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Abstract

Three-dimensional morphable models of object classes
are a powerful tool in modeling, animation and recognition.
We introduce here the new concept of regularized 3D mor-
phable models, along with an iterative learning algorithm,
by adding in the statistical model a noise/regularization
term which is estimated from the examples set. With regu-
larized 3D morphable models we are able to handle miss-
ing information, as it often occurs with data obtained by
3D acquisition systems; additionally, the new models are
less complex than, but as powerful as the non-regularized
ones. We present the results obtained for a set of 3D face
models and a comparison with the ones obtained by a tra-
ditional morphable model on the same data set.

1. Introduction

Image morphing [16] consists in generating, given two
input images, a sequence of new ones describing a smooth
transition between the two inputs. Equally important is that
at the same time it preserves all their essential features. Ex-
ploiting the fact that the image of an object depends on its
shape and on its appearance, a correct morphing can be
achieved by deforming the shapes of the input images in
such a way that their features are aligned while their ap-
pearances are kept constant. A morphed image is obtained
by interpolating with the desired coefficients the two de-
formed images, also known as warped or shape-free images
[8]. Morphing among objects belonging to the same class
is used in Computer Vision for implementing analysis-by-
synthesis techniques, that use a statistical model of the im-
ages of a certain class in order to analyze them: instead of
directly building a statistical model from the training im-
ages, one estimates their correspondence with a reference
image and then build a linear model of the warped images
[15, 3].

3D morphable models [5] are based on the same idea but
use 3D meshes as training data rather than images, thus pre-
senting the advantage of being independent from pose and
illumination. The correspondence estimation in the case of
3D polyhedral surfaces [11, 12, 9, 1] consists in finding a
mapping between the points of the input models. This is of-
ten performed interactively by the user, who selects a finite
number of correspondences between the vertices of the two
surfaces; from this sparse set, the correspondence for the en-
tire surfaces is estimated. The reconstruction of the whole
function can be more or less sophisticated, ranging from
simple linear interpolation to RBF networks [17].The ad-
vantage of such an approach is that it can be as precise as
one wants, by manually defining more and more correspon-
dences; however, when morphing between more than two
models (polymorphs) is required, manual selection of the
desired features can prove impractical.

In the original paper the correspondences used in build-
ing the 3D morphable model were learnt via an automatic
method [5]. By parameterizing in 2D the input 3D exam-
ples, the correspondences could be estimated using a mod-
ified version of the optical flow; the same algorithm had
been in fact already employed for building morphable mod-
els of images [14]. In that context, the optical flow was
wrapped into an iterative process estimating at the same it-
eration both the correspondences and the morphable model.

The positive effect on the reconstruction of partial data of
the assumption of an additive Gaussian noise perturbing the
complete data has been already clarified [6]. On the other
hand, handling missing data is important not only in fitting
3D morphable models to novel examples, but in learning
them as well, since acquisition systems do rarely provide
3D surface data without holes or other errors; also, the input
data could present boundaries that have been artificially set,
leading to errors in the correspondence estimation. We ex-
tend the 3D morphable models with the assumption that the
training vectors with which they are built derive from a mul-
tivariate Gaussian distribution with additive Gaussian noise.
We show how this assumption leads to an algorithm which



iteratively estimates the data distribution and the correspon-
dence, and that compared to other iterative algorithms pre-
viously proposed ([14, 5, 4]) has the big advantage of be-
ing able to process partial information. We call the 3D mor-
phable models derived in such a way regularized, because
of the connection with regularization methods of statistical
learning.

The paper is organized as follows:
� We first describe formally the polymorphs for 3D

triangular meshes and the 3D correspondence prob-
lem (sec. 2); then we show how this problem can be
rephrased as an image registration problem (sec. 2.1)
and equipped with this equivalent formulation, we de-
scribe briefly a previous method used to solve the 3D
problem by making use of optical flow (sec. 2.2).� Assuming the 3D correspondence problem has been
solved, in section 3 we summarize the statistical frame-
work used to model the data distribution. This model
is then used to give a definition of the regularized 3D
morphable models.� In our framework, the 3D correspondences and the sta-
tistical distribution of the data, as well as the recon-
structions of missing information, are estimated to-
gether in an iterative process. This new learning algo-
rithm is described in section 4.� In section 5 we apply the learning algorithm to a train-
ing set of 200 3D models of human faces, showing the
improvements both in term of quality of the 3D corre-
spondence and of the resulting statistical model.

