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Abstract

This paper suggests a new color model for images taken
by digital cameras. We show that this color model is use-
ful for overcoming nonlinearities of digital camera sensors.
This model is suitable for color image segmentation and en-
ables one to easily manipulate and enhance the colors of an
image.

Figure 1. An RGB histogram.

1. Introduction

The problem of color representation affects almost ev-
ery field in computer vision. Many ways have been sug-
gested for modelling and representing colors. The RGB
color space is widely used for image capture and display,
however it is not considered an appropriate representation
for color. This is due to the strong correlation between
the three coordinates in the RGB color space. Other color
spaces have been suggested in order to separate color from
intensity and create a more intuitive color representation.

The HSV color space and its variants try to decorrelate
the information by separating color into hue, saturation and
value [2]. The CIELUV and CIELAB color spaces separate
color into one luminance coordinate and two color coordi-
nates and try to create a perceptually uniform color system
[2, 1]. Attempts have also been made to find application
specific color spaces. A good example of this is the ������
color space suggested by Ohta et al [13] as most appropri-
ate for segmentation tasks. All these color representations
do not take into account the color distortion made by digital
cameras and assume perfect color preservation of the cam-
era. Unlike lenses and geometric distortion which have been
extensively researched, digital camera color distortion is a
topic that still requires a lot of research. Besides sensor re-
sponse there are other mechanisms in the camera like white
balance and color enhancement that effect the RGB values
of the image. In this paper we chose to focus on sensor re-
sponse and design a simple model that yields good results.
Until recently digital camera sensors had a very nonlinear
response to illumination. The histogram of an image taken
by such a camera was usually very noisy and it was hard
to identify clear structures in it. The advancement of digi-
tal technology has given camera sensors a better and more
linear response. When looking at the RGB histogram of an
image taken by a modern camera it is possible to see struc-
tures as can be seen in figure 1.
In this paper we suggest a color model that is image spe-
cific. We outline the advantages of this model in image seg-
mentation and present different applications that use such a
segmentation. We show that this simple model yields very
good results for image segmentation and enables simple and
efficient color manipulation.

1.1. Image Capturing

A color image is a function of many parameters, the
important of which are: source light color, source geome-
try(shape), scene and object geometry, object albedo, cam-
era parameters (both geometric and light sensitivity param-



eters) and image processing done by the camera. Assuming
our world consists only of Lambertian objects, we can di-
vide these parameters into two groups. The first group con-
sists of the geometric parameters that have no effect over the
wavelength of the light which leaves the object’s surface.
The geometric parameters only affect the intensity of the
light reaching the camera and not its R, G, B ratio. The sec-
ond group includes source light color, the object’s surface
color the camera sensors’ response to light and color en-
hancement done by the camera, which are the main factors
affecting color. Since the first group of parameters does not
affect the wavelength (or hue), but only changes the light’s
intensity, we ignore it for the investigation of color. If we
assume we have a camera with linear sensor response and
with no color enhancement, all pixels belonging to the same
region with homogeneous color lie on a straight line through
the origin in the RGB histogram. This is in accordance with
the laws of colorimetry [4]. This model yields the following
formulation which is widely used for describing the RGB
values of each pixel:
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Where ��� �� and �� are the sensors response to the
incoming radiance ����, and � is the light’s wavelength.

According to this model the Nrgb (Normalized RGB)
color space is perfect for image segmentation. In practice
the Nrgb color space doesn’t yield good results. Some of
the reasons for this are found within the scene itself: specu-
larity, reflectance, several light sources with different colors
and inconsistent object’s albedo. However, other important
reasons lie within the camera itself, these reasons can be di-
vided into camera inaccuracy and color enhancement done
by the camera. The focus of this work is modelling the sen-
sors inaccuracy. unlike the rest of the above reasons, we
show that this distortion from the simplified model is easy
to model, yet once modelled yields results that are signifi-
cantly better than those of standard color representations.

Camera sensor inaccuracy can be divided into three main
types: a) In low intensities the sensors tend to be nonlinear.
b) In high intensities the sensors reach saturation. c) The
camera samples the world in a noisy manner.
Despite these inaccuracies, modern cameras have an almost
linear response to light in a wide range of intensities. In
this range, pixels belonging to a region with homogeneous
color will align roughly to the same line in the RGB color
space although this line doesn’t necessarily pass through the
origin. The reason for this is the sensors’ response to light,

which can’t be modelled using a linear function [5]. Two
different phenomena break the linear model: saturation and
cutoff. As a rule of thumb, the better the camera, the larger
its linear response range and the better it fits this model.
A typical sensor response is shown in figure 2. We would
like to mention that by cutoff we refer to the phenomenon
described in that figure and in equation 2. An immediate

Figure 2. A typical CCD sensor response.

result of this phenomenon is the fact that we can’t model
the color of a pixel using equation 1 and we should change
the equations as follows:
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Where ��� ��� �� are the cutoff values of the ��� and �
sensors and ����� ����� ���� are their saturation values.
According to the above equations, the color lines should all
intersect in one point (������������ �). Due to noise
and other color distortions the lines don’t intersect and in
practice we don’t require their intersection. Although this
modelling is only a rough approximation of the real color
distortion (or color enhancement) done by the camera it is
more accurate than the commonly used models and gives
better results for computer vision and image processing
tasks as will be shown later on.

