
A Unified Linear Fitting Approach for Singular and Non-Singular 3D Quadrics
from Occluding Contours

Kongbin Kang
Division of Engineering

Brown University
Providence, RI 02912

Kongbin Kang@brown.edu

Jean-Philippe Tarel
INRIA, B.P. 105 Rocquencourt

78153 Le Chesnay Cedex
France

Jean-Philippe.Tarel@inria.fr

David B. Cooper
Division of Engineering

Brown University
Providence, RI 02912

cooper@lems.brown.edu

Abstract

A theory and low computational cost linear algorithm is
presented for estimating algebraic surfaces of second de-
gree for representing an object in 3D, based on fitting in
the dual space (space of tangent planes) computed from
images taken by a calibrated camera in a number of posi-
tions. The approach and algorithm are designed to handle
implicit quadric surfaces, which are regular or singular, in
a uniform way without distinguishing the two cases. A sig-
nificance of these quadric surface estimation results is, as
illustrated in the paper, the estimation of complex 3D free
form shapes in a computationally simple way in terms of
quadric patches. The paper explains how singular quadrics
cause instabilities in the 3D surface fitting and representa-
tion, and presents regularization, based on this understand-
ing, to produce accurate stable surface representations.

1. Introduction

Many algorithms in computer vision are based on geo-
metric or algebraic approaches that work well for most data
configurations but not for some because they result in sin-
gularities in the equations being solved. A difficulty arises
because in singular cases, perturbing-noise, or outliers or
missing data usually produce large erroneous variations in
the solutions. The challenge then is to design a unified sys-
tem that produces stable accurate solutions for both cases by
regularizing the equations. For many problems, including
those in this paper, that requires understanding the sources
of the instabilities and tailoring the regularization to those
sources.

We focus here on 3D surface reconstruction from occlud-
ing contours in images taken by a moving camera. Develop-
ments of this 3D reconstruction problem started assuming a
known and small camera motion [4, 2]. Then another kind
of approach was proposed in [8, 3, 10, 9] where camera

motion can be large between views, but where the occlud-
ing contour is assumed cleanly extracted from the images.
It is in [11] that the question of optimally combining all
the available measurements for better robustness to noise is
tackled and partially solved. Another way to achieve ro-
bustness to noise and missing data is to use the concept of
dual spaces [8, 3, 6]. In [8] and then [3], the dual concept
was introduced for computing an algebraic description of
quadratic apparent contours in the image of a quadratic sur-
face, and based on the fitted apparent contours the quadric
surface can be reconstructed. Taking a very different ap-
proach, 3D reconstruction from occluding contours can be
reformulated as a fitting problem in the dual space directly.
This new approach give us the following benefits: 1) we can
work with the raw data in the dual space, i.e., a quadric sur-
face is fit directly to the raw local tangent estimates. Thus,
in each image we can use an estimated tangent line at only
one point on the apparent contour or at many points on the
apparent contour where these points may lie along discon-
nected curve segments – it does not matter. We use tangent
lines wherever we can estimate good edges. However, for
the other approach based on fitting quadric curves to appar-
ent contours, the covariances of the coefficients of a fitted
quadratic curve, hence, a measure of the accuracy of the fit-
ted curve, are not used. Therefore, high variance quadratic
curve coefficients, such as those occurring when a quadratic
curve is fit to a short roughly straight line apparent con-
tour, introduce large errors in the computed quadric surface
patch. Hence, our fit should be much more accurate in gen-
eral. 2) We have an automatic way for handling both sin-
gular and regular cases. 3) We have a computationally fast
way for estimating high order complicated algebraic sur-
faces from quadric patches.

In [6], this property is explained and a dual linear fitting
algorithm to 3D reconstruct non-singular algebraic surfaces
is introduced.

In this paper, we significantly improve [6] in two ways:
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1) We propose a regularization technique to achieve a uni-
fied algorithm to dual reconstruct both regular and singular
quadrics, 2) We change the eigen fitting approach to a lin-
ear system fitting approach, which improves the stability
greatly.