2. Correspondence Estimation

In order to define the correspondence problem in 3D, we
limit the discussion to 3D triangular meshes and introduce a
formal definition of them, by making use of

�
-dimensional

simplicial complexes. Such a complex � , with � vertices,
is a set whose elements can be vertices ����� , edges ���
	��� or
triangles ���
	���	
��� , with the indices �
	���	
����������������� : it de-
fines the connectivity of a given mesh � . The actual shape
and appearance of � are defined by two vectors � �"! #%$�&
and '(�)! #*$
& : if +-,�.�	�/0.�	
12.435�6! #*$ is the position of the ver-
tex ���
� , and +7#8.9	�:;.�	�<8.=3>�?! #8$ its color, � and ' are de-
fined as 1

� @ +-,�AB	9/CA2	�1BA�	�������	9, & 	9/ & 	
1 & 35�)! # $
&' @ +7#;A2	�:%AB	�<;A2	������D	�# & 	�: & 	
< & 35�6! # $
&
Then, a 3D triangular mesh with colored vertices can be rep-
resented as

�E@F+4�G	H�I	
'%3
1 Usually (e.g.[10]) J and K are defined as sets of L vectors MON�PRQ7SDPRQ=T
P7U

and MWVXP�QRYZP�Q�[XP7U , but we prefer to stack all these vectors together in
order to allow us to combine them linearly.

The correpondence problem arises when we have two
meshes, �\A and �^] , with �XA and �_] vertices respec-
tively, and we want to morph between them. To perform
the morph, we need to transform one of the meshes in such
a way that it uses the same connectivity of the other mesh
and at the same time it approximates well the original sur-
face:

�a`] @b+7�cAd	e�f`] 	�'%`] 3�gh�a]
The transformed mesh � `] is called warped mesh, and with
it we can write the morph as a parameterized mesh:

�i+7j�3k@ +9�mlnj�39�oA�p jD�a`]
@ +4�cA2	�+��mlqj�3��rA�p j��_`] 	�+9�mlnj�39'>Asp jD't`] 3

For the essentail features of �i+4j�3 to be kept intact while
varying j , not only has the warped mesh to approximates
the original one, but its � -th vertex has to correspond to the
� -th vertex of � A . We need therefore a correspondence be-
tween the vertices of � A and the surface defined by � ] ,
so that we can build � `] accordingly.

In order to be able to define such a correspondence, we
need a parameterization of the 3D mesh, so that we can
identify its points by a vector of coefficients. A natural
parameterization is given by barycentric coordinates; any
point in the triangle ���e	=��	e��� can be represented with three
coefficients, u . , u�v and u�w , which define its position (colour):

x @�u . x . p u
v x vypzuDw x w
and with additional constraint

u . pzu�vyp u�w*@F�
Note that if the point is on an edge, then only the coeffi-
cients relative to the extremes of the edge will be different
from zero; in case the point is one of the vertices the cor-
responding coefficient will be 1. In general, any point of a
3D mesh is defined in barycentric coordinates which cover
the whole mesh, by means of a vector {n@b+4u�Ad	�������u & 3 with| { | A}@~� and at most three coordinates different from zero.

Denoting by { a point of � A , and by � a point of � ] ,
both in barycentric coordinates, a 3D dense correspondence
is defined by a 1-1 continuous function

�6@h�5+7{Z3
Given the 3D correspondence, and denoting by { . the
barycentric coordinates of the � -th vertex of � A and by
� . @��}+-{ . 3 its corresponding point in � ] , the warp is
a transformation where � `] and ' `] now stack � A vectors
(rather than �f] ) defined by

+-, . 	�/ . 	
1 . 3�`�@ &B��
v��XA��

.v +7,�v�	�/2vB	�1�v�3

+7# . 	�: . 	
< . 3�`�@ & ��
v��XA �

.v +4#mv0	
:�v0	�<�v�3



In fact, the warping is nothing else than a resampling of the
original mesh �a] , so that the sampling points have now
the same number and the same positions (with respect to
the features) as in � A .

