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Abstract

Limitation in the resolution of CCD image sensors has
provided motivation to enhance the resolution of images.
Super-resolution has been applied mainly to grayscale im-
ages, and producing a high-resolution color image from a
single CCD sensor has not been discussed thoroughly. This
work aims at producing a high-resolution color image di-
rectly from ”color mosaic” images obtained by a single-
CCD with a color filter array. This method is based on a
generalized formulation of super-resolution which performs
both resolution enhancement and demosaicking simultane-
ously. Verification of the proposed method is conducted
through experiments using synthetic and real images.

1. Introduction

Each pixel of a single-chip CCD is covered with a color
filter. Red, green, and blue are the typical colors used for
the filters. The color filters are arranged in a mosaic pattern,
and only one primary color is captured for each pixel. The
mosaic pattern is called a CFA (Color Filter Array) pattern.
Data captured through CFA is thus a color mosaic image
(see Figure 7(b)), which is incomplete as a full color image
representation.

In order to produce a full RGB image, the missing color
channels have to be estimated from the raw data of the color
mosaic. This process is generally referred to as ”demosaic-
ing”.

The simplest demosaicing method is the linear interpo-
lation applied to each color plane. More sophisticated ones
[1, 2] have also been reported, which outperform the lin-
ear method in color reproduction performance. The major
problem in color demosaicing is false colors that occur in
the resulting color image. Although low-pass filtering the
image reduces the false colors, the resulting image suffers
from blurring effect.

The number of pixels contained in each color plane pro-
duced by demosaicing is equal to the resolution of CCD.
Obtaining a higher resolution is often needed for displaying,

printing, post-processing, etc. The most common solution
for such requirement is interpolation.

However, interpolation results in low quality images
compared to those captured by higher resolution CCD. This
is because no additional information is brought by the inter-
polation process. Interpolation does not restore the imagein
detail. In other words, it does not restore any high frequency
signal.

This is problematic when displaying an enlarged image
on a screen. Display device and capture device often have
different standards, and high quality method of resolution
conversion is needed in many fields. Applications in com-
puter vision often suffer from bottleneck of resolution, and
resolution enhancement is one of the key issues in the chal-
lenge of overcoming such limitations.

Super-resolution [3, 4, 5, 6, 7, 8] differs from interpo-
lation in that it restores high frequency details present in
the captured scene. Super-resolution is an image processing
technique to produce a high-resolution image, from several
downsampled images of the same scene with slight motion
among them.

Note that super-resolution has been applied to a gray-
scale image or a full color image, which can be regarded
as just a combination of three gray-scale images, and not
applicable to raw data obtained from a single-chip CCD.
Although sequential processing of demosaicing and super-
resolution (Figure 1) results in high-resolution color image,
this method suffers from artifacts and blurring effect as seen
in the demosaiced images.

The objective of our work is to provide a high-resolution
color image reconstruction method using color mosaic im-
ages obtained from a single CCD, which is capable of over-
coming the limitations described above, utilizing direct ac-
cess to the raw color mosaic images captured by CFA-
masked CCD. The method thus enables effective integration
of demosaicing and resolution enhancement.

Unlike a grayscale or 3-CCD camera, a single-CCD
camera outputs downsampled color signals, which leads to
severe aliasing. Since super-resolution is a method to fuse
multiple aliased images to obtain a high-resolution image,
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using raw data is a highly effective way for super-resolution.
In addition, eliminating an optical low-pass filter enhances
the effectiveness of super-resolution. We thus propose the
imaging system configuration illustrated in Figure 2.

In the rest of this paper, Section 2 presents a model for
the image reconstruction problem. Section 3 states color
image reconstruction as an inverse problem. Experimental
results are presented in Section 4, and Section 5 concludes
the paper.
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2. Observation Model

This section presents the model of single-chip CCD cam-
era generating a sequence of several raw images. We start
modeling without considering the effect of CFA. Consider
a grayscale image (representing one of the color channels).

The image formation model for a CCD camera can be
represented by continuous-discrete model where the input
image is continuous while the output data is discrete:

� �  ! "  # $ % & & ' �  ! ( ) "  # ( * $ + � ) " * $ , ) , * " (1)

where� �  ! "  # $ is a digital image obtained by the CCD, and+ � ) " * $ is the true image (scene).�  ! "  # $ is a discrete co-
ordinate system while� ) " * $ is a continuous coordinate sys-
tem. ' � ) " * $ is a blurring function known as a point-spread
function. PSF introduced due to the optics and the CCD
aperture in the system may be approximately modeled by
the Gaussian function.