Sec. 2 summarizes the dual fitting algorithm for 3D re-
construction of quadrics from occluding contours. Then,
the causes of error amplification are analyzed for quadrics
in Sec. 3. Two regularization schemes based on Ridge Re-
gression and gradient control are used to achieve stable re-
sults, as described in Sec. 4. Then, experiments illustrate
the properties of the proposed algorithms on synthetic and
real data sets.

2. Dual Fitting for 3D Reconstruction

In this section, we briefly summarize the approach [6]
for non-singular quadrics.

2.1. Polynomials and Algebraic Surfaces

To avoid confusion in notation, we start with a few rel-
evant definitions which are used generally in the algebraic
geometry literature [1].

Definition 1 An n-th degree polynomial fn with coeffi-
cients in a field k of dimension d is a finite linear combina-
tion (with coefficients in k) of n-th degree monomials. We
will write such a polynomial fn in the form:

fn(X) =
∑

{α:α1+···+αd≤n}

aαX
α

where the sum is over a finite number of d-tuples α =
(α1, · · · , αd), with Xα =

∏

1≤i≤d x
αi

i . The set of all poly-
nomials in X = (x1, . . . , xd) ∈ kd with coefficients in k is
denoted k[x1, · · · , xd].

In computer vision applications, k is usually the real
field k = IR, i.e, polynomial coefficients are real num-
bers. For example, a sphere centered at (a, b, c) with radius
r in 3D can be described as a second degree polynomial
f(x, y, z) =

∑

{α:α1+···+αd≤n} aijkx
iyjzk = x2 + y2 +

z2−2ax−2by−2cz+a2 + b2 + c2 − r2. In order to made
clear the linear property of the polynomial coefficients, we
rewrite any polynomial as an inner product of two vectors:

fn(X) =
∑

{α:α1+···+αd≤n}

aαX
α = AtY

whereA is the coefficient vector and Y is the ordered mono-
mial vector. Let us now formally introduce algebraic curves
and surfaces.

Definition 2 Let f1, f2, · · · , fs be polynomials in
IR[x1, · · · , xd]. Then, we set:

V (f1, · · · , fs) = {X ∈ IRd : fj(X) = 0, 1 ≤ j ≤ s}. (1)

V (f1, · · · , fs) is named the affine variety defined by
f1, · · · , fs.

In 2D or 3D, when s = 1, the previously defined affine
variety, which is the zero set of a 2D or 3D polynomial, is
also named a 2D algebraic curve or a 3D algebraic surface.

2.2. Algebraic Fitting

In practice, data sets are samples, and thus a fitting al-
gorithm is required for estimating which variety best ap-
proximates the data set. We assume a given data set of
pointsXi ∈ IRd, i = 1, · · · ,m, and a variety V (fn) defined
by only one polynomial f (i.e s = 1). If these points do not
lie exactly on the variety due to the presence of noise, a clas-
sical approach is to apply a least-squares fitting to get pa-
rameter vector A by minimizing the following “algebraic”
error:

ealgebraic =

m∑

i=1

(fn(Xi))
2 =

m∑

i=1

At(YiY
t
i )A

Usually to avoid the trivial zero solution, the constrain
‖A‖ = 1 is added into the previous minimization, and thus
coefficient vector A of the fitted polynomial is obtained as
the solution of:

A = arg min

{

At

m∑

i=1

YiY
t
i A+ λ(AtA− 1)

}

(2)

where λ is the Lagrange multiplier of the constraint.

2.3. Dual Fitting

Given a calibrated camera, we focus on the problem of
3D reconstruction from 2D images seen as a fitting prob-
lem [6].

Given a line tangent to the occluding contour in the im-
age, the plane tangent to the surface we want to reconstruct
can be easily estimated from the calibration matrix. These
tangent planes are a subset of all the planes tangent to the
surface we want to reconstruct. But a 3D smooth surface
can be defined as the set of 3D points on its surface as well
as the set of its tangent planes . Our approach is based on
this duality property.

