
A Model-Based Method For Building Reconstruction

Konrad Schindler
Graz University of Technology
Computer Graphics and Vision

Inffeldgasse 16, 8010 Graz, Austria
schindl@icg.tu-graz.ac.at

Joachim Bauer
VRVis Research Center for

Virtual Reality and Visualization
Inffeldgasse 16, 8010 Graz, Austria

bauer@vrvis.at

Abstract

In this paper model-based reconstruction methods are
applied to the detailed reconstruction of buildings from
close-range images. The 3D points obtained through im-
age matching are segmented into a coarse polyhedral model
with a robust regression algorithm, then the geometry of
this model is refined with predefined shape templates in or-
der to automatically recover a CAD-like model of the build-
ing surface. Reprojection of the 3D shape templates is used
to optimally fit their parameters to the image information.
Throughout the paper the investigated methods are demon-
strated on real datasets.

1. Introduction

Automatic architectural reconstruction is a continu-
ing goal of photogrammetry and computer vision research.
More specifically, the building model delivered by a dig-
ital reconstruction system should be a structured surface
representation similar to the one a human photogrammet-
ric operator or CAD-designer would produce [19]. The
problem thus is different from the reconstruction of ter-
rains or other free-form surfaces in that we expect the
recovered geometry to consist of simple parametric sur-
faces (or a CSG-representation deduced from the sur-
faces). Therefore we donot want to optimally fit an
’all-purpose’ surface representation such as a a trian-
gle mesh or a NURBS or Bezier surface to the data, but
rather model a building as a collection of planes and polyg-
onal indentations and protrusions on these planes. The aim
of the paper is to cover the complete process of model re-
finement, including thedetectionof facade details, these-
lectionof the correct templates and theirfitting to the image
data. We will not present major improvements to the the-
ory of model-based object reconstruction, but rather a
collection of straight-forward algorithms tuned towards ar-

chitectural modeling and capable of solving all subtasks of
model-based refinement.

Model-based reconstruction is a generic method to intro-
duce prior knowledge, such as the aforementioned expecta-
tions about the structure of a building, into the shape re-
construction process [17]. It has been studied extensively
in digital photogrammetry for automatic building detection
and reconstruction in aerial images, while in computer vi-
sion model-based methods are popular for industrial vision
and robotics applications.

For model-based reconstruction, generic templates
(’models’) of the geometric features we expect to find in
the data are used as primitives and their parameters are
computed, so that they optimally fit the data. This in-
volves a recognition step and an optimization step. First,
we have to determine where in the scene to use a tem-
plate for modeling and which template to use at each such
location. The recognition step yields a number ofapprox-
imate locations for each template in the global coordi-
nate system. In the optimization step the parameters of
the templates are adjusted to the image data. The over-
all number of parameters to be estimated depends on the
complexity of the used primitive and on the transforma-
tions we allow in the fitting process. In our case we use
axis-aligned templates with fixed angles (in order to de-
fine not only the topology, but also the angular relations).
We thus allow for 8 degrees of freedom: 3 for the transla-
tion of the template, 2 for its orientation (because of the
template being axis-aligned) and 3 scales to allow adjust-
ing width, height and depth to the data.

Our approach can be outlined as follows: First, detect
the dominant planes and principal directions of the scene (3
DOF per plane). Then detect axis-aligned features (inden-
tations or protrusions) on the plane (4 DOF). Finally, com-
pute the depth of each feature (1 DOF). The focus of this pa-
per is on the detection and fitting of smaller features on the
main scene-planes.

The paper is organized as follows: In section 2 we give
an overview of related work. The input data and preprocess-



ing steps for our algorithms are briefly reviewed in Section
3, and the algorithms used for model-based building recon-
struction are described in detail in Section 4. Finally a con-
clusion and outlook are given.

2. Related Work

Model-based reconstruction techniques were first ap-
plied in digital photogrammetry for the (semi-)automatic re-
construction of buildings in aerial images with the help of
generic building models. Examples include the work at TU
Bonn [4] and TU Vienna [15].

