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Abstract

Man-made environments possess many regularities
which can be efficiently exploited for image based render-
ing as well as robotic visual navigation and localization
tasks. In this paper we present an approach for automatic
extraction of dominant rectangular structures from a single
view and show how they facilitate the recovery of camera
pose, planar structure and matching across widely sepa-
rated views. Since in the presented approach the rectan-
gular hypothesis formation is based on a higher level in-
formation encoded by the presence of orthogonal vanishing
directions, the dominant rectangular structures can be de-
tected and matched despite the presence of multiple repet-
itive structures often encountered in a variety of buildings.
The different stages of the approach are demonstrated on
various examples of images of indoors and outdoors struc-
tured environments.

1 Introduction and Related work

Previous approaches to acquisition of 3D models from
multiple views differ in the type of chosen geometric prim-
itives, estimation algorithms as well as level of human in-
teraction. There exist several systems for completely auto-
mated recovery of camera motion and 3D structure of the
scene [9]. In many instances these general methods lack ro-
bustness, are well conditioned only in restricted scenarios
and rely on successful solution to feature correspondence,
which becomes difficult when the views are widely sepa-
rated. The techniques that have enjoyed success in limited
domains typically employ structural information of the en-
vironment. Examples of such systems are PhotoModeler [1]
and Facade [3]. These systems were used for building 3D
models of architectural environments, which are naturally
parameterized by cubes, tetrahedrons, prisms, arches, sur-
faces of revolutions and their combinations, used partial

human interaction to instantiate the model primitives in re-
spective views and yielded quality of the models superior to
the fully automated methods.

The past attempts to automate the geometric model se-
lection and matching typically resorted to weaker geometric
assumptions, such as presence of linear and planar struc-
tures and orthogonality and parallelism relationships be-
tween them. These weaker modelling assumptions have
been successfully incorporated into fully automated system
for multi-view reconstruction [14]. Examples of stronger
more constrained models (e.g. doorways, different window
types, facades) and their automatic instantiations have been
explored in automated methods as well [4]. The constraints
of parallelism and orthogonality between planes and lines
were used for reconstruction of 3D models in case of un-
calibrated camera [2] from single view. Partially calibrated
camera and linearly parameterized models have been used
for the recovery of 3D structure from a single view [5].

The assumptions and models for the wide-baseline fea-
ture matching explored in the past differed in the type of
primitives detected in individual views, descriptors associ-
ated with their support regions and chosen similarity cri-
teria. In order to account for variation in the appearance
due to the change of viewpoint, methods for selecting and
matching neighborhoods based on descriptors invariant to
rotation, affine transformations and/or scale have been pro-
posed in [8, 10, 13, 12]. These local descriptors work well
when the individual feature support regions have distinct
appearance characterized by either color or texture. In cases
where the perspective fore-shortening effects become dom-
inant the affine models are no longer appropriate. The de-
tection and matching of rectangular regions has been previ-
ously proposed by [11], in the context of the same problem.
The approach proceeded with instantiation of the planar hy-
pothesis in a bottom up manner by linking and grouping
detected line segments to form initial rectangular hypothe-
sis. The rectangular regions obtained in such a manner have
a small extent and hence are more prone to mismatching
in additional views specially in the presence of repetitive



structures.
The work presented here focuses on the automatic ex-

traction, detection and matching of rectangular structures
detected in individual views. Rectangular planar structure is
an image of a 3D rectangle. For example building facades,
windows, bulletin boards can in many instances be mod-
elled appropriately by rectangular planar structures. Given
the detected rectangular structures we will show how to re-
cover a relative pose of the camera with respect to the 3D
world in case of partially calibrated camera and match the
detected structures across wide baselines. The presented
approach extends the applicability of the automated image
based rendering methods to a larger class of man-made en-
vironments and is also useful in the context of visual navi-
gation and localization tasks. The main contributions of the
approach are in: (1) the structure extraction stage, which
exploits higher level information encoded by the presence
of dominant vanishing directions and does not rely on low-
level, often brittle, search for geometric structure. In our
case we can establish the notion of dominant rectangular
structures which make the process of pose recovery better
conditioned and simplify the matching stage; (2) we outline
a simple method for the camera pose recovery from sin-
gle view for the case of partially calibrated camera; (3) and
demonstrate improvements in the matching stage, which en-
able us to handle large changes in the viewpoint and slant of
the planar structures and establish matches in the presence
of large scale repetitive structures.

2 Approach

Our approach is based on the observation that in man-
made environments the majority of lines is aligned with
three principal directions of the world coordinate frame.
The groups of parallel lines belonging to the same direc-
tion intersect in the image at the vanishing point. The fact
that in man-made environments the sets of parallel lines of-
ten come from three mutually orthogonal vanishing direc-
tion provides effective constraints for calibrating the camera
and recovering the relative orientation of the camera with
respect to the scene [7, 6]. Rectangular structure is defined
by four line segments which come from two different or-
thogonal line’s groups. While these types of structures are
easily detected by humans, automatic detection of rectan-
gular structures from images is not straightforward. Sim-
ple exhaustive grouping of the initial set of line segments
aligned with three principal directions would yield a large
number of candidates for rectangular structures, many of
them not corresponding to the actual planar structures in
the world. In the first part of this paper we describe an ap-
proach for merging, pruning and verifying the rectangular
structure hypothesis in the image. In the second part we
demonstrate how to recover the relative pose of the camera

and 3D structure of the rectangular primitives and match
them across widely separated views.