To be more concise, dual spaces are defined by:

Definition 3 Let E be a vector space over IR. The alge-
braic dual space E∗ is defined to be the set of all linear
functionals φ : E → IR with respect to operations:

(φ+ ψ)(e) = φ(e) + ψ(e)
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Figure 1. A tangent plane of a 3D point X to
the surface S.

(λφ)(e) = λφ(e)

whatever λ ∈ IR, e ∈ E and φ, ψ ∈ E∗.

From definition 3, the set of all 3D affine planes Π is the
dual of the real 3D space extended with homogeneous co-
ordinates. Although the above definition is valid for all the
tangent planes, in the problem of 3D reconstruction from
images only the tangent planes to the convex part can be
obtained.

Using the dual space instead of the primal space has an
important advantage with respect to the 3D reconstruction:
no depth information is needed. To make this point clearer,
see Fig. 1 where the tangent plane Π is computed directly
from camera center C and tangent line l to the occluding
contour. At an image point U of occluding contour (pro-
jection on the image of the contour generator of the surface
S to be reconstructed) the tangent line l is computed, and
using the camera calibration the normalized tangent plane
P (U) of S is estimated. Since we use homogeneous coor-
dinates, all the 4D points µP (U) are points on the manifold
E , i.e., dual surface, in dual space formed by all the planes
tangent to S. Since there is an isomorphism between the
dual space of 3D affine planes and the 3D primal space of
points in homogeneous coordinates, this means that the re-
construction of the dual surface E in the dual space is equiv-
alent to the reconstruction of the surface S in the primal
space.

This means that by working in the space of planes rather
than staying in the original 3D space as in the classical ap-
proaches, we set the problem as fitting a 4D hyper-surface,
i.e., the dual surface E , on 4D data points which represent
3D planes in the original 3D space. When the fitting of E
is performed, any normal to E gives, up to a scale factor, a
point on S. The x, y, z coordinates of the point on S can by
recovered by dividing by the 4th component. Thus, S has
been implicitly reconstructed by fitting its dual surface E in

the space of planes. This is how to compute point estimates
on S from the algebraic surface fit in the dual space.

We choose to use the algebraic representation of the 4D
surfaces since it leads to linear fitting techniques. The clas-
sical and simplest way to fit an algebraic surface to data, as
explained in the previous section, is to minimize the alge-
braic distance over the set of 4D data points (i.e 3D affine
planes) Πi = (pi, qi, ri, si), 1 ≤ i ≤ m, that is

ealgebraic =

m∑

i=1

(f∗
n(Πi))

2 = A∗t

(
m∑

i=1

Y ∗
i Y

∗
i

t

)

︸ ︷︷ ︸

S∗

A∗ (3)

using the vector representation of polynomial f ∗
n as in (2).

The symmetric matrix S∗ is the so-called scatter matrix of
monomials.

As previously, to avoid the trivial zero solution in the
minimization of (3), the constraint ‖A∗‖2 = 1 is imposed
which modifies the minimization as:

A∗ = arg min

(

A∗t

(
m∑

i=1

Y ∗
i Y

∗
i

t

)

A∗ + λ(A∗t
A∗ − 1)

)

(4)
with the introduction of Lagrange multiplier λ. The solu-
tion to (4) is given by the unit eigenvector associated with
λmin, the smallest eigenvalue ofS∗. In summary, the classi-
cal least-squares fitting algorithm consists in computing the
scatter matrix S∗ of monomials from a set of data planes,
and then finding the unit eigenvector of S∗ associated with
its smallest eigenvalue.

This algorithm works well for non-singular 3D surfaces
of degree two (i.e quadrics) when the surface is correctly
sampled as shown in [6]. For singular quadrics, special care
must be taken because of numerical instabilities.

