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Abstract

A method is presented for automatically extracting key
frames from an image sequence. The sequence is divided
into clusters of frames with similar appearance, and the
most central frame in each cluster defines a key frame. Clus-
tering is done using an extension of the normalized cut seg-
mentation technique based on the inter-frame similarities.
The similarity between every pair of frames in the sequence
is determined from the spatial image characteristics via a
shape matching technique. Our algorithm is demonstrated
successfully extracting 20 key frames for a tennis player in
action over a 30 second (900 frame) video sequence.

1 Introduction

The content of a video sequence can often be characterized
by the human activity taking place. This applies to a variety
of sources such as feature movies, home video, surveillance
systems, news and especially sports broadcast TV. The abil-
ity to automatically describe human activity in long video
sequences is a crucial step towards building a general tool
for the classification of video content. This has potential
applications for automatic editing, archiving, browsing and
education.

Ideally, we would like to classify the content of a video
sequence in a totally unsupervised way without any prior
knowledge about the types of actions being performed. This
will be done by locating human actors in the video and mea-
sure similarity of activity across time. The key element
needed here is a method to assess similarity of action in-
dependent of actor. Given such a method the activity across
time can be described by the structure of an activity affin-
ity or co-occurrence matrix. Specific reoccurring actions
will be obtained by applying segmentation algorithms to
this matrix. This methodology will automatically generate
exemplars in the form of key-frames, to represent actions.
Single or multiple exemplars will be used to characterize
a specific action. These key-frames can depict the whole
body of the acting person or just parts of it. In the latter
case, combinations of key frames can be used to depict the

whole body action.
Such an approach poses the problem of action recog-

nition as one of pure recognition, i.e. as a general image
matching problem. This is in contrast to approaches that
try to decompose action by tracking human motion in space
and time. Any human action has specific dynamics defined
by changes of posture. Often a discrete set of postures are
associated with a specific action which can be schematically
broken down into transitions between elements of this set.
The problem of selecting this set for a specific action is sim-
ilar to the problem of selecting a set of points on a curve that
optimally characterize the curve. If sequences of all pos-
tures of an action are sampled regularly in time and clus-
tered using some measure of similarity, cluster centers will
appear at postures with minimal motion. For walking this
will occur at the instances when both feet are touching the
ground. For a reaching movement they will typically occur
at the initial and at the final posture. When imaged by a
camera, this sequence of postures will project to a sequence
of frames. We will denote these frames as key-frames for
the specific action. The idea of using key frames for ac-
tion recognition and tracking has appeared recently in var-
ious works, [11, 2] and it replaces traditional approaches
based on tracking dynamics. The main argument which is
expressed in [11] and [2] is that tracking has to be based on
recognition, not the other way around. Note that there is still
room for the idea of capturing action specific dynamics and
using it as a corresponding spatio-temporal key frame for
action recognition. This was done in [13] and used for un-
supervised categorization of human motions. Related to our
work is also the work in [7] which performs unsupervised
segmentation of long video sequences based on viewed lo-
cation, and [5] which uses spectral methods to cluster shots
in home videos.

In this paper we present a method for automatically ex-
tracting key frames from a video sequence. We firstly de-
vise a means of quantifying the similarity between every
pair of frames in the sequence. Using this similarity mea-
sure the frames are clustered into similar groups, and the
most central frame in each group is identified as the key
frame. Section 2 discusses the similarity measure computed
to compare every pair of frames. Section 3 describes how
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the frames are clustered into groups of similar frames, and
key frames extracted. Section 4 presents the results of the
algorithm applied to a 30 second video of a tennis player,
and Section 5 concludes with a summary of the key find-
ings and a discussion of further work.

2 Comparing Frames

We are interested in extracting key frames that capture the
body poses of a subject throughout a sequence, independent
of the background or other elements of the scene.

The approximate location of the subject is isolated in
each frame using a conventional tracker. Edge data is then
extracted, and shape matching applied to quantify the dis-
tance between each pair of frames in shape space.

2.1 Localising the Subject

A conventional tracker is used to track the approximate lo-
cations of the head and body regions of the person, as de-
scribed in [2]. The head and torso are modelled as quadran-
gles. A standard particle filter is used for the tracking [1],
with the likelihood function based upon a sum-of-squares
distance measure between a colour template and the image
data.

2.2 Shape Matching

Shape matching is used to determine a correspondence field
between edge points in each pair of frames in the sequence.
From this correspondence field the shape deformation can
be quantified.