The correspondence problem consists in choosing the
optimal � , so that the resulting morph �i+4j�3 is smooth over
the parameters domain and preserves all the essential fea-
tures. Although these 3D correspondences can be defined
manually, an alternative strategy is to turn the 3D problem
into an image registration problem, for which many auto-
matic algorithms exist.

The scheme described above can be extended to a set of� meshes � . to obtain a polymorph, by defining a com-
mon connectivity � and for each mesh a 3D correspon-
dence between � and � . . Then, denoting by � `. and ' `.
the shape and texture vectors of the warped mesh � `. , we
can write the result of a polymorph as

�i+�� 	�{Z3�@b+7�"	 �� . �XA � .=�f`. 	
��
. �rA uD.7't`. 3 (1)

with the constraints
��� � . 	
u . � � (that is we stay in the

convex hull of the examples). One should be aware how-
ever, that within this setting � must be limited to a set of
vertices for which the correspondences can be defined to all
the meshes �^. , otherwise some of the vectors � `. and ' `.
could be incomplete and the equation (1) would be mean-
ingless. We will see in section 3 how the morphable model,
making use of the statistical information, allows to relax this
restriction.

2.1. 3D Correspondence as 2D Registration

Two-dimensional parameterizations of the 3D meshes al-
low to represent them as images: then, their features are
turned into image features and automated image registra-
tion algorithms can be applied.

Given a set �\@o�
	 A 	�������	�	Z&�� , where each 	 . defines
a position in ! # ] for the � -th vertex of the mesh, and a 1-1
mapping �� +-{I3�� &�

. �XA u . 	 .
which maps each point of � to a point in the plane we
have a 2D parameterization of the mesh defined by the in-
verse

��� A . Using the 2D parameterization one can repre-
sent the 3D mesh with an image ��� ! # ]�� ! #�� (that is, the
image has 6 channels) defined in such a way that

��� �� +-{I3�@ &�
. �rA u . +-, . 	�/ . 	�1 . 	
# . 	�: . 	�< . 3

which means that the position and color of a point of �
is the linear interpolation of (at most) three pixels of � . Ac-
cordingly, all the 3D features of � are projected to features

in the image, and the 3D correspondence between points of
two meshes becomes a mapping ����! # ]�� ! # ] , some-
times known as flow field. Given � , the 3D correspondence
� from � A to � ] can be found as

�}+-{I3�� � � A � ��� � � "! +-{I3
The point { is first mapped to its 2D projection in � A by� "!

; from there it is mapped by � to a corresponding posi-
tion in � ] , and it is finally back-mapped to a point in � ] by
the inverse

� � A
� .The optimal � is, as explained in the introduction, not

easy to define formally. In practice, one minimizes the cost
function #%$ !'& $

� +(�r3s@ � ) & *%+ +�� ] ����	,� A 3 (2)

taking care of choosing a distance function + +�-O	.- 3 which is
appropriate (that is, it yields satisfying results) for the given
problem setting.� is derived by converting the vertex positions to cylin-
drical coordinates +0/X	21f	�3B3 :

+0/ . 	'1 . 	�3 . 3�@b+54'687 � A +7, .:9 / . 3H	�1 . 	.; , ]. p / ]. 3
and then setting a vertex 2D position to its azimuth and
height values: 	 . �~+</�.9	'1.�3
Note that with this parameterization, we can reduce the di-
mensionality of � since two of the three geometry coeffi-
cients ( / and 1 ) are already given by the position in the im-
age:

��� �  +-{I3s@ &�
. �XA uD.9+(3�.
	�#8.�	�:;.�	�<8.�3

As distance measure we use a weighted =}] -norm of the
form + +0>t	
<>3y@ �

.(?A@,B & CD& E�& F�GIH . | >�.�ln<8. | ] (3)

where the weights H . compensate for the dishomogeneity
between the different dimensions.

The problem of finding the optimal � is what is known
as image registration, and it is a fairly standard problem in
computer vision, which however does not mean that it has
been solved. The optical flow is one of the algorithms used
to tackle the problem, and a modified version has been used
in previous works in order to automatically solve the corre-
spondence problem in 3D [5].

