chromaticity (Γc[1]).

In the second step, from the value of Γc[1], we identify
all values of p[1] in the Hough space. By knowing both
Γc[1] and p[1], in the next step we can identify the straight
lines (points) in inverse-intensity chromaticity space head-
ing for Γc[1]. Finally, we remove the pixels in N that its
projection points heading for Γc[1], which means remove
all points that have illumination color identical to Γc[1]. The
algorithm iteratively repeats the same process until there are
no more points in N . Intuitively, Steps 2, 3, and 4 are in-
verse process of Step 1, whose purpose is to identify and to
remove pixels that have the same illumination color. Figure
8.a show the projection of N after cluster lit by Γc[1] is de-
tected. The brighter cluster represents the detected cluster.
In Figure 8.b, the darker points represents the intersection
counting distribution of second illumination chromaticity.

Ideally, all processing can be done independently for
each color channel; yet, for natural illumination, the range
of green chromaticity values is very narrow. Consequently,

identifying the values of p[i] between two or more colors in
the Hough space regarding the green channel will be error
prone. To overcome the problem, from Step 2 until Step
4, the processes are accomplished with regard to one color
channel. In our implementation we chose the red channel,
since for natural illuminants, this channel has a wide range
of illumination chromaticity values.

Algorithm 3.1: ITERATION(N )

comment: N= highlight regions

comment: IIC=inverse intensity chromaticity

i = 0
while (sizeof(N) > ε)


(1) project N into IIC space
(a) transform points in ICC space into Hough space
(b) count the histogram of the intersections
(c) find the highest intersection counting
(d) set the highest intersection’s x-axis equal to Γc[i]

(2) based on Γc[i], search all values of p[i] in
Hough space

(3) based on Γc[i] and values of p[i] identify points in
IIC space

(4) based on identified points in IIC space remove
pixels in image N

i++
comment: ε ≈ 0

return (i, Γi)
comment: i = the number of illumination colors

Note that, in this paper, we assume that the light sources’
positions are not parallel and sufficiently distant to each
other, so that one region of a specular reflection component
has only one illumination color. In other words, we do not
intend to handle highlights that contain two or more illumi-
nation colors (color-blended highlights). However, as in the
real world, it is difficult to avoid such a condition, our im-
plementation is tolerant of a small number of color-blended
highlights.

4 Experimental Results
Experimental Conditions. We have conducted several
experiments on real images. We used a SONY DXC-9000,
a progressive 3 CCD digital camera, setting its gamma cor-
rection off. To ensure that the outputs of the camera would
be linear to the flux of incident light, we used a spectrom-
eter: Photo Research PR-650. We tested the algorithm by
using three types of surfaces, i.e., uniform colored surfaces,
multicolored surfaces, and highly textured surfaces. All tar-
get objects had a convex shape to avoid interreflection, and
saturated pixels were excluded from the computation. For
evaluation, we compared the results with the average values
of image chromaticity of a white reference image (Photo
Research Reflectance Standard model SRS-3), captured by
the same camera. The standard deviations of these average
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Figure 9: a. Real input image of a green sandal (uniformly col-
ored surface). b. Result of projecting the specular pixels into
inverse-intensity chromaticity space, with σc representing the red
channel. c. Result of projecting the specular pixels, with σc rep-
resenting the green channel. d. Result of projecting the specular
pixels, with σc representing the blue channel.

Figure 10: First iteration: a. intersection counting distribution
for red channel of illumination chromaticity in Figure 9. b. In-
tersection counting distribution for green-channel c. Intersection
counting distribution for blue channel.

values under various illuminant positions and colors were
approximately 0.01 ∼ 0.03.

Result on a uniform colored surface. Figure 9.a shows a
real image of a green sandal with uniformly colored surface.
The sandal was lit by two illuminants: an incandescent lamp
and a Solux halogen lamp. Under the illuminations, the im-
age chromaticity of the white reference taken by our camera
has chromaticity value: Γr = 0.503, Γg = 0.298, Γb =
0.199 for the incandescent light and Γr = 0.371, Γg =
0.318, Γb = 0.310 for the Solux halogen lamp.