3. Error Analysis of Dual Fitting of Quadrics

Most data we measured are subject to noise and perturba-
tions. For example, calibration errors and contour detecting
errors are always present. These errors will propagate in
the dual fitting 3D reconstruction. Hence, it is necessary to
analyze how these errors propagate.

3.1. Errors on Computing Tangent Planes

The mapping from the 2D tangent line in the image to
the 3D tangent plane to the surface is a linear relation:

Π = M tl (5)

where Π is the plane parameter vector, l is the tangent line
parameter vector and M is the 4 × 3 projection matrix. Or-
dinary edge detectors will give us the edge point U and in-
tensity gradient direction n, which can be used to compute
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tangent line description l as:

l =

(
n

−U tn

)

(6)

Using (5), the tangent plane is described in terms of n and
U as:

Π = M t

(
n

−U tn

)

(7)

Therefore, the error in estimating tangent plane Π is:

δΠ = δM t

(
n

−U tn

)

+M t

(
δn

−δU tn− U tδn

)

(8)

In (8), the plane error consists of two terms: one is due to
calibration errors δM , and the other is due to measurement
errors δU of the position and δn of the normal of the contour
point.

3.2. Error Propagation in Fitting

The propagation of tangent plane errors in the fitting is
rather complicated to characterize since the fitting consists
of an eigen problem. The theory of perturbations deals with
error propagation in such types of eigen problems [7]. Due
to the complexity of this theory, we will just outline the fact
that the error propagation is related to a decreasing func-
tion of the ratios of the other eigen values to the smallest
eigenvalue. In practice, due to lack of data, the smallest
eigenvalue is close to the other small eigenvalues. In such
a case, the fitting is relatively unstable when noise or per-
turbations are added. Notice that by treating the fitting as
a linear fitting problem rather than an eigen problem, more
stable fitting can be achieved under noise and missing data
using gradient one fitting as described in [12]. In Sec. 4,
we discuss how to use the gradient-one regularization tech-
nique, to have a more stable fitting of the dual surface in
case of noisy and missing data.

3.3. Error Propagation from Dual to Primal Spaces

After the dual surface fit is performed, we have to com-
pute its corresponding primal surface. As explained in [6],
the dual surface of a quadric is a quadric, and the primal
surface of a dual quadric is also a quadric. More precisely,
if D∗ is the coefficient matrix of the dual quadric in ho-
mogeneous coordinates, the coefficient matrix of the corre-
sponding primal quadric is D = D∗−1. This inverse is not
always well defined when the determinant of D∗ is numer-
ically close to zero. Indeed, when the dual quadric D∗ is
singular (i.e a cone or a cylinder), the primal quadric is also
singular. In such case, all the errors on its entries are magni-
fied by the matrix inversion. Following, we use perturbation

techniques to quantitatively show error propagation associ-
ated with the inverse operation.

An estimated dual quadric coefficient matrix D̂∗ can be
seen as D̂∗ = D∗ + δD∗. D∗ is the underlying noiseless
dual surface matrix which we want to estimate and δD∗

is the error in the dual quadric fitting. Since it is known
that for a pair of corresponding primal and dual quadrics
D∗D = Id, we deduce:

(D∗ + δD∗) × (D + δD) = Id

where Id is the identity matrix. Thus, after expansion:

D∗ D + δD∗ δD +D∗ δD + δD∗ D = Id

The first term in the left hand side is cancelled by the term
in right hand side and second term in the left hand side is a
second order smallest term which can be ignored. Thus, we
get:

D∗ δD + δD∗ D = 0

Then using D = D∗−1. The error on the primal quadric is:

δD = −D∗−1
δD∗ D∗−1 (9)

From (9) it is clear that fitting errors are amplified during
the transformation from the dual space to the primal space
when the determinant of D∗ is small. This is the main
source of numerical instabilities we observed in practice.
In Sec. 4, we discuss how to use Ridge-regression regular-
ization techniques in computing D∗−1 in order to reduce
the error amplification effect in the transformation from the
dual to primal space without a resulting distortion of the
desired fitting result.