Shape matching was performed on the portion of the im-
age identified by the conventional tracker as containing to
the upper body of the player. The procedure is described in
detail in [2]. In summary, the procedure involves extracting
shape context information for a set of edge points in each
frame, then comparing this information between frames to
determine the correspondence field linking the edge points
in the different frames. The shape context information is
determined by taking all combinations of four edge points
(and associated tangent lines) and computing a topology-
based shape context index for each combination, giving a
histogram of shape contexts for every edge point. When
comparing two images the likelihood of an edge point in
one image matching one in the another image is estimated
based on the commonality of the shape context histograms
at both points.

2.3 Distance Matrix

The shape matching algorithm allows the similarity be-
tween the shapes in two images to be quantified by a single

number. This can be considered as the distance between the
two frames in some higher dimensional shape space. A dis-
tance matrixM is constructed quantifying these distances
between every pair of frames in a sequence, such that

M(i, j) = distance from framei to framej (1)

M will be symmetric andN ×N for anN frame sequence,
and the main diagonal ofM is zero since frames have zero
distance from themselves.

Figure 1 showsM for a 900 frame (30 second) tennis
sequence, together with several example frames and their
corresponding rows and columns in the matrix.

The dark rectangular regions in the matrix correspond to
periods where there is little change between frames. For the
tennis sequence this equates to the player standing still in
between strokes, such as in frames 324 and 931 in Figure 1.
Dark diagonals (off the main diagonal) correspond to dis-
tinct repeated events, such as the forehand (407, 729) and
backhand (187, 616) illustrated frames in Figure 1. Note
that there is only one such dark diagonal in the rows and
columns corresponding to frames 187 and 616. This is be-
cause there are only two backhands in the sequence, so there
is only one repeated event. The light bands in the matrix
correspond to unusual frames that do not match well with
the majority of other frames.

3 Clustering Similar Frames

Knowing the distances separating all frames in the sequence
we can precede to segment the sequence into clusters of
similar frames. A number of distance-based clustering
methods exist that can be applied to segment the sequence,
for example [6, 8, 10], and our approach is by no means
limited to a single clustering technique.

For the implementation reported here we apply an itera-
tive clustering process that clusters frames together in a hi-
erarchical manner, and is based on the method of [10]. The
process is illustrated in Figure 2, and involves the following
steps:

1. Compute distance matrix: Initially this isM (given by
Equation 1), but at each subsequent iteration a new dis-
tance matrix is computed measuring the distances be-
tween the clusters computed in the previous iteration.
The distance between two clusters is defined as the av-
erage distance from a frame in one cluster to a frame
in the other cluster.

2. Clustering: An extension of the normalised cut [10]
segmentation scheme is used to group elements into
similar clusters (see Section 3.1).
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Figure 1: The distance matrixM for a900 frame (30 second) tennis sequence, with several sample frames (frames are labelled
from 101 to 900). Short dark diagonals correspond to forehands and backhands, and dark rectangular regions indicate periods
where the player is standing still.
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Figure 2: Clustering process.
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3. Reassign elements: This step is only performed on the
first iteration. First-level clusters are refined by reas-
signing elements among the clusters according to their
average distances from each cluster (see Section 3.2).

4. Add cluster layer: The resulting clustering of the ele-
ments gives another layer in the output cluster tree.

In the first iteration of the loop individual frames are
grouped into many small clusters called first level clusters.
In the next iteration, these first level clusters are grouped
together to form second level clusters (clusters of clusters),
and the algorithm continues until the desired granularity of
clustering is achieved. Typically only a small number of
iterations are required.

The appeal of this architecture is its ability to estab-
lish small low-level clusters with little internal variation
and thus significantly less chance of containing incorrectly
clustered frames. These low-level clusters are then used as
building blocks to construct larger clusters. Once the first-
level clusters have been established the effect of noisy im-
age data effecting isolated frames is reduced since subse-
quent clustering is done with groups rather than individual
frames. In our experiments we observed that building clus-
ters in this way facilitated the construction of larger and
more accurate clusters than could be obtained by directly
clustering into a small number of large clusters.

3.1 Minimizing the Normalised Cut

Clustering elements based on inter-element distances can be
reposed as a graph partitioning problem. Each frame in the
image sequence is treated as a node in a graph with links to
all other frames (nodes). The strength of these links indicate
how similar the frames are to each other, and are determined
from the distance matrixM as

W(i, j) = e
−M(i,j)2

2σ2

whereσ is a free variable (for our experimentsσ was cho-
sen as twice the standard deviation of the elements ofM).
Segmentation is achieved by cutting edges in the graph, and
dividing it into two disjoint sets. The question is: where
should the graph be partitioned?