Figure 9.b ∼ d show the first projection of highlight re-
gions into inverse-intensity space. The intersection distribu-
tion in the Hough space is shown in Figure 10.a∼ c. Having
obtained the highest count in the red channel(the red chan-
nel of first illumination chromaticity), we detect the cluster
lit by the illumination. The detection result is represented
by brighter clusters in Figure 11.a ∼ c. By removing these
clusters, we continue to the second iteration. The second il-
lumination chromaticity can be found from the intersection
counting distribution shown in Figure 12. The estimation
results are: Γr = 0.516, Γg = 0.279, Γb = 0.174 for the in-
candescent light and Γr = 0.400, Γg = 0.262, Γb = 0.324

Figure 11: Second iteration: a. result of projecting the specular
pixels into inverse-intensity chromaticity space, with σc represent-
ing the red channel. b. Result of projecting the specular pixels,
with σc representing the green channel. c. Result of projecting the
specular pixels, with σc representing the blue channel.

Figure 12: Second iteration: a. Intersection counting distribution
for red channel of illumination chromaticity in Figure 11. b. In-
tersection counting distribution for green-channel c. Intersection
counting distribution for blue channel.

for the Solux halogen lamp.

Result on multicolored surface. Figure 13.a shows an
image of a multicolored object. The object was illuminated
by two illuminants: an incandescent lamp and a Solux halo-
gen lamp. Under the illuminations, the image chromaticity
of the white reference taken by our camera has chromaticity
value: Γr = 0.503, Γg = 0.298, Γb = 0.199 for the incan-
descent light and Γr = 0.371, Γg = 0.318, Γb = 0.310 for
the Solux halogen lamp.

Figure 13.b ∼ d show the first projection of highlight
regions into inverse-intensity space. The intersection dis-
tribution in the Hough space is shown in Figure 14.a ∼ c.
After obtaining the highest count in the red channel (the red
channel of the first illumination chromaticity), we detected
the cluster lit by the illumination. The detection result is
represented by brighter clusters in Figure 15.a ∼ c. By re-
moving these clusters, we continue to the second iteration.
The second illumination chromaticity can be found from
the intersection counting distribution shown in Figure 16.
The estimation results are: Γr = 0.513, Γg = 0.293, Γb =
0.157 for the incandescent light and Γr = 0.312, Γg =
0.454, Γb = 0.217 for the Solux halogen lamp.

Result on highly textured surface. Figure 17.a shows
an image of a highly textured surface. The object was il-
luminated by two illuminants: an incandescent lamp and
a fluorescent lamp. Under the illuminations, the image
chromaticity of the white reference taken by our camera
has chromaticity value: Γr = 0.4605, Γg = 0.362, Γb =
0.177 for the incandescent light and Γr = 0.340, Γg =
0.340, Γb = 0.319 for the fluorescent lamp.
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Figure 13: a. Real input image with multicolored surface. b. Re-
sult of projecting the specular pixels into inverse-intensity chro-
maticity space, with σc representing the red channel. c. Result
of projecting the specular pixels, with σc representing the green
channel. d. Result of projecting the specular pixels, with σc rep-
resenting the blue channel.

Figure 14: First iteration: a. Intersection counting distribution for
the red channel of illumination chromaticity in Figure 13. b. Inter-
section counting distribution for the green-channel c. Intersection
counting distribution for the blue channel.

Figure 17.b ∼ d show the first projection of highlighted
regions into inverse-intensity space. The intersection distri-
bution in the hough space is shown in Figure 18.a ∼ c. After
obtaining the highest count in red channel (the red channel
of the first illumination chromaticity), we detect the cluster
lit by the illumination. The detection result is representing
by brighter clusters in Figure 19.a ∼ c. By removing these
clusters, we continue to the second iteration. The second il-
lumination chromaticity can be found from the intersection
counting distribution shown in Figure 20.The estimation re-
sults are: Γr = 0.466, Γg = 0.3150, Γb = 0.209 for the in-
candescent light and Γr = 0.326, Γg = 0.305, Γb = 0.365
for the fluorescence lamp.

5. Conclusion
We have introduced a method to estimate chromaticity of
multicolored illuminations. Given rough highlight regions,
the method does not require any further segmentation, and
will work for all possible colors of illumination. The main
idea of the method is the iterative algorithm in inverse-

Figure 15: Second iteration: a. Result of projecting the specular
pixels into inverse-intensity chromaticity space, with σc represent-
ing the red channel. b. Result of projecting the specular pixels,
with σc representing the green channel. c. Result of projecting the
specular pixels, with σc representing the blue channel.

Figure 16: Second iteration: a. Intersection counting distribution
for the red channel of illumination chromaticity in Figure 15. b.
Intersection counting distribution for the green-channel c. Inter-
section counting distribution for the blue channel.

intensity space, Hough space, and histogram analysis. The
experimental results have demonstrated that the method is
effective even for highly textured surfaces.
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