3.4. What are Singular Cases?

In this section, we investigate the problem of singulari-
ties for algebraic surfaces only. This will help us to intu-
itively explain the causes of numerical instabilities of the
dual fitting algorithm. In the case of explicit surfaces, a
singular point (of the first specie) is a surface point where
the tangent plane is not defined. In algebraic geometry [1],
singular points are usually defined as points on the surface
where the gradient of fn is zero. For us, in the context of
dual fitting, a singular point is defined as the following :

Definition 4 Let fn(X) ∈ IR[x1, x2, · · · , xd] and let X ∈
V (fn). The vector of first derivatives of fn(X), Gfn

(X) =
∇fn(X) = (∂ifn(X)), is called the Gradient vector of fn

at X . Moreover, the matrix of second derivatives of fn(X),
Hfn

(X) = ∇t∇fn(X) = (∂i∂jfn(X)), is called the Hes-
sian matrix of fn atX . The coefficient matrix of the quadric
which approximates the algebraic surface arround X is:

Dfn
(X) =

[
fn(X) Gt

fn
(X)

Gfn
(X) Hfn

(X)

]

in homogeneous coordinates. Thus:
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• X is a singular point of V (fn) when the approximated
quadric matrix Dfn

(X) is not full rank.

• otherwise, X is a non-singular point of V (fn)

The previous definition implies that a pointX on the surface
(fn(X) = 0) where the gradientGfn

(X) is zero is singular.
Thus:

Definition 5 A singular surface, in the context of the dual
fitting, is an algebraic surface which contains at least one
singular point.

The idea of the above definitions is that a non-singular sur-
face does not have a dual surface that is locally collapsed in
the dual space, i.e, the dual surface maintains a full rank
matrix for each quadric approximation at each point all
along its surface. For example, as seen previously, among
second degree irreducible (non-factorizable) polynomials,
cones and cylinders are singular surfaces because the set
of tangent planes along cones and cylinders collapses one
dimension in the dual space. Both dual shapes lie on hy-
perplanes in 4 dimensional homogeneous space. They are
planar quadric curves in dual space, i.e., degree 2.

From definition 4, we can see that a locally estimated
primal surface at a singular point is unstable because of two
reasons: 1) in dual space, fitting a surface model to a curve
results in an unstable surface fit; 2) computing the gradient
of this fitted surface at points in the vicinity of the curve
in order to get a surface point in the primal space produces
unstable gradients. These difficulties can be illustrated by
a simple example. Suppose we have a cone whose tip is
at (0, 0, 0), the origin of the reference system in the primal
space, i.e., 3D surface, coordinates. Since every tangent
plane passes through the tip (approximately for real data),
the dual points collapse into a scatter around a curve in a
plane which has normal vector (0, 0, 0, 1) in homogeneous
coordinates. As shown in Fig. 2, fitting a surface model to
data scattered around a curve is an ill-posed problem. More-
over, a normal to the dual surface corresponds to a point on
the primal surface, but for singular points, this normal is not
uniquely defined. Thus, when we normalize the normal by
dividing the normal by it’s last component to get a 3D point
of the cone, the computed point is far away from its correct
value.

To cope with those singular surfaces, the simplest idea is
to determine whether the estimated dual surface collapses
in dimension. However, this approach requires a detec-
tion, and thus a threshold, on dimension collapse, which
is difficult to perform since we do not a priori know the
correct dual surface. Consequently, in the following sec-
tions, we propose a unified dual fitting 3D reconstruction
algorithm which doesn’t need to distinguish between singu-
lar and non-singular cases. The main idea to build such an
algorithm is to add few well chosen constraints which will

Figure 2. This illustration shows there is am-
biguity in fitting a surface to a planar curve
data. The red dots are the data points which
lie on a plane. When using real data, these
points will lie near but off the plane. There
is then huge variability in the range of sur-
faces that fit this scatter-around-the-curve
data equally well. One of the possible fitting
results, a hyperbolic surface, is shown. This
leads to an estimated hyperbolic surface in
the primal space, which is a poor representa-
tion for the true cone. It is clear that additional
information is required to get a meaningful fit.

bias singular cases a little towards non-singular cases with-
out modifying the non-singular cases. This approach allows
us to drastically stabilize the fit of singular quadrics.