Several authors have tried to fully automate the process
by using automatically detected lines: Baillard et al. intro-
duced plane-sweeping around a 3D line for the detection of
halfplanes [1], which are then grouped to polyhedral mod-
els. Noronha and Nevatia use automatically extracted lines
and group them first to rectangles and then to more com-
plex roof polygons in a hierarchical grouping procedure
[11]. Bignone et al. support the grouping of lines to coplanar
polygons for roof modeling with color information [3]. All
these methods rely on the assumption that most of the im-
portant lines can be reconstructed. Although automatic line
extraction and matching have made great progress [16], suf-
ficiently complete line-sets can still not be guaranteed.

An interactive system for reconstructing buildings from
close-range imagery was presented by Debevec et al. The
system builds a parametric representation of the scene from
lines and symmetry constraints given by an operator. The
detection part is thus left to the user [6]. Another interac-
tive approach, which lets the user select points and auto-
matically segments the set of points into planar polygons
was recently presented by Bartoli [2].

In the method developed by Dick et al. a sampling
scheme is used to detect only vertical planes, which are then
upgraded by selecting and fitting template primitives with a
Bayesian model selection method [7]. The authors have also
extended their Bayesian model-fitting framework to global
priors, trading off relations such as regularity and symmetry
against the visual information in a Markov random-process
[8].

Range segmentation algorithms have mainly been inves-
tigated for reverse-engineering tasks. They assume a regu-
lar 2 1

2 -dimensional grid of points (a range image), and use
image-based segmentation techniques to detect parametric
surface patches and their boundaries. Most algorithms are
either based on region growing or on the detection of dis-
continuities in the range image. Hoover et al. have given
an overview and a comparison of range segmentation tech-
niques [10].

The method closest to the one presented here is the work
by Werner and Zisserman. They use a coarse modeling and
refinement scheme similar to the one in our system [20].

However they use a purely morphological method for fea-
ture detection and fit the models to the image data with a
homography-based sweeping technique and area-based cor-
relation.

3. Input Data

In the following we give a brief overview of the data we
use for building reconstruction. We start from a sequence
of images taken with a digital consumer camera. In our case
the camera is calibrated, however this is only to simplify the
preprocessing, which is not the focus of our work. For the
methods described in this paper off-line calibration is not
essential1. The exterior orientations and a dense set of ob-
ject points are recovered via image matching, orientation,
bundle block adjustment and forward intersection of a dense
set of automatically matched homologous points. An exam-
ple of a reconstructed 3D point cloud is given in Figure 1.

Due to effects such as specularities, shadows and occlu-
sions, which impair the matching, the resulting 3D point
cloud will not be perfect. For practical purposes this does
not seem to be a problem, unless the building has unusual
features such as large, curved glass surfaces. In our exper-
iments we have used a standard matching algorithm with-
out any special precautions, still even small features with
a depth greater∼10 centimeters are clearly visible and
detectable (the smallest window in Figure 1(b) has∼100
points).

NB: Most of the algorithms described in the following
are in principle also applicable to 3D point data obtained
with a ground-based laser scanner. This would potentially
give more accurate detection results because of the higher
precision of the 3D data. Note however that the image-based
fitting method described in Section 4.3 has to be omitted,
unless the laser-scanner is combined with a camera, and the
relative position and orientation of the two devices is accu-
rately calibrated. Furthermore the correct treatment of win-
dows is even more difficult when using laser-scans, because
the laser beam passes through the glass and recovers the
structures in the interior instead of modeling the glass as a
surface.

Furthermore line and edge detection is performed on the
images. A modified version of the popular Canny edge de-
tector [5] is used to extract oriented edge points (edgels) at
subpixel accuracy and the edgels are linked to edgel chains.
In the set of edgel chains lines and ellipses are detected
with a sampling method: in a RANSAC-style procedure
straight lines and ellipses are instantiated using minimal in-

1 Note however that in the uncalibrated case relative orientation is un-
derdetermined if all homologous points are incident to a common
plane, therefore the reconstruction of facades (such as the ’Steyr-
ergasse’ data-set in this paper) from uncalibrated images is not sta-
ble.