Consider a coordinate transformation� ) " * $ % - � . " / $ ,
where � . " / $ is the coordinate over which the high-
resolution image is defined (see See Figure 3). Applying
the coordinate transformation, Equation (1) becomes

� �  ! "  # $ % & & ' � �  ! "  # $ ( - � . " / $ $ + � ) " * $ 0000 1
-

1
� . " / $ 0000 , . , / 2

(2)
In order to obtain a discrete approximation of the above

model, we assume the true image+ � ) " * $ to be constant over
the region covering a high-resolution pixel located at high-
resolution grid point� 3 ! " 3 # $ . Then, the integration in Equa-
tion (2) can be written in the form� �  ! "  # $ % 45 6 45 7 8 � 3 ! " 3 # $ 9 �  ! "  # " 3 ! " 3 # : - $ " (3)

where 8 � 3 ! " 3 # $ is the assumed constant value of the true
image+ � ) " * $ , and9 �  ! "  # " 3 ! " 3 # : - $ %; 5 6 < ! = #5 6 > ! = # ; 5 7 < ! = #5 7 > ! = # ' � �  ! "  # $ ( - � . " / $ $ 000 ? @? A B C D E 000 , . , / 2

(4)



The above integration is performed over the region covering
the high-resolution pixel at� 3 ! " 3 # $ .

Color images can be represented by multiple color chan-
nels of 2-D signals. Red, green, and blue are often em-
ployed in consumer cameras, such as 3-CCD digital cam-
eras. Let us now extend the imaging model discussed above
to color images. Since the model (3) can be considered as
a model for one of the color channels, the image formation
model for each color channel can be represented as

� � �  ! "  # $ % 45 6 45 7 8 � � 3 ! " 3 # $ 9 �  ! "  # " 3 ! " 3 # : - $ " (5)

where� � � � " � " � � .
In a single-chip CCD camera, input data is masked by a

CFA to produce a color mosaic. Figure 7(b) shows a color
mosaic image obtained through a popular CFA known as
the Bayer pattern. This process can be modeled as sampling
applied to the color image by the CFA.* � �  ! "  # $ % � � �  ! "  # $ � � �  ! "  # $% � � �  ! "  # $ 45 6 45 7 8 � � 3 ! " 3 # $ 9 �  ! "  # " 3 ! " 3 # : - $ "

(6)

where� � �  ! "  # $ is a 2-D array containing one or zero for
each element. The elements with the value one have sensi-
tivity to the color� � � � " � " � � . Suppose the image size is	 
 	

, the following array show the sampling array for the
G channel in the Bayer pattern.

� � �  ! "  # $ �
�����

� � � � �� � � � �� � � � �� � � � �� � � � �
�����
� (7)

The sampling array for sensors using other CFA pattern can
be constructed similarly.

Now, consider a sequence of raw color mosaic images* � C � �  ! "  # $ " where � % � " 2 2 2 " � . Equation (6) can be re-
witten using* � C � �  ! "  # $ and corresponding geometric trans-
formation - � . Representing the equation in matrix-vector
form, we obtain �

� % � � � " (8)

where

�
� contains every pixel values of* � C � �  ! "  # $ ,* � C � �  ! "  # $ , and * � C � �  ! "  # $ . � % � �

�� " �
� " �

�! " �
con-

tains every pixel values of8 � � 3 ! " 3 # $ , 8 � � 3 ! " 3 # $ , and8 � � 3 ! " 3 # $ . � � is a matrix specified by9 �  ! "  # " 3 ! " 3 # : - � $
and� � �  ! "  # $ . Thus Equation (8) is the model relating the
high-resolution color image� and the k-th image

�
� in the

low-resolution raw image sequence.

� # $ � $ $� � � � � � % � & � � � �  � � � �  � � � � � � � � � � � � � � 
  � � � ' � � � �� � � � � � � � � � � � � � � � � � � � 
  � � (  ) � � � � � � � � � � 
 � �  � ��  � �  �  � * 
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3. Reconstruction of a High-Resolution

Color Image from Raw Images

3.1. Problem Formulation

Using forward observation model discussed in the pre-
vious section, the image estimate for� can be obtained by
solving the inverse problem.