4. Dual Fitting 3D reconstruction Regulariza-
tion

As described previously, the problem of unstable 3D re-
construction is due to singular points where locally the sur-
face and its dual surface are singular quadrics. For ill-posed
problems no unique solution exists because, in effect, there
is not enough information specifying it [13]. To get a mean-
ingful solution, we introduced two kinds of regularizations
in the 3D reconstruction algorithm to bias the solution to-
wards non-singular local quadrics. We first introduce a reg-
ularization scheme based on scaling and Ridge Regression
to stabilize the transformation between the dual and pri-
mal space. Second, we propose another scheme based on
gradient-one constraint to deal with the problem of dual data
collapse in dimension.
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4.1. Ridge-Regression for Dual to Primal Transfor-
mation

Close to singular points, the local quadric approximat-
ing the surface is close to singular. Its quadric coefficient-
matrix in homogeneous coordinates has a bad conditioning
number, and leads to a badly conditioned inverse matrix [5].

However, if we bias the fitted dual quadric by adding a
well chosen matrix, we can greatly increase the stability of
the primal quadric coefficient-matrix without significantly
changing the desired shape.

To begin, every dual data point Πi = (pi, qi, ri, si)
which represents a tangent plane of the primal surface is
normalized to enforce norm one of the tangent plane, i.e
p2 + q2 + r2 = 1. Then, if the set of normalized (Πi), 1 ≤
i ≤ m is close to a plane, the primal quadric is a cone or
cylinder and thus the normal N to the plane gives the tip
of the primal cone or direction of cylinder axis in homoge-
neous coordinates. NormalN can be simply estimated from
the data set (Πi) by minimizing:

N = arg min

{

N t

m∑

i=1

ΠiΠi
tN

}

(10)

under ‖N‖2 = 1. It is a minimum value eigen problem.
Notice that after the tip N is estimated, the primal coordi-
nate system origin can be moved to the tip. Then, tangent
planes (Πi) are recomputed in the translated coordinate sys-
tem. This helps to reduce numerical instabilities by center-
ing the data set before fitting. Before fitting, whitening of
matrix

∑m

i=1
ΠiΠi

t can also be performed with resulting
advantages.

Let D∗ denote the dual quadric matrix obtained after fit-
ting. To cope uniformly with both singular and non-singular
cases, rather than using D = D∗−1 as primal quadric ma-
trix, we use:

D =
(
D∗ + λNN t

)−1 (11)

where λ controls the amount of regularization
Intuitively, λNN t in the right hand side of (11) pulls the

overall primal surface, i.e., the 3D object surface, towards
the tip point. Equivalently, for singular cases, as the λ in-
creases, the primal quadric described by (11) better approx-
imates the true singular quadric. For the non-singular case,
the effect of λNN t on D is small if λ is small compared
to D∗. This regularization turns out to be appropriate for
handling cylinders as well.

4.2. Gradient-One Dual Fitting

Since fitting a curve with a surface model in the dual
space is an ill-posed problem, extra information can be
added to force the fitting to get the desirable result. For
example, in Fig. 2, if we know N the normal of the plane

where the dual surface is included, then the hyperboloid is
more desirable than the ellipsoid because the ellipsoid has
points far away from the plane N .

To force the dual fit to be close to plane N in the
neighborhood of the data points, we put soft constraint
‖∇f − N‖2 = 0 into the fitting algorithm, where N is
the normal of the plane going through the data estimated as
in the previous section. We can rewrite the above constrains
into a differential form which is more convenient to be used
in the fitting.