The normalised cut was introduced by Shi and Malik [9]
as a partitioning criteria for subdividing graphs. Minimizing
the normalised cut minimizes the affinities between differ-
ent partitions, whilst maximising the affinities within each
partition. Unfortunately finding the partition with the mini-
mum normalized cut is an NP-complete problem. However,
Shi and Malik formulated an efficient approach for finding
a partition with a good normalised cut by applying results
from spectral graph theory, that is, using the eigenvectors
of the Laplacian to partition a graph. Both Shi and Ma-
lik [10] and subsequent authors [12, 4, 3] have compared

the normalised cut method with various spectral cluster-
ing schemes, and several variations and improvements have
been proposed. However, whilst these spectral approaches
have shown impressive results they have moved away from
addressing the initial goal of minimizing the cut criteria.

We use the spectral-based approach of Shi and Malik to
determine an initial guess of where to partition the set (we
empirically observed that this method gave an initial par-
titioning with a lower normalised cut than other spectral
methods). The normalised cut criteria is then used to it-
eratatively improve this partition until a local minimum is
reached.

The normalised cut is defined as follows: ifV , the set
of all frames in the sequence, is to be divided into two sets
A andB then the normalised cut between setA andB is
defined as

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)
assoc(B, V )

where thecut(A,B) =
∑

u∈A,v∈B W(u, v) is a mea-
sure of the total number of links severed to divideA andB,
and assoc(A, V ) =

∑
u∈A,t∈V W(u, t) is the total con-

nection of the members ofA to other elements.
Shi and Malik [10] show that the segmentation that min-

imizes the normalised cut is given by the solution to the
discrete problem

min
y

y>(D−W)y
yDy

subject to the constraintsyi ∈ {1,−b} andy>D1 = 0
(where b is a scalar and1 is a vector of ones). Noting
that this discrete optimisation is NP-complete they propose
using the solution to thecontinuousproblem version of
this problem. They show that the solution to the continu-
ous problem is given by the generalized eigenvector associ-
ated with the second smallest eigenvalue of the generalized
eigensystem

(D−W)yi = λiDyi

Since the eigenvector’s values are continuous (as they
were not constrained byyi ∈ {1,−b}) a threshold is ap-
plied to generate the discrete values required for segmenta-
tion. It is straight forward to test every possible threshold
point by using the magnitude of the eigenvector’s elements
to define an ordering. ForN elements there areN − 1 pos-
sible points where the ordering can be cut. By evaluating
the normalised cut value for each of these partition points
we are able to choose the optimum point at which to cut the
ordered set.

As noted by Shi and Malik there is no guarantee that the
solution to the continuous problem bares any resemblance
to the discrete solution. Nonetheless, empirical results have
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shown that the eigenvector does in general provide a good
segmentation.

However, surprisingly, the solution provided by thresh-
olding the eigenvector is in generalnot at a local minimum
of the normalised cut. That is, by moving a single element
from one side of the partition to the other it is possible to
further decrease theNcut value of the partition. Thus the
partition can be improved by the following procedure

1. Take each element in turn

• compute theNcut values with the element on ei-
ther side of the partition.

• If necessary adjust the partition so the element
lies on the side that minimizes theNcut.

2. Repeat until all elements can be shifted across the
partition (one at a time) without further reducing the
Ncut.

This method is used to drive theNcut to a local mini-
mum and increase the quality of the resulting partition.

3.2 Refining First-level Clusters

The first-level clusters of image frames obtained by mini-
mizing the normalised cut typically contain a small number
of badly clustered frames. This can be attributed to noisy
image data leading to noisy distance measures and poorly
separated data. To overcome this a filtered difference ma-
trix is generated by blurring the distance matrixM via con-
volution with a3 × 3 averaging kernel. This reduces high
frequency noise and enforces the knowledge that since the
image sequence is recorded at 25 Hz each frame must be
quite similar to the frames adjacent to it in time.

Using this filtered difference matrix the clusters are re-
fined by reassigning frames between clusters according to
their average (filtered) distances from each cluster. The or-
der in which frames are considered is important, since the
clusters will change each time a frame is reassigned. With
this in mind the frames more likely to be reassigned are
considered first. The ordering is determined by finding the
average distance from each frame to other members of its
cluster, and comparing this to the mean average distance
between all members of that cluster. The more standard
deviations above the mean a frame lies the earlier it is con-
sidered.