2.2. 3D Correspondence via Optical Flow

In its traditional form, the optical flow takes as input
two gray-level images !�A0+-,f	�/ 3 and !�]0+7,f	9/ 3 , assumed to
be snapshots taken at different times of the same sequence



! +7,f	9/�	��93 . The optical flow equation is derived from the fun-
damental assumption that objects in the sequence maintain
their brightnesses:

+ !+ � @����
� !� , p����

� !� / p
� !� � @

�
Assuming that !�A)@ !�+-,X	9/�		��A�3 and !D]G@ !�+-,X	9/�		��A p~�23 ,
and that in a neighborhood # +-,�
�	9/�
23 of +7,�
 	9/�
23 the vec-
tor field � is approximately constant, a local solution for
+-,�
�	9/�
23 of the above equation can be approximated by min-
imizing the cost function#

+-, 
 	9/ 
 3s@ �C� ��� & ����� +��>! ] - � p�� ! 3 ] (4)

where � ! +7,f	�/�3�@h! ] +7,f	9/ 3�l�! A +-,X	9/ 3 . Since the assumption
of local constancy of � is in general not satisfied, it is advis-
able to use a coarse-to-fine strategy [2]: two Gaussian pyra-
mids of the images are built, and then the algorithm is ap-
plied from the coarsest to the finest resolution, using the re-
sult of a coarser resolution to pre-warp the level currently
processed. The rationale is that at the coarsest level of the
Gaussian pyramid one expect the assumption of local con-
stancy of the flow to be approximately exact, and at finer
levels the pre-warping should compensate for the biggest
variations on the field.

In the case of the image representations �2A and �D] of two
3D meshes �\A and �^] , equation (4) is replaced by#
+01�
0	'/�
d3�@ �

� & � ? C� � � & � �	� | � �D]�+01f	2/�3 - �s+<1_	'/�3
p�� �B+01f	2/�3 | ]
Note that this last equation can be derived from (2) by ap-
proximating ��] �%� with a first order Taylor expansion and
by rescaling the values of the images �2A and �D] with the
weights H . .

Although the optical flow should work in theory with
the intensities of the images, experience shows that it is of-
ten better to use their gradient, and accordingly a Laplacian
pyramid rather than a Gaussian one. This modification how-
ever makes the algorithm much more sensitive to the bound-
aries of the objects in the images, which can sometime lead
to undesirable results. In fact, in case of projections of 3D
meshes, missing data will lead to artificial boundaries which
will introduce errors in the estimated correspondence; in
section 4 we describe how to avoid this problem.

3. Regularized Morphable Models

Equation (1) defines a 3D polymorph, restricted by ne-
cessity to the minimum common domain of the different
meshes between which we morph. We show now how we
can overcome this restriction by exploiting the statistical in-
formation of a set of examples, building what we call a 3D
morphable model.

Assume that both the geometry and texture warped vec-
tors of the examples, � . and ' . , are obtained from a linear-
Gaussian generative model. That is, we assume that all the
shape vectors � (the argument is similar for texture vec-
tors), once they are warped to a common space, are gener-
ated as

�G@��� p�� � p"! (5)

where � �n! #*$
&$# w with �&%('B� and both � and ! are ran-
dom variables drawn from a Gaussian distribution:

� ) *F+ � 	2��3!+) *F+ � 	-, ] ��3
In case of , ] @ � , the relation between the observed

variable � and the unobserved variable � would be com-
pletely determined by the mean �� , which can be estimated
with the sample average +9� 9 � 3$. �. �rA � . , and by the ma-
trix � . The model coefficients of a shape vector � are given
by /

�n@~+�� 01�>3 � A �20y+=�6l��� 3
and we look for the matrix � that minimizes the reconstruc-
tion error over the example set,

|43 l��c+5� 0 � 3 � A � 0 3 |
where

3
is the 'B�76 � data matrix holding in its � -th column

the vector �f.sl��� . Principal Components Analysis (PCA)
finds the solution by solving the eigenproblem of the data
covariance matrix

383 0 ; without delving into details, it can
be shown that by decomposing

3
via Singular Value De-

composition (SVD),

3 @:98;=<>0
the optimal solution is given by �b@:9?; .