0 = ‖∇f −N‖2 = At∇Y∇Y tA− 2N · ∇Y tA+1 (12)

When constraint (12) is introduced into the fitting mini-
mization, we get:

A = arg min {At(S + µ
∑m

i=1
∇Yi∇Y

t
i )A

−2µAt
∑m

i=1
(N · ∇)Yi }

(13)

From definition 4, locally at a singular point, points on
the dual surface lie in a planar curve instead of a curved sur-
face, and thus the constraint biases the fit to a close to planar
quadric. On the contrary, when the point is non-singular,
this constraint does not change the resulting fit much.

With the use of the gradient-one constraint, the solution
of the regularized fitting problem, i.e of (13), consists in
solving the linear system:

A =

(
m∑

i=1

YiY
t
i + µ∇Yi∇Y

t
i

)−1 [ m∑

i=1

(N · ∇)Yi

]

(14)
We call the above fitting algorithm gradient-one dual

fitting because the constraint in (13) is close to gradient-
one constraint introduced in [12] which was used to in-
crease direct algebraic curve fitting stability in primal space.
In [12], the gradient-one constraint used is (N t∇f − 1)2 +
(T t∇f)2 = 0 which also implies that the gradient of
f locally agrees with the data normal at regular points.
Therefore, we have applied with success to dual fitting the
gradient-one constraint used by [12]. Here, we use only the
normal term of the gradient-one constraint. But a basis of
the tangent plane to the dual curve at every Πi can be also
easily obtained using information about point Ui on the im-
ages as explained in [6].

The main advantage of gradient-one dual fitting over pre-
vious eigen dual fitting in [6] is that errors propagate in a
better way. Indeed, for gradient-one dual fits, the error anal-
ysis can be performed more easily, since the minimization
leads to a linear system, instead of an eigen problem.

5. Experiment Results

5.1. Synthetic data experiments

We conducted experiments on synthetic data to show
how the gradient one weighting factor µ effects the fitting
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results. In the following two experiments we set ground
truth surfaces which we want to reconstruct as the ellipsoid
x2 + 1

4
y2 + 1

2
z2 = 1 and the cone x2− 1

4
y2 + 1

2
z2 = 0. The

camera is about 1500 millimeters away from the centers of
these objects. Then we move the camera to 5 different po-
sitions to compute the contours in 5 different images. The
baseline between the last camera and the first camera posi-
tions is about 500 millimeters. The external parameters are
known perfectly. The used internal parameters are the ones
of a Nikon 5000 camera at manual focus f = 7.1mm. Af-
ter those contour points were generated using ground truth
surface parameters and camera internal and external param-
eters, we used the gradient-one algorithm (see (13)) to esti-
mate the primal surface under different µ.

The results of both experiments are shown in Fig. 3(a)
and Fig. 3(b). Figures in Fig. 3 show error changes when
gradient-one weighting factor µ increases. In Fig. 3(a), we
can see that the computed ellipsoid is biased away from its
true shape as µ increases. When µ ≤ 10−4 the bias of
the reconstructed surface is less than 1%, on its three axes.
The bottom figure of Fig. 3(b) shows that the reconstructed
shape is closer to a cone as the weighting factor µ increases,
but the bias on the reconstructed shape increases as well.
The trade-off between increase of the stability and bias of
the reconstruction seems correct for a µ around 10−4. This
shows that the algorithm we proposed in the Sec. 4 is valid
for both non-singular and singular surfaces. Therefore, it
can be called “unified dual fitting 3D reconstruction algo-
rithm”.

5.2. On the Choice of the λ and µ

The weighting factor, λ, in (11) is set by:

λ = sign(D44)α min
i=1,2,3

{Dii}

where sign(x) is the signum function which is used to avoid
changing the fitted shape from a hyperbolic surface to a
parabolic surface. α is always set to 2% which guarantee
a reconstructed shape bias within 2% and improves the sta-
bility of singular shapes greatly.