(a) (b) (c)

Figure 1. Photogrammetric reconstruction and feature extraction. (a) One of seven images of the ’Mi-
norite Monastery’ sequence. (b) Cameras and object points after orientation and dense matching.
(c) Straight line segments and ellipses (dotted lines) detected in one of the images.

formation, and the rest of the chain is scanned for edgels,
which comply with the hypothesis in position and orien-
tation. Hypothesis with high support and a point density
above a thresholdt are kept and refined with a least-squares
fit. For fitting ellipses we use the direct method published by
Pilu et al. [12]. An example of detected image lines and el-
lipses is given in Figure 1.

4. Model-Based Reconstruction

The reconstruction of buildings is split into three steps:
in the first step a coarse model is recovered, which con-
sists of the main planes of the building. Then indentations
and protrusions on these planes are detected with a sweep-
ing function. In the final step the detected features are re-
fined with predefined shape templates. In the following the
three steps are described in detail.

4.1. Coarse Reconstruction

The coarse building model consists of the dominant
scene-planes, i.e. the main walls and, if visible, the roof-
planes and a ground plane. To find them, the point-cloud
is segmented with an orthogonal linear regression algo-
rithm. For the examples in this paper an iterative MAPSAC-
scheme [18] has been used, however our experiments show
that choosing the optimal algorithm for this task is not crit-
ical.

Having found the main planes, we need to determine the
principal directions. In the case of rectilinear buildings these
are the directions of the intersection lines between the main

planes and can be computed directly from the planes’ nor-
mal vectors, as for example in [21]. A more generic method,
which also works if the building is not rectilinear or if only
one main wall can be found (as for example on facade im-
ages in urban areas) is to compute the principal directions
from the extracted image lines: With a random sampling al-
gorithm the dominant vanishing points are detected in the
line-set [14]. An example is shown in Figure 2. The vanish-
ing directions are the projections of the principal directions,
therefore the projection rays through the vanishing points
are the principal directions. The coarse model of the ’Mi-
norite Monastery’ building after the initial modeling stage
is depicted in Figure 3.

Figure 2. Detection of vanishing points in an
architectural scene.



Figure 3. Coarse model of the ’Minorite
Monastery’ building.

4.2. Feature Detection

The goal of this step is to detect smaller features on the
planes of the coarse model, which have to be modeled in
more detail. For each recovered plane a fine-grained out-
lier detection is carried out to find regions with large resid-
uals w.r.t. the plane. The set of outliers is projected to the
plane, and a 2D line-sweeping algorithm is applied to find
solid regions in the outlier set.

The sweeping algorithm is based on the assumption, that
for most buildings all prominent features in the facade plane
(e.g. windows, doors etc.) are axis-aligned. We can thus ob-
tain a segmentation of the outliers into rectangular regions
by detecting density changes normal to the two axis direc-
tions of the wall-plane: inside an indented or protruding fa-
cade feature the density of pointsnot incident to the plane
will be high, whereas the density will be low in regions be-
longing to the plane (in the absence of noise it would be
0).

To detect these changes in point density, a parallel sweep
line is instantiated for each of the two main axes and swept
through the plane containing the projected outliers. Density
changes along the sweeping path are recorded by evaluat-
ing the gradient of the point count between both sides of the
sweep line. The extrema of this function are the positions
of the most significant changes in point density (see Fig-
ure 5). The finite sampling interval for counting the points
inevitably leads to a smoothing, which blurs the position of
the extrema (and thus of the detected feature edges). This ef-
fect is compensated by using a weighted point count, where
a points’ contribution is inversely proportional to its dis-
tance from the sweep line. The weighted point count greatly
reduces the negative effect of sampling, leading to extrema
which are steeper and closer to the correct position (see Fig-
ure 4). The gradient functions for sweeping a lineL along
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Figure 4. Weighted versus unweighted point
count. Two features with regularly distributed
points are separated by a small gap (top),
the corresponding gradient functions for
the weighted (continuous) and unweighted
(dashed) case. The weighted version has
well-defined extrema close to the correct po-
sitions, whereas the unweighted version is
severely biased and blurred.

the two principal directionsx andy of a plane are
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whereDmax is the size of the neighborhood to be con-
sidered. ThePl are the points on the left of the line, i.e. all
points with an x-coordinate in the interval[xL −Dmax, xL[
and thePr are all points on the right of the line with an x-
coordinate in the interval]xL, xL +Dmax]. In the same way
thePb andPa are the points below and above the sweep-line
in y-direction (see Figure 5).