Figure 3 shows two images of the same scene (objects
and lighting) taken by two different cameras and the lines
best describing their histograms. We see that not only do the
lines not intersect the origin, but different lines are produced
by different cameras, depending on the cameras sensors and
the scene. Even two images from the same camera with dif-
ferent lighting conditions qualitatively differ (mainly due to
white balance and other color enhancements done by the
camera). As a result, images taken by such cameras don’t
preserve the laws of colorimetry [4]. We therefore can’t cre-
ate a single representation of color that is accurate for every
image or even a color representation that will be accurate
for all images taken by the same camera. Instead we should



(a) (b)

(c) (d)

Figure 3. Figure (a) is an image taken with
a Sony TRV10E. (b) Is an image of the same
scene taken with a Canon Optura. Figures (c)
& (d) show 2D views of the best lines describ-
ing the histogram of the above images.

analyse each individual image in order to find the color rep-
resentation that fits it best.

Figure 4. Color line consisting of 5 color seg-
ments, 1) only the green sensor response. 2)
both green and blue sensors response. 3) all
three sensors response, general affine line.
4) the green sensor becomes saturated. 5)
both blue and green sensors are saturated.

(a) (b)

(c) (d)

(e) (f)

Figure 5. (a) Original image; (b-e) Segmenta-
tion according to (b) our color lines model,
(c) HSV model, (d) CIE-LAB model, (e) ������
model, (f)Nrgb model.

1.2. Modelling Color

According to the physical camera model, color should
be modelled using a general affine line in 3D rather than
using a line through the origin. Although the actual color
distortion in the image can be complicated due to a variety
of reasons, we show that the affine color segments model
yields results that are significatly better than those achivied



by standard color models. Moreover standard color models
do not consider color distortion and therefore fail in those
places our method does. In cases of images with saturated
colors, we link two and even more color segments together
in order to create a single model that describes the saturated,
non saturated and low intensity pixels of the same object
which has a single color in the world. We call a group of
one or more linked color segments a color line. Up to two
color segments can be used in order to describe the saturated
object’s color (once the third sensor becomes saturated, we
loose all color information and can no longer recover any
color information from the histogram). Theoretically, two
more color segments can be used in order to describe the
intensities below cutoff values, in practice though, these
regions in the histogram are usually very dense and it is
difficult to separate the different segments. In their work
from 1990, Klinker et al [6] proposed the T model for mod-
elling specularity. Their model introduced affine lines in
the RGB histogram for the modelling of specular image re-
gions. For non specular regions however, their model is lin-
ear, while ours is affine as well. Another similarity between
the models is the fact they both handles saturated colors but
Klinker’s model refer to the phenomenon only in the con-
text of specular image regions, while our model handles it
in the general case and we suggest ways of overcoming that
problem. Figure 4 shows a color line consisting of 5 color
segments. We suggest that modelling color as color lines in
RGB color space is a better color model than other linear
or non-linear color models for images taken by digital cam-
eras and that the model is useful for overcoming the digital
cameras’ inaccuracy.
In order to assess our claim, we show an experiment that
compares the color modelling quality of different color rep-
resentations. For the experiment, we manually segmented
an image to its different regions. We then chose the best
model for each region’s color - in the ������, HSV and CIE-
LAB color spaces, the model is a point in a 2D color plane.
For the Nrgb color space it is a line through the origin in 3D
(or a point in 2D). For our model it is a color line. We then
associated each pixel to its closest model according to the
different color representations. In this way we tried to use
color information alone for the segmentation task and ne-
glected all other segmenter specific parameters. The results
seen in figure 5 show that our color representation mod-
elled the color better than the other color representations.
The differences between the results in the experiment are
only due to the qualitative differences in the modelling of
color between the color representations and not due to any
segmentation algorithmic differences. Although this color
representation describes color better than the more common
representations as shown above, it is still a very simple one.
It is very easy to manipulate a pixel’s color by manipulating
the color line as shown in the following sections.