Fig. 4 shows how the shape changes when α increases.
The tip of Fig. 4(a) is much sharper than that of Fig. 4(b).
This confirms the discussion in Sec. 4. As α increases,
the tip of the reconstructed shape will approach the true
value, becoming sharper and sharper. But for non-singular
quadrics, reconstructed shape diverges away from the true
shape. We noticed that for the funnel, cross section is nearly
a circle. But the ratio of the two axes moves away from 1
as λ increases. From the experiment, we also can see that
when λ < 10−2, the ratio changes a little. This justified our
setting λ to the fixed value 10−4 in the following real exper-
iments. Moreover, the gradient-one weighting factor is set
to µ = 10−4 in (13), as explained in the previous section.

(a)

(b)

Figure 4. Different λ effects on the recon-
structed shape for a cone. In (a) λ is set to
100% of the shortest axis, and in (b) λ is set
to 2% of the shortest axis.
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Figure 3. µ effects on the dual gradient-one reconstruction for a non-singular and a singular quadrics.
In column (a), three curves display the µ effect on ellipsoid axis lengths, a, b, c, respectively. x-axis is
log(µ) and y-axis is the relative error. In column (b), the reconstructed primal surface is a hyperboloid
having axis z and elliptic cross-section; the three curves display the µ effect on cross-section ellipse
axes lengths at z = 1, and bottom, on the distance of the hyperboloid to the true tip position of the
cone.

5.3. 3D Reconstructions Based on Real Data

We performed real experiments to test the 3D reconstruc-
tion dual algorithm proposed in Sec. 4. In these experi-
ments, different objects are used with a Nikon 5000 digi-
tal camera. The camera is posed at about 1200 millimeters
away from the center of the object. Then we moved the
camera to different positions to take images. Contours are
extracted from images using the Canny edge detector. The
baseline between the last camera and the first cameras is
about 700 millimeters. We use Zhang’s camera calibration
algorithm [14] to calibrate camera internal and external pa-
rameters.

Fig. 5 shows the setup of the gradient one fitting exper-
iment on a singular shape (a cone) and the 3D reconstruc-
tion. In Fig. 5(a), the funnel which we want to reconstruct is
placed right under a planar calibration board which is used
to calibrate camera parameters. We see from the image that
the shape is close enough to a cone.

Fig. 6 shows a cylindrical box for experiment and the
reconstruction. Although a cylinder is a singular shape, the
proposed dual fitting algorithm can reconstruct it well.

Fig. 7(b) illustrates a 4th degree algebraic surface esti-
mated from occluding contours in 7 views of the sculpture
shown in Fig. 7(a). 3D primal space is partitioned into large
cubes, a dual quadric surface is estimated in each cube us-
ing the algorithm in this paper, then points are sampled from
the primal surface for each of the estimated dual quadric

surfaces, and a single 4th degree algebraic surface is fit to
these sampled points. See [6] for a discussion of this data
and reconstruction but using the original dual quadric sur-
face estimator in [6] rather than the improved quadric sur-
face estimator in this present paper.

6. Conclusion and Outlooking

We proposed a new stable low-computational-cost lin-
ear fitting algorithm for 3D surface reconstruction from oc-
cluding contours. The analysis of the causes of trouble in
dual fitting allows us to propose an algorithm which han-
dles shapes with and without singular parts in a unified way
without distinguishing the existing singularity case or cases.
For quadric surface, singular surfaces are the cone and the
cylinder. We illustrate the practical effectiveness of the ap-
proach on real and synthetic data. These are major exten-
sions of the algorithms in [6].
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(a)

(b)

Figure 5. (a) one of 8 images used for fun-
nel reconstruction. (b) the 3D model com-
puted using dual fitting 3D reconstruction al-
gorithm.
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(a)

(b)

Figure 7. (a) the sculpture used for recon-
struction. (b) the 4th degree polynomial 3D
model computed using the dual fitting 3D re-
construction algorithm. The measured data
was that used by authors in [6].
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