Using the regularized optimization approach, we have-
� % . / 0 1 2 34 � 5 ! � � $ 6 7 5 8 � � $ � " (9)

where 5 ! � � $ % 94
� : ! ; �

� ( � � � ; # 2 (10)

The parameter7 controls the weight between fidelity to the
observed data5 ! � � $ and the regularization term5 8 � � $ .

The regularization term can be considered as general-
ization of smoothness constraint that has been employed in
grayscale super-resolution.

Using independent regularization term for each channel
is inappropriate, because natural images have positive cor-
relation among color planes, and each color plane contains
object edges highly correlated and aligned to each other.
For example, using independent smoothing term for R,G,
and B channel separately leads to color artifact as shown in
the Figure 4. The regularization term used here is defined
as: 5 8 � � $ % <� = > � C � C � ? ; @ � � ; #

, where@ is the Laplacian

operator. A single raw image is used in the experiment. The
color artifact occurs due to the similar reason for the artifact
seen in the image demosaiced with channel-wise linear in-
terpolation. Independently interpolating each channel with
non-coincident subsampling affects correlation among the
three channels.

This problem occurs due to unavailability of dense sam-
pling as 3-CCD. If multiple images

� ! " 2 2 2 " �
9 " � � A B $

with slight motion among them is available, virtually dense
sampling is provided , which means less color artifact in a
fused image. Obviously, this is almost equivalent to acquir-
ing a 3-CCD image.



Availability of sufficient number of multiple images with
different motion among them implies over-determinedness
of Equation (10), which leads to reduced color artifact.

Actually, the image estimate still suffers from color ar-
tifact even if Equation (10) is over-determined. This is be-
cause of channel-independent noise and misregistration of
each input image.

In order to suppress color artifact, using color space with
less correlated color components is appropriate for defining
the regularization term. Consider a color space decomposi-
tion into luminance and chrominance components.

� �
% � 2 B � � � � 6 � 2 	 � �

� � 6 � 2 � � �
� �

� � � % ( � 2 � � � �
� � ( � 2 � � � � � � 6 � 2 	 � �

� � 	 % � 2 	 � � ( � 2 � � � �
� � ( � 2 � � � � � � (11)

Using the above color decomposition, the regularization
term is defined by the luminance energy term and the
chrominance energy term:5 8 � � $ % 5 # � � �

$ 6 5 
 � � � � " � � 	 $ (12)

Natural images have less variance in chrominance than
in luminance, and luminance has the most information of
images. In addition, many applications require structuresof
objects to be presented in high resolution, which means lu-
minance has higher priority to the chrominance. Moreover,
the human vision has relatively less sensitivity to change in
color.

Based on these considerations, we incorporate edge-
preserving smoothing constraint to the luminance energy
term, preventing structures of objects from over-smoothing.

The energy term which smoothes along edges and not
across them [8] is employed here. i.e. using high-pass op-
erator � � " , �  which evaluates directional smoothness
in the direction � � (horizontal, vertical, two diagonal di-
rections, no direction(isotropic smoothness))� at each pixel,
the following energy term is defined5 # � � �

$ % 4
� = �

� �� � � � � �
� � #

(13)

The matrix� � represents convolution operation with a ker-
nel � � � ! " � # : � $ :

� � � ! " � # : � $ % � � � � � ! � � � � ( � # � 2 3 � " � ! � 2 3 � 6 � # � � � � $ "� � � � ) " * $ % ?
7

? � 7 � � ) " * $ 2
(14)

where� � � $ is the 2-D Gaussian function, and� is the angle
corresponding to, . Each element of diagonal matrix

� �
represents weight on high-pass operation in the direction,
at each pixel of� � . The weight is determined by detecting
orientation and strength of edge at each pixel.

On the other hand, isotropic smoothness is considered
for the chrominance energy term. This is because of the

difficulty in estimation of the true edge direction (especially
when the number of input images is small and Equation (10)
becomes under-determined). Using isotropic high-pass fil-
ter � , the following energy term is defined.5 
 � � � � " � � 	 $ % 7 � � � � � � � � � � # 6 � � � � � 	 � � # $ (15)

where7 � is a weight parameter.
Even if Equation (10) becomes over-determined, error

in motion estimation or channel-independent noise brings
about color artifact in the image estimate. That is why the
chrominance energy term is of great importance for color
image reconstruction based on raw data fusion.

In order to suppress color artifact in the image estimate,
cut-off frequency of the high-pass filter� is set equal to
the bandwidth of the channel with coarsest sampling in the
CFA. Setting larger cut-off frequency is possible when mul-
tiple images are available and Equation (10) get close to
over-determined, preventing oversmoothing of the chromi-
nance.