This reassignment process is iterative and is repeated un-
til a steady state is reached:

1. Determine ordering in which to consider frames.

2. For each frame:

• Remove frame from its assigned cluster (if it is
the only member of that cluster then delete the
cluster) and compute the average distance be-
tween that frame and the frames in each of the
clusters.

• Reassign the frame to the cluster that has the min-
imum average distance to that frame.

This distance-based refinement of clusters was only nec-
essary for first-level clusters and was not preformed for sub-
sequent clusters in the heirarchy.

3.3 Keyframe Selection

Once the desired cluster granularity has been reached one
key frame is selected to represent each cluster. The key
frame is chosen as the most central frame in the cluster: for
every frame in the cluster the average distance is computed
to every other frame in the cluster, and the frame with the
minimum average within cluster distance is the key frame.

In our experiments we used second-level clusters to de-
fine the key frames. Figure 3 shows several second-level
clusters and the resulting key frames.

4 Results

Our algorithm was applied to extract key frames from a 30
second sequence of a woman playing tennis. During the
sequence the woman moves about the baseline and plays
several forehand and backhand strokes. The sequence was
initially clustered into 100 first-level clusters and these were
combined into 20 second-level clusters, and 6 third-level
clusters. The key frames were extracted from the second-
level clusters, giving 20 key frames for the sequence.

Figure 3 shows several second-level clusters and the re-
sulting key frames. Each row of these clusters is a first-level
cluster.

By representing each second-level cluster by its key
frame we can examine the occurrence of different body
poses throughout the sequence. Figure 4 shows all the key
frames extracted from the sequence and Figure 5 shows the
occurrence of the key frame’s clusters throughout the se-
quence. The third-level clusters, which were too coarse
to provide useful key frames were used to group the key
frames into the clusters indicated by the grey shading in
Figure 5. As noted on the righthand side of the figure, two
of these clusters correspond to forehand key frames, one
to backhand key frames, and the other three to the various
stances adopted by the player in between shots.

The forehands and backhands are easily identified re-
spectively by the strong peaks and troughs in the graph
in Figure 5. However, there are several narrow troughs in
the graph that do not correspond to backhands. These are
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(a)

(b)

(c)

Figure 3: Three (of the 20) second-level clusters and the extracted key frames. Each row of the second-level clusters is a
first-level cluster. The most central frame of each second-level cluster is indicated, these are taken as the key frames.
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Figure 4: 20 key frames extracted from the 30 second sequence.
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Figure 5: Occurrence of key frame clusters throughout sequence, the shading in the graph indicate the third-level clusters.
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caused by follow-throughs from forehands which put the
player in a similar pose to that immediately preceding a
backhand stroke. The forth row of Figure 3(c) shows an ex-
ample of this, where a first-level cluster corresponding to a
forehand follow-through is grouped with backhand clusters.
This is not a problem since the key frames still correspond
to similar body poses.

Selecting the appropriate cluster granularity is very sub-
jective and depends primarily on what the key frames are to
be used for. In general the more key frames the better, how-
ever, the maximum number of key frames is typically lim-
ited by the application (if there is no limit then every frame
becomes a key frame). For a given application appropri-
ate constraints can be imposed on key frame variability and
how closely each image frame must be to the nearest key
frame, with such information the appropriate cluster granu-
larity could be automatically determined.

5 Summary and Conclusions

This paper has presented a method for extracting key frames
from a video sequence. A method was outlined for quanti-
fying the similarity between every pair of frames in the se-
quence using shape matching. This similarity measure was
then used to cluster the frames into similar groups, from
which key frames could be extracted. A clustering hierarchy
was used together with an extension of the normalised cut
segmentation technique to obtain a small number of tightly
packed clusters of image frames. The algorithm was ap-
plied to a 30 second tennis video and successfully extracted
20 key frames describing the sequence.

Further work will focus on improving the inter-frame
similarity measure using additional matching techniques.
Consideration is also being given to temporal information.
The distinctive patterns of backhands and forehands in Fig-
ure 3 suggest that temporal information would be beneficial
to the clustering process. For instance if one cluster always
occurs immediately after another in the sequence it is likely
the two are related and should possibly be grouped together
in the next cluster layer.
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