The extrema of the gradient functions (1) correspond to
horizontal and vertical lines, which subdivide the wall-plane
into a raster of irregular, rectangular tiles. In this tiling the
tiles with high point density (found with a simple thresh-
old ρmin) are the regions we are searching for. Neighboring
tiles of high point density are merged into one region.

In order to efficiently handle the gradient computation,
the projected points are organized in an extended KD-tree
data structure optimized for line queries. The standard KD-
tree is a hierarchical space-partitioning which allows fast
querying of then nearest neighbors to a given point, and
thus also of all points within a given distance [13]. Our vari-
ant instead returns all points within a given distance to a line
(the sweep line).



(a) (b)

Figure 5. Gradient function for the ’Steyrergasse’ dataset. (a) One of four images of the sequence. (b)
Rectified wall-plane with projected outlier points (drawn in black) and detected features (white rect-
angles). Below and left of the wall-plane are the gradient functions in x- and y-direction, respectively.
Some false positives occur at the wall borders and on the bottom, where the matching is not cor-
rect because of the car windows. However these are discarded later in the fitting process.

(a) (b) (c)

.

Figure 6. Selection of the correct feature. (a) Top: Synthetic example with three different window fea-
tures. Center: Same data with noise added to simulate matching errors. Bottom: Outlines selected
with the proposed cost function. (b) Unexplained points of the three windows using a rectangu-
lar, circular and elliptic template. (c) Outlines selected for the ’Steyrergasse’ building.

The parameter which governs the accuracy of the detec-
tion result is the step intervals for the sweep. It must be pro-
portional to the average point distance in the point cloud:

s = Cdmean , 0.5 < C < 5.0 (2)

The average distance, if not known, can be determined
statistically by drawing random samples from the point

cloud. The factorC is used to tune the algorithm towards
different applications: greaterC means less steps and thus
faster computation at the price of lower accuracy. Useful
values areC ∈ [0.5, 5].

Figure 5 shows the window detection result for the wall
of the ’Steyrergasse’ building. Note that the density-based
sweeping algorithm inherently exploits the raster structure
often found among building elements to achieve a better es-



timate: if several features end at the same sweep-step, they
jointly contribute to the computation of the gradient and
thus give a more accurate and more reliable location of the
feature border.

It should be mentioned that the detection method is not
limited to axis-aligned features, although it is based on
sweeping axis-parallel lines. Also structures, which are not
parallel to the sweeping line, such as circular or tapered
arches, lead to a maximum of the density gradient, albeit
in an approximate position slightly inside the feature. This
displacement can be corrected when selecting the correct
feature(see next paragraph). The crucial property for fea-
ture detection with sweeping is thatfeatures must not over-
lap in x- or y-direction.

Once the features have been detected, it has to be de-
cided which type of primitive best describes each feature.
A natural decision is to choose the outline which best di-
vides the local neighborhood into a region densely covered
by points and a region without points. There are thus two
groups of unwanted configurations, namely theM points
pi outside of the outline and theN holeshj inside the out-
line. In both cases the evidenceagainsta potential outline
is bigger, if they are far away than if they are close to the
outline. Assuming that the relation is linear we can formu-
late the decision rule as a cost function. The cost for shape
S is

CS =
N∑

i=1

D(hi) + W
M∑
i=1

D(pi) (3)

whereD(xi) is the unsigned distance from pointxi to the
outline. The weighting coefficientW can be used to tune
the algorithm. Usually minimizing the outliers has a higher
precedence than maximizing the coverage, because erro-
neous 3D points are more likely to occur on complicated
structures such as windows with specular reflections, bal-
conies with balustrades etc. than on the near-Lambertian
wall plane. Typical values areW ∈ [2, 5]. The cost function
(3) is evaluated for every template primitive of the model
base and the one with the lowest cost is selected. An exam-
ple for the selection process is given in Figure 6.