The experiment in the next section uses Gaussian high-
pass filter whose frequency characteristic is given by:� � � " � $ % � ( � � � � ( � � # 6 � # $  B ! #� $ " (16)

where � � " � $ denote spatial frequency and the standard de-
viation ! � is considered as the cut-off frequency.

The chrominance energy term suppresses the misalign-
ment between the color channels. This characteristic can
readily be verified with the following experiment. Consider
a 1-dimentional analogy for the 2-dimentional edge images
shown in Figure 5, whose mathematical model is given by:

8 � � 3 $ % " # 5 � 3 $ 6 B "
8 � � 3 $ % # ! 8 � � 3 (  $ $ 6 $ ! "
8 � � 3 $ % # # 8 � � 3 (  $ $ 6 $ # (17)

where " # 5 � � $ is the error function1 , # ! " # # " $ ! " $ # are
constants.  $ and  $ represents the displacement of G
and B signals respectively. $ %  $ % �

means per-
fectly aligned RGB edges which represents two neighbor-
ing regions of different colors sharing a common boundary. $ %% � "  $ %% �

means misalignment among RGB signals,
witch is a typical cause of color artifact at region boundary.

Changing values of $ and  $ in the model of
Equation (17) and calculating the corresponding value of5 
 � � & ' " � & ( $ gives the plot shown in Figure fig6. (The
constants are set to� # ! " # # " $ ! " $ # $ % � � 2 B " � 2 � " � 2 � " � 2 � $ in
this calculation.) Figure 6 shows that the spectral energy
function has a minimum when RGB signals are aligned ex-
actly to each other. Such a property of the chrominance
energy function holds true for arbitrary# ! " # # " $ ! " $ # , where# ! " # # A � 2 . This can readily be verified empirically.

1 ) * + , - . / 01 2 ; 34 5 6 7 , 8 9 0 . : 9
2It holds true, assuming positive correlation among RGB signals.
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3.2. Estimating Motion of Raw Images

The geometric transformation- � in the observation
model can often be identified prior to super-resolution pro-
cess.

In the experiments of the following section, we have ex-
ecuted motion estimation with two-parameter model:

- � � . " / $ % �5 � ./ � 6 � , � �, � � � (18)

where 5 is the resolution enhancement ratio, and� � %	 , � � " , � � 
 are the parameter to be estimated. First, linear
demosaicing (linearly interpolating each color channel in-
dependently) is applied to raw input images. Motion es-
timation is then applied to luminance component of each
image. The first image

� ! is the reference image, and the
motion of remaining images

� # " 2 2 2 " �
9 relative to the refer-

ence image was estimated. We have employed the subpixel
motion estimation [9], which features practical and precise
estimation based on EEC(estimation error cancel).

Super-resolution is a de-aliasing process utilizing sub-
pixel motion in multiple images. It follows that the frac-
tional portion of the motion has the fundamental influence
on the image estimate. For example, in super-resolution us-
ing grayscale images, using images with motion which has

nonzero fractional portion gives much higher quality of im-
age estimate, compared to using images with motion of in-
teger values.

Now, consider a CFA with periodic arrangement of 2x2
kernel such as the Bayer filter. The system matrix� %� � �! " 2 2 2 � �9 " �

with a motion
	 , � � " , � � 
 and another� with

a motion
	 , � � 6 B � " , � � 6 B � 
 (� ,� are arbitrary integers.)

have identical structure (neglecting the non-overlappingre-
gion of multiple input images). Therefore, the structure of� has periodicity of 2x2 pixels. Thus, the motion is char-
acterized with the following quantity: � % � � 1 � � B (19)

Input images with their � ’s uniformly dispersed over
the region

	 � " B $ 
 	 � " B $ leads to a high quality image es-
timate, while extremely non-uniform distribution of � ’s
means singularity of� , which leads to low-quality image
estimate.

3.3. Implementation

The overall algorithm of the proposed high-resolution
color image reconstruction is described here.

(1) Acquire input raw images

� ! " 2 2 2 " �
9 .

(2) Calibrate the CFA model� � �  ! "  # $ , if the CFA ar-
rangement is unknown. (Capturing red, blue, and
green objects gives the coresponding pixel sites in the
image.)

(3) Produce full color image from input raw data using lin-
ear interpolation, and estimate motion� � % 	 , � � " , � � 
using luminance component.

(4) Set desired resolution enhancement ratio5 .