If , ]A@ � , the solution is slightly more complex: the ran-
dom variable � has the normal distribution

�B)�*F+��� 	��C� 0 pD, ] ��3
and its model coefficients are/

� @ +5� 0 �hp", ] ��3 � A � 0 +��)l��� 3
@ +E; ] pD, ] ��3 � A ;=9 0 +��)l��� 3 (6)

Although the mean can be still estimated via the sample av-
erage, PCA estimate of the matrix � is no longer optimal;
however, an iterative EM-algorithm can be used to estimate
both the generative matrix and the noise , ] [13]. It is inter-
esting to note that , ] is related to the effective degrees of
freedom of the ridge regression fit

+GF +E, ] 3s@ w�
. �rA

H ].H ]. pD, ] (7)



where H ]. is the variance of the � -th principal component.
The above equation tells us that the greater the value of , ] ,
the more constraint will the model be, since the value of+5F + , ] 3 decreases.

Using the EM-algorithm we can have an estimate of
the full matrix � even if some of the elements of � are
missing (or unreliable). Note that in this case the inference
equation (6) would have to be modified, since the vector
� would have fewer dimensions. Denoting by � ` the ma-
trix obtained by removing from � the rows corresponding
to the missing dimensions of � , and decomposing it by SVD
into � ` @�9 ` ; ` < ` 0 , we recover the shape coefficients as/

� @ +�� ` 01� ` pD, ] ��3 � A � ` 0s+��)l �� 3
@ < ` +E; ` ] pD, ] ��3 � A ; ` 9 ` 0 +��)l��� 3
@

� � A�
. �XA � `. H `.H ` ]. pD, ] � `. - +=�6l��� 3 (8)

In the case of more dimensions than examples, and as-
suming we want to retain all the + � l ��3 principal compo-
nents, the estimate of , ] given by the EM-algorithm would
be zero, because the reconstruction error would be zero.
However, assuming we have a test set of examples not used
in building the model and which we denote by the matrix

�
,

one can apply the maximum-likelihood estimator of , ] , de-
fined as

, ] @ � 3 � ��� 0 l /��� 0�� 9 � ] (9)

where the matrix

/�
holds the reconstructions of the test ex-

amples, derived from the inference equations (6) - full in-
formation - or (8) - missing information. In case no test set
is available, cross-validation can still be used.

Given the generative model of equation (5), we can
rewrite the equation (1) for a polymorph as

�i+ �s	��X3s@b+7�G	��� p �
	��y	 �� p�����X3 (10)

where � and � are ( � l � )-dimensional vectors. Note that
the simplicial complex � in this case has not to be restrict
to a common domain for which we have correspondence to
all the examples, because all the elements of the matrices� 	 and � � will be defined even if for some of the examples
no corresponding point was found. The above equation is
the definition of a 3D morphable model.

By following the same procedure described in sec. 2.1,
and denoting by � the coefficients of a rigid transformation,
we can project the morphable model described by equation
(10) to an image representation ������� +-,f	�/ 3 . Note that in
this case the image resulting from the projection depends
on the model coefficients � and � and on the rigid trans-
formation defined by � . In particular, the 2D projections 	 .
and the first dimension of � will depend on � and � , while
the remaining dimensions of � will depend on the � .

Figure 1. Rather than directly estimate the
correspondence between the reference (left)
and an example (right), an approximation of
the latter is computed (middle) and used as
reference in estimating the correspondence
by optical flow.

4. Learning Algorithm

Algorithm: Iterative Learning

Input: �2� .�� �I@F�s����� � �
Output: �i+E�y	��r3 , , ]

1 initialize �i+E�y	��X3 to � w and > A to � ;
2 while >mv��@ � �0	������ � � do
3 foreach � . �I� 9� >mv do
4 if ���@F� estimate +

/
�r.9	

/
� .�	 /� .�3 and

/�D. ;
5 estimate

/�_. ;
6 warp: �a. � � `. ;

end
7 select subset > v��XA�� > v ;
8 ��� `. � ��� > v��rA �� �i+ �s	��X3 ;
9 estimate

/
, ] ;

end

We can now reformulate the registration problem of
equation (2) so that the reference mesh �\A is actually a
3D morphable model. Substituting �2A with � + �s	���	���3 and
using as metric the reweighted =5] -norm defined by equa-
tion (3), we have for each example � . :#

. +(��	-�s	���	���3s@ � ) & * | � . ���6l!� +E�y	��s	���3 | ] (11)

To minimize the error defined in (11), we take an itera-
tive approach, alternating between the estimation of the pa-
rameters + �s	���	���3 and of the flow � ; the whole algorithm
can be subdivided in six distinct blocks:

Initialization (step 1). We choose one of the examples, say
� w , and set the morphable model to it:

�i+E�y	��X3�� �^w;@~+4� w 	e�XwC	
'%wB3



The choice of the initial reference �\w is highly influential
on the final result: since it provides the common domain of
parameterization � , it should ideally provides all the fea-
tures present in the other samples.