4.3. Fitting

Since the gray-value information has not directly been
used until now, we have to refine the parameters of the
detected models in order to optimally fit them to the im-
age data. The contours of the detected features are back-
projected to the images and a one-parameter search along
the normal in the wall-plane (i.e. along the corresponding
vanishing line in the image) is performed to snap each seg-
ment of the contour to the nearest gray-value edge in the
image.

For features, which differ from the facade in gray-value
intensity (such as for example windows, which are usually
darker), fitting can be improved by adding radiometric prop-
erties to the model. Snapping is then done by searching the
nearest edge in a 2-dimensional feature space where the dis-
criminating features are the normalized distance to the re-
projected edge position and the mean gray-value intensity
in the neighborhood of the image edge. For the case of dark
windows we found (through statistical analysis of the input
images) the following function for the distancew in feature-
space:

w =
(

d

dmax

)2

+
(

1− max(gl, gr)
255

)2

(4)

whered is the normal distance between the reprojected edge
and an image edge,dmax is the maximum allowed normal
distance for a candidate andgl, gr are the mean gray-values
on the left and right side of the image line, respectively.
Equation (4) is a promising result, although it was found
through explorative statistical analysis and has no theoreti-
cal foundation: since the correct match could be found for
94.3% of the edges when using only the geometric distance
and one radiometric property (see Table 1), it seems feasi-
ble to use a trainable classifier [9] and learn the discrimina-
tion function from the data.

(a) (b)

Figure 7. Enhancing fitting results through
the use of multiple images. (a) Window posi-
tions before refinement (green) and after re-
finement (red). (b) Snapping results in differ-
ent images. It can be seen that the consensus
over multiple images considerably enhances
the result in occluded and cluttered areas.

The robustness of the geometric correction is increased
by seeking the consensus over all images of the sequence.
The use of multiple images enhances the result especially



(a) (b) (c)

Figure 8. Reconstruction results for the ’Minorite Monastery’ building. (a) Reprojected features af-
ter fitting. In the center some lines could not be fitted correctly due to weak image contrast. (b) Un-
textured model to show the recovered geometry. (c) Model with textured walls and windows. Since
the columns are not modeled correctly by the used shape primitives the object geometry is not cor-
rect behind the columns.

(a) (b) (c)

Figure 9. Reconstruction results for the ’Steyrergasse’ building. (a) Reprojected features after fit-
ting. (b) Untextured model to show the recovered geometry. (c) The model with textured wall and
windows. Due to the recording geometry (the images were taken from the side-walk in a rather nar-
row street) the roof and the ground-plane have not been modeled.

in cluttered and occluded parts of the image, as depicted by
the example in Figure 7.

After refinement the orthogonal offset from the wall-
plane is computed by fitting a parallel plane to the points

inside the contour. Two examples for the result of the en-
tire modeling process are shown in Figures 8 and 9.



data set edges correct wrong success[%]
Minorite 92 89 3 97.7
Steyrerg. 82 75 7 91.5
both 174 164 10 94.3

Table 1. Fitting results with 2D feature-space.
Window edges, for which no candidate was
found, were not considered.

5. Conclusion

We have presented a model-based method for automati-
cally recovering detailed building models from images. The
method starts with the reconstruction of a dense point cloud.
Then a coarse building model consisting of the main planes
is recovered with robust linear regression. Smaller features
on these planes, modeled as indentations or protrusions, are
detected by examination of the points’ residuals and their
approximate borders are constructed with a sweeping algo-
rithm which uses the varying density of outliers across the
plane. For each detected feature the most suitable template
is selected from a model-base and in a final step the bor-
ders of the features are refined in the image space with the
help of gray-value edges, and their offset is computed from
the point cloud.

The method yields geometrically accurate parametric
building models. Its main theoretical limitation is that it is
not able to reconstruct features which cannot be correctly
modeled by one of the predefined shape templates of the
model base. Practical problems are the classical difficulties
of computer-vision applications such as occlusions and ex-
treme lighting conditions like weak contrast, reflections and
shadows. To overcome these problems, it would be desir-
able to add an image-understanding component to the sys-
tem in order to allow associative verification and comple-
tion of the results, similar to the behavior of a human oper-
ator.
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