We now execute optimization of Equation (9). Employing
the steepest descent technique gives the following iterative
algorithm.

(5) Let � % �
. Produce high-resolution color image by in-

terpolating the reference low-resolution image

� ! . Let
the produced high-resolution image be the initial im-
age estimate� A � E .(6) Apply edge orientation analysis [8] to the luminance of

� A � E , and determine the weight
� � in the regularization

term 5 # � � �
$ .

(7) Update the image� A � E with the following equations:

� A � < ! E % � A � E ( � �
11 �

� 5 ! � � $ 6 7 5 8 � � $ $ � 4 : 4 � � � (20)

1
5 ! � � $
1 �

0000 4 : 4 � � � % 94
� : ! � �

�
� � � A � E ( �

� $ (21)



1
5 # � � �

$
1 �

0000 4 : 4 � � � % 4
� = � �

�
�

� �� � �� � � � � � � � A � E (22)

1
5 
 � � � � " � � 	 $

1 �
0000 4 : 4 � � � % 7 � 4� = > � � C � 	 ? �

�� � � � � � � A � E
(23)

where� is the step size that controls convergence of the iter-
ative computation.� �

"
� � � "

� � 	 are matrices that operate
on � to produce� �

" � � � " � � 	 respectively. (Computation
from Equation (20) to Equation (23) do not necessarily re-
quire matrix operation, and can be implemented using ordi-
nary image processing including linear filtering, sampling,
coordinate transformation, color space transformation, etc.)

(8) Set� % � 6 �
, and go back to (6).

(9) Stop the iteration, if� A � E has converged or a specified
stopping condition has been satisfied.

Note that edge orientation analysis is performedduring
the iteration, and edge direction at each pixel is also updated
in the course of iteration. This enables precise detection of
edge orientation.

4. Experiments

4.1. Simulated Images

Figure 7(b) shows a simulated raw CFA-masked image,
which would have been observed from the scene shown in
Figure 7(a). For the experiments here, we assume that the
motion parameters are known.

Using the simulated raw images, we have produced a
high-resolution image with the proposed direct method. We
have also implemented conventional two-pass sequential al-
gorithm (first demosaic and then enhance the resolution). A
typical two-pass algorithm would be either of the following
algorithms:

(A) single-frame algorithm: First demosaic a raw image
and then interpolate to a high-resolution image.

(B) multi-frame algorithm: First demosaic multiple raw
images and then apply conventional super-resolution.

The simplest example for the algorithm (A) is linear de-
mosaicing followed by bi-linear interpolation. We first ob-
tain Figure 7(c) and then Figure 7(d). Another example
for the algorithm (A) is demosaicing [2] followed by bi-
cubic interpolation. We first obtain Figure 7(f) and then
Figure 7(g). The resolution is enhanced by factor of two
(in both horizontal and vertical directions) in these experi-
ments. Typical color artifacts and blurring effect are con-
tained in these images. These are the major drawbacks of
using sequential demosaicing-interpolating process.

We are also interested in the multi-frame algorithm (B),
as a comparison with the proposed method. Figure 7(e)

shows a result of linear demosaicing applied to each of mul-
tiple raw images, followed by conventional super-resolution
[5] applied to each color channel. Similarly, using demo-
saicing [2] followed by super-resolution [5] gives Figure
7(h).

Figure 7(i)(j)(k) show three restored images by our pro-
posed method, varying in the number of input images�
and resolution enhancement ratio5 . The resolution en-
hancement ratio of Figure 7(i) is one and Figure 7(j)(k) is
two. The number of input images for Figure 7(i)(j) is one
and Figure 7(k) is eight.

Comparing Figure 7(e)(h) to Figure 7(k), we can see that
high frequency component is more effectively restored, and
color artifacts are restricted in the image estimated with the
proposed method.

Quantitative evaluation of the proposed method is also
conducted in the simulation for different number of input
raw images. For comparison, conventional methods us-
ing algorithm (B) is also performed. The resolution en-
hancement ratio is two in this evaluation. The root mean
square(RMS) error between the reference image (Figure
7(a)) and the reconstructed images are evaluated. The RMS
error plot is shown in Figure 8. Comparing the proposed
method to the existing alternatives, significant improvement
in the image reconstruction performance can be seen. The
evaluation result also shows contribution of additional input
image to the image estimate quality.