Model Fitting (step 4). The morphable model is fitted to the
example �^. by maximizing the posterior probability

� + �s	���	�� � � . 3�� � +0� . � �y	���	��C3�� +E�Z3�� + �r3�� + ��3
Assuming for the parameter � a Gaussian distribution with
mean �� and variances , ]CD& . , let#

� +E�y	��s	���3 @ l ���
	�� � � + �r3�� + �X3�� + ��3��
@ | � | ] p | � | ] p � .

+ � . l �� . 3 ]
, ]CD& v

be the cost function derived from the prior probabilities of
the model parameters. Then, for each input example � . ,
we minimize#

@ l ��
	�� � + �s	���	�� � ��.=3
@ �

, ]C # . +(��	-�s	���	���3 � � � 
mp # � + �s	���	���3
by using a stochastic Newton descent (SND,[7]); note that
the variance , ]C of the residuals is, although related, dif-
ferent from the regularization term , ] , and that its value is
empirically chosen. The approximation of �o. is regular-
ized by reconstructing it via equation (6), and we denote
its cylindrical projection by

/��. . Note that at the first iter-
ation, when no morphable model has been estimated, this
step is skipped and all the

/� . are set to the cylindrical pro-
jection of the reference ��w .
Optical Flow (step 5). For each input example � . , we
minimize #

. +��X3y@ � ) & * | � . ���6l
/� . | ]

via optical flow, as described in sec.(2.2). However, the
squared distance is not summed over the whole images, but
rather only in the regions where ��. and

/�D. overlap. This con-
dition is required because of the high sensitivity of the opti-
cal flow algorithm to the boundaries. If the 2D projection � .
is missing some part, it will present a boundary which in the
approximation

/� . is placed somewhere else (since the mor-
phable model has the missing part); the optical flow, trying
to make the boundaries match, will end up with a wrong es-
timation of the correspondence.

At the first iteration, we also compute an estimate
/� of

the rigid parameters by compensating for the rigid compo-
nents in the flow � ; this is not needed at the subsequent
steps since the estimate given by SND is much more pre-
cise.

Warping (step 6). Each input example � . is warped to
� `. as described at the end of section 2.1. However, spe-
cial attention must be paid in the implementation to the fact
that the estimated correspondence incorporates a rigid trans-
formation, either as a rigid component in � or explicitly
through the parameter � of � + �s	���	���3 . In order to model
with �i+E�y	��r3 only the non-rigid deformations of the ob-
ject class, we have to get rid of these rigid components. In
case some part of

/� . was not included in the minimization
of step (5), the corresponding vertices of the warped mesh
� `. will be marked as being missing.

Subset selection (step 7). At each iteration, we select a
training subset >�v��XA , with>mv�� >}v��XA��h� �0	������ � �
The warped meshes � `. with �)� > v��XA will be used for
building the model. Given the difficulty in automatically as-
sessing the correctness of correspondence, this step is car-
ried out by a human supervisor.

The supervisor evaluates the correspondence of an ex-
ample by checking its caricature and anti-face. Caricatures
are 3D meshes computed by adding to the position (or tex-
ture colour) of each vertex of the example its difference (or
a multiple of it) from a given reference, tipically the aver-
age. In the case of anti-faces the difference is subtracted to
the reference. In terms of morphable model, this is equiva-
lent to multiply the (shape) coefficients � by a factor of ei-
ther 2 (caricature) or -1 (anti-face). Correspondence errors
show up as visible artefacts in caricatures (of shape and of
texture too) and anti-faces.