2. Implementation

Searching the RGB color space for the optimal line like
clusters is a difficult problem (NPC). Approximations to
that problem like the Hough transform and Ransac [8, 9]
are also computationally expensive. The large amount of
noise in the histogram domain does not make the search
any easier. This noise is a result of various reasons, some
of which are easy to handle. A good example of this is
the areas along edges between different objects, where the
camera interpolates the colors of the objects. As a result of
this interpolation we have a thin membrane connecting the
clusters, creating a planar cluster rather than two separated
line like clusters. Either ignoring pixels along edges or
cleaning the histogram using filtering can handle this.
Specularity is yet another problem that changes the object’s
color, which can also be handled through special techniques
[11]. Another difficulty in finding the best lines describing
the histogram is due to the fact that in most images the
colors tend to be very grayish and the histogram points are
grouped in a small region along the (0,0,0) - (255,255,255)
line.
In spite of the above problems, we are able to use natural
image properties in order to make this search very feasible.
One property that can be used in order to simplify our
search, is the fact that we are actually not looking for a
general line in the histogram 3D space, but we do have a
strong knowledge of the line’s orientation. This fact helps
our search in two ways: a) it provides us with an easy tool
for finding points along the color segments in the image
histogram and b) it helps us to match these points to form
the actual 3D color segments.
Finding the color model of a given image is performed in

Figure 6. Histogram slicing.

three steps. The first step is creating histogram slices. This



is done by first converting the histogram to color space
that has three coordinates, one is a distance from the RGB
origin (or intensity) and the two other represents spatial
angle in the RGB color space (or color). we then construct
each slice �� as follows:
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Where ������ is the point �� �� in the slice ��, �������� is the
3D histogram point having an intensity coordinate (norm) �
and the color (angular) coordinates �� �� and ��
� and ��
�
are the intensity summation range of the slice � �.
The next step is finding the local maxima in these slices.
Although our model permits general affine lines, we do ex-
pect the general direction of the lines to point towards the
origin. as a result, we expect the color lines to intersect the
histogram slices in a point (due to the affect of noise, color
variety, reflection etc, it doesn’t intersect in a point, but in a
small region.) and not to be coplanar with these slices. This
intersection point forms a local maxima in the histogram
slice. We now have for each slice the points in which the
color lines intersect the slice. The final step is matching
these points to form the color lines. The matching is done
in a very simple way. We store a list of color lines and for
each new point (a point that hasn’t been allocated to a line)
we allocate it to the nearest line if it’s distance from the line
is below a certain threshold or create a new line if it is not
close to any of the lines.
Although this approach does not utilize spatial information,
it makes strong use of our prior knowledge of the world
and in practice gives good results even for very complicated
scenes. We would like to mention that in fact, considering
the extreme case, when the entire RGB cube is considered
as one slice, this approach would be identical to performing
the segmentation in the 2D Nrgb color space. Nevertheless,
there are two main advantages to slicing the histogram: a) it
lets us use the affine color segments model which is stronger
than the Nrgb model which permits only linear segments,
and b) it is less sensitive to noise in the histogram domain
since it makes a usage of locality in the histogram domain.
Figure 6 illustrates the histogram slicing used to recover the
color model. Figure 7 shows the results of using the his-
togram slicing approach for recovering the color model of
complicated scenes downloaded from the web.

3. Applications

This new proposed color representation approach has
several advantages over other common ones: Representing
the color as color line gives a model that is strong enough
to define color on one hand but is very compact and easy to
manipulate on the other. Many applications can utilize this

(a) (b)

(c) (d)

(e) (f)

Figure 7. (a) original image downloaded from
the Kodak web-site. (b) original image down-
loaded from the Canon web-site. (c)&(d)
the image, segmented to the color segments
found, each pixel colored to the middle of the
color segment describing its color, the total
number of colors is 26 for (c) and 47 for (d).
(e)&(f) are the same as in (c)&(d), only this
time, the color of each pixel has been as-
signed to its projection upon the color seg-
ment describing its color.

representation for segmentation or various types of color
manipulations such as: color correction, fixing saturated
color components and even replacing colors of entire ob-
jects. We implemented a few examples to demonstrate the
strength of this model. We must mention that the imple-
mentation of these application is very basic and only comes
to demonstrate the utility of our color model.

3.1. Segmentation

Color representation is a crucial factor for color image
segmentation and many attempts have been made to find
the best color space for the task, yet no one model has
proven to be always superior [12, 7]. We implemented a
simple image segmenter that utilizes our color representa-
tion. Our segmenter just recovers the color model as de-



scribed in the implementation section, assign each pixel to
the color line closest to it and then remove color lines with
less than one percent of the pixels and reassign their pix-
els. The segmenter does not use any spatial information
and is not claimed to be generally superior to any top of the
line image segmenter. It only comes to demonstrate the ad-
vantages of our color representation and we show it gives
very good results using color information alone. We com-
pared the number of color found by our segmenter and the
visual segmentation correctness to those of a mean shift im-
age segmenter working in the LUV color space downloaded
from [3]. Our segmenter was found to be much less sensi-
tive to luminance changes and yet did not group differently
colored pixels. As a result, while our segmenter usually
segmented the image into a smaller number of segments
than the mean-shift segmenter (in spite the fact that we used
the mean-shift segmenter in under-segmentation mode), the
segments produced by our segmenter are generally superior
as can be seen in figures 11 - 14 (last page).