4.2. Real Images

We have also conducted the experiment using various
real images. Figure 9(1)(2)(3) are results using hand-held
camera, and Figure 9(4) show the results using fixed cam-
era capturing objects swinging in the wind. The latter case
is not modeled by global motion, and the motion estimation
is applied to the local block within the images.

Using as many images as possible do not necessarily
guarantee high quality image estimate in experiments us-
ing real images. Some reasons for this are that input images
may be misregistered, real motion is not properly approx-
imated by 2-parameter model, or illumination may change
from image to image. In order to overcome these problems,
input images are selectively used with the following priori-
ties: (1)Give high priority to such images that is temporally
close to the reference input image. (2)Give high priority
to images whose subpixel motion parameters � ’s are uni-
formly dispersed over the region

	 � " B $ 
 	 � " B $ . (3)Remove
input images with low matching criteria (SSD, SAD etc).

Figure 9(a) show the first raw image in the captured im-
age sequences. Figure 9(b) show images produced using
linear demosaicing followed by bi-linear interpolation. Fig-
ure 9(c) show images produced using an existing demosaic-
ing method [2] followed by bi-cubic interpolation. Figure
9(d) shows an image produced by the proposed method.



� # $ � $ $

� � $ � � $ � � $

� � $ � 0 $ � � $

� 2 $ � � $ � � $� � � � � � � � � � � � � � � � � � � � � � 
  � � � � (  ) ' � � � � � � � � � � � � � �� � � � � � � � � � 
  � � � ( � ) � � 
 � �  � � � � � � � � � � � � � � � � � �  �� 
  � � � ( � ) � � � �  � � � 
 � �  � � � � � � ( � ) � � � �  � � � 
 � �  � � �� � � � � � � � � � � � � � � � � � � �  � � � � � � � � �  � � � � � ( � ) � � � �  � � � �
 � �  � � � � � � � � � � � � � � � � � � , � � � � � �  � � � � � � � � � � � � � � � � �
� � 	 ( � ) 	 � 
 � �  � � � � � � � 	 � ( � ) 	 � 
 � �  � � � � � � � 	 � � � �� � � � � � � � � � � � � � � � � � � � � � �  � � � � � ( � ) 	 � 
 � �  � � � � �
� � 	 � � � � � � � � � � � � � , � � � � � �  � � � � � � � � � � � � � � � � � � � 	( � ) 
 � � � � � � � � 5 % � " � % � � ( � ) 
 � � � � � � � � 5 %B " � % � � ( � ) 
 � � � � � � � � 5 % B " � % � �

0 2 4 6 8 10 12 14 16
20

25

30

35

40

45

50

Number of Frames

R
M
S
 
E
r
r
o
r

� � � � � �  � � � � � � � � � � � � � � � � � � � � � � � � �  � � � 
 � �  � � �� � � � � � � � � � � � � � � � , � � � � � �  � � � � � � � � � � � � � � � � � � � 	 ��  � � � � � � � � � � � 
 � �  � � � � � � � 	 � � � � � � � � � � � � � , � � �� � � �  � � � � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � � � � �

Resolution enhancement ratio for Figure 9(1)(2)(3) is four,
and for Figure 9(4) is two. Effectiveness of the proposed
method using real images is also verified in these experi-
ments.

5. Conclusions

The proposed method of high-resolution color image re-
construction has advantage over existing solutions applied
to the similar problem. Remarkable effect of the proposed
method includes: (a) High quality color imaging: The pro-
posed method provides sophisticated signal processing al-
gorithm, outperforming existing alternatives in the perfor-
mance of high frequency signal restoration and false color
suppression. (b) Direct method: The proposed method is
not a mere combination of conventional techniques, con-
sisting of demosaicing and grayscale super-resolution. Se-
quential processing of the two conventional techniques re-
sults in a degraded image. The proposed method is thus a di-
rect method of effective image processing. (c) Post-process:
The proposed method does not require changes in capture
device itself, and can be implemented as a post-process soft-
ware. Although there is some conditions of capture device
suitable for online super-resolution, images captured in the
past can also be used for resolution enhancement.

One of our future work is the motion estimation of raw
images. Motion estimation is applied to the demosaiced
input images prior to the image reconstruction process in
this work. Verification of the preciseness of such a method
and the development of more precise and reliable motion
estimation method is of great importance. This is because
misregistration leads to modeling error of� , causing color
artifacts in image estimate. Although using severely aliased
input images is effective for super-resolution, motion es-
timation suffers from aliasing. Highly precise and reli-
able ”raw-to-raw registration” is thus an essential factorof
super-resolution using raw data.
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