Statistical Analysis (steps 8-9). The warped examples
��� `. � �y� > v��XA � are processed as described in sec. 3, in or-
der to estimate the matrices � 	 and �� which defines
the morphable model (see equation (10)). A new esti-
mate of the noise covariance is also computed as in equa-
tion (9); note that during most of the iterations, the set of
warped meshes � `. is partitioned into a training set >�v��XA
used for building the model, and the complement with re-
gard to the entire set of examples; this latter subset can
be used as test set in estimating the noise. A final esti-
mate of the noise, that is when all the examples are used for
training, is obtained via 10-fold cross-validation.

5. Results

Figure 2 shows three examples of wrong correspon-
dences that the optical flow may produce, because of the
forced matching between boundaries artificially set. The
three rendered images on the top row are shape caricatures
of samples for which this problem occurred. On the bot-
tom row the results of the learning algorithm are shown:
as one can see, the artefacts of the above row have disap-
peared.



Figure 2. Three examples where artefacts given by previous methods (top row) are removed (bottom
row). The images are rendered from shape caricatures (see sec. 4) of warped 3D meshes.

One should be warned, however, of the intrinsic limita-
tions of statistical reconstruction when dealing with high-
dimensional data. In this case, an edge effect can occur, by
which all new data tends to be at the edge of the distribution
of training data, causing the reconstruction to be in effect
an extrapolation. When this happens, the maximum-likely
reconstruction of the data can often be sub-optimal for vi-
sualization tasks, especially because of the lack of an ex-
ternal constraint on the continuity of the surface. In figure
3 we show a 3D model of a face bounded to a small re-
gion (compared to the typical data we use) and with holes;
in this case more than half (53.8%) of the vertices of the
common domain is missing. As shown in the figure, the sta-
tistical reconstruction would not fit well to the original data,
The reconstruction of the approximation obtained by SND
can be used instead, since it minimizes the distance from
the original surface. The remaining discontinuities are re-
moved by blending. We prefer for this kind of processing
the term completion since it is no real statistical reconstruc-
tion.

The regularization term in the statistical model allows
for a continuous modulation of the model complexity, rather
than a discrete one based on discarding a certain number of

principal components. Since the model complexity controls
the generalization performance, adapting this complexity it-
eratively during the learning algorithm (where new exam-
ples are approximated), instead of selecting a subset of the
principal components at the end of it, should result in a bet-
ter model. The decrease in the model complexity can be as-
sessed by comparing the effective degrees of freedom, as
defined in equation 7, of a plain morphable model and of a
regularized one obtained with the same data (200 examples
of 3D face models). Estimating the model noise by 10-fold
cross validation, the effective d.o.f. (in shape) of the reg-
ularized model has a value of 16.82, compared to a value
of 21.10 for the non-regularized one (that is a decrease of
about 20%); the smaller value is partially due to an increase
of the noise estimate (from 628.517 a.u. to 685.211 a.u.),
and partially to a greater compactness of the (warped) data
distribution. The latter contribution can be seen by compar-
ing the sum of the variances along the principal axes: for
shape data the value of the sum is about 17.5% smaller for
the regularized model.



Figure 3. The missing data of a novel 3D mesh (top-left) can be statistically reconstructed (bottom-
left). However, the results are influenced by the edge effect described in the text. By blending the ap-
proximation obtained via Stochastic Newton Descent (bottom-right) with the original data one can
obtain a better-looking completion (top-right). The bottom-mid image shows the approximation ob-
tained by SND without regularization.

6. Conclusions

In this paper we introduced the new concept of regular-
ized 3D morphable models, by adding a regularization term
to the statistical model previously used. The regularization
term allows us to directly handle partial information dur-
ing statistical analysis. Accordingly, we introduce a semi-
automatic learning algorithm that estimates both 3D corre-
spondence and the model concurrently. The non-automatic
part of the algorithm consists in an evaluation of the corre-
spondence results at that iteration.

The evaluation task is crucial since it avoids the propaga-
tion of correspondence errors to the morphable model, and
through it to the approximations computed at the next iter-
ation. Because of this, we decided to let the training subset
be selected by the user rather than automatically. However,
in future we will test the feasibility of detecting automati-
cally the artefacts showing up in the caricatures, and remov-

ing consequently any need for user interaction.
The results that we presented show how the use of the

regularization term can improve results both avoiding er-
rors in 3D correspondence and estimating a “better” statis-
tical model, in the sense that we reduce the variance in the
estimation without loosing too much on the bias side.
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