(a) (b) (c)

Figure 8. (a) Original image. (b) Segmentation
according to our color line segments model.
(c) Segmentation according to our model, this
time, saturated pixels were colored according
to their saturation color

3.2. Saturated color correction

Another application of this method is correcting the
color of saturated image pixels. The dynamic range of a
typical natural or artificial scene is usually larger than the
dynamic range that the camera’s sensors can capture. As
a result, in many pictures some of the pixels have at least
one saturated color component (people are often not sen-
sitive to this). In the histogram domain, this phenomenon
appears in the form of a knee in the color cluster’s line, the
line looks as if it has been projected upon the RGB bound-
ing box. By modelling the color as color lines, it is easy to
classify saturated pixels and non saturated ones as belong-
ing to the same object as shown by figure 8. This not only
achieves a better segmentation by classifying saturated pix-
els to the correct color line, but also allows us to correct the

color of these pixels. We correct the saturated component
by substituting one of the non saturated color components
in the line equation of the non saturated line segment and re-
trieving the saturated component. (we can even use one non
saturated component to correct the other two). The color
correction results is shown in figures 9. This method works
when we model the color as lines through the origin as well
(or Normalized RGB segmentation) but the results will only
be as good as the segmentation and currently the Normal-
ized RGB color model is not an accurate model for images
taken by digital cameras. By correcting the saturated pixels
we in fact increase the dynamic range of the image, there-
fore making it unsuitable for direct presentation with typical
display devices. In order to readjust the dynamic range we
can use gamma correction or other methods for high dy-
namic range compression [10]. Simply rescaling the color
will usually create an image that is significantly darker than
the original image and therefore yields poor results.

(a) (b)

(c) (d)

Figure 9. (a) Saturated image. (b) Using
gamma correction. (c) Correcting saturated
pixels and rescaling the colors. (d) Correct-
ing saturated pixels and using gamma cor-
rection. It is possible to see that in figures (c)
and (d) the saturated (yellowish) pixels in the
left part of Pinocchio are corrected but the in-
tensity range has increased from 255 to 305
and the image in (c) is too dark. The intensity
in image (d) has been corrected using gamma
correction.



3.3. Color editing

Creating a color representation using indices to color
lines and norms enables us to manipulate color very effi-
ciently and in a very intuitive way, as can be seen in figure
10. We can increase or decrease the color saturation of an
object in an image by moving the object’s color line from
or towards the central line ([0,0,0] - [255,255,255]). We can
increase or decrease object’s intensities by moving their col-
ors up or down along their representative color line. We can
increase an object’s contrast by stretching its color line and
we can change an object’s color completely and yet preserve
all its intensities, and therefore apply changes to big regions
in the image at a very low computational cost by moving the
whole line.

(a) (b)

(c) (d)

(e) (f)

Figure 10. (a) Original image (segmented into
3 color lines). (b) Decreasing the color sat-
uration. (c) Increasing the color saturation.
(d) Shifting the intensities making one object
brighter and the others darker. (e) Stretching
the lines. (f) Changing colors.

4. Summary and Conclusions

We proposed a new way of representing color using a
simple physical model of digital image capture. This model
is simple, yet rich enough to yield good results in several
applications. We use this representation of color for image
segmentation and in order to enhance an image’s color.
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Figure 11. (a) An image captured using a digi-
tal camera. (b) Using a mean shift segmenter
working in the LUV color space - 9 segments
found. (c) Using our color lines segmenter -
10 segments found.

(a)

(b) (c)

Figure 12. (a) An image downloaded from
Berkeley’s segmentation dataset. (b) Using
the mean shift segmenter - 5 segments found.
(c) Using our color lines segmenter - 2 seg-
ments found.

(a)

(b) (c)

Figure 13. (a) An image captured using a dig-
ital camera. (b) Using the mean shift seg-
menter - 8 segments found. (c) Using our
color lines segmenter - 3 segments found
(only a minor over segmentation).

(a)

(b) (c)

Figure 14. (a) Another image downloaded
from Berkeley’s segmentation dataset. (b)
Using the mean shift segmenter - 9 segments
found. (c) Using our color lines segmenter -
4 segments found