2.1 Vanishing point estimation

The starting point of our method is an efficient line de-
tection procedure and vanishing point estimation. The gra-
dient orientation is first quantized into a set of bins contain-
ing pixels with similar gradient orientations [6], followed
by connected component analysis within each bin and line
fitting. The parallel lines in the world intersect in the image
plane in vanishing points. The intersection point can be fi-
nite or infinite, depending on the relative orientation of the
camera with respect to the scene. Consider the perspective
camera projection model, where 3D coordinates of points
X = [X, Y, Z, 1]T are related to their image projections
x = [x, y, 1]T in the following way

λx = KPgX. (1)

K ∈ SL(3) is the intrinsic camera parameter, P =
[I3×3, 0] ∈ R

3×4 is the projection matrix, g = (R, T ) ∈
SE(3) is a rigid body transformation represented by 4 × 4
matrix using homogeneous coordinates and λ is the un-
known scale corresponding to the depth Z of the point X. In
the above equation both x and X are in homogeneous coor-
dinates. Given two image points x1 and x2, the line passing
through the two endpoints is represented by a normal of a
plane going through the center of projection and intersect-
ing the image in a line l, such that l = x1 × x2 = x̂1x2

1.
The vanishing direction of two lines which are parallel in
3D world then corresponds to the plane normal where all
these lines lie. Given two lines the common normal is deter-
mined by v = l1 × l2 = l̂1l2. In our previous work [6], we
have demonstrated an efficient approach for simultaneous
grouping of lines into dominant vanishing directions and
estimation of vanishing points using expectation maximiza-
tion algorithm (EM). During each iteration, the posterior
probabilities p(vk | li) are computed given the currently
available vanishing points estimates. Then in maximiza-
tion step, the vanishing points are estimated by minimizing
negative log likelihood. This yields a linear least-squares
estimation problem

J(vk) = min
vk

∑
i

wik(lTi vk)2 = min
vk

‖(WAvk)‖2 (2)

where vk is a vanishing point associated with k-th direction,
W ∈ R

n×n is a diagonal matrix of weights and rows of
A ∈ R

3×n are the detected line segments. Figure 1 depicts
the iterations of EM algorithm and shows an example of
vanishing point estimation. The line segments which are not
aligned with principle directions are classified as outliers
and are discarded from the matching process.

1x̂ is a skew symmetric matrix associated with x = [x1, x2, x3]T .



−600 −400 −200 0 200 400 600 800 1000 1200 1400

−100

0

100

200

300

400

500

600

700

800

Figure 1. Iterations of the EM algorithm, de-
tected vanishing points (vertical vanishing
point not shown here) and lines belonging to
different vanishing directions.

2.2 Rectangular structure extraction

As we mentioned above one rectangular structure in 3D
world is delimited by four lines from two principal direc-
tions. One approach would be to extend the existing line
segments and search for all possible pairs of lines from two
orthogonal directions. We next describe the process of re-
fining the detected line segments, and forming and verifying
the initial rectangular structure hypothesis.

Line Segment merging

For efficient and accurate rectangular regions extraction, we
want to handle only small number of long line segments.
The line segments estimates are first refined by combin-
ing vanishing point information and original line orienta-
tion. Each image line is modelled as (xc, θ) where xc is the
centroid of the segment and θ is its direction. In case the
segment belongs to k-th (finite) vanishing direction (k =
1, 2, 3), the line orientation is refined by weighting θ with
vanishing point direction defined by θv = atan(dy, dx),
where d = [dx, dy]T = vk − xc. The new direction then
becomes

θnew = µ × θ + (1 − µ) × θv (3)

where µ is the membership probability of the line belong-
ing to the k-th vanishing direction. After this step, the line
segments are more consistent with the vanishing directions.
This enables us to merge the shorter line segments detected
in the first stage. In Hough space a line candidate (xc, θ) is
represented by a point (ρ, θ), such that

ρ = xc cos θ + yc sin θ. (4)

By transforming the obtained lines to Hough space while
keeping the resolution of the space high, we check whether
multiple lines fall in the same cell and merge them. The

Figure 2. Initial line segments (left) and re-
fined line segments (right).

Figure 3. An example where the intersection
of extended lines is outside the rectangular
structure.

new extended line candidate is obtained by 1) computing
the two end points of a new line defined by maximum and
minimum of extremal points of the incident lines; 2) the
middle point is defined by new centroid of two end points;
3) the mean of contributing line directions is considered to
be the new line direction. In the second stage, the resolution
of the Hough space is decreased and only single dominant
line segment is kept for each cell. This step substantially
improves the line segments used for initial hypothesis for-
mation and also eliminates dramatically the number of line
segment candidates. Figure 2 shows the originally detected
lines and refined lines. We can see now the structure infor-
mation is much more evident.

Rectangle hypotheses initialization

Given only small number of extended line segments, we ex-
haustively choose two line candidates from each group, and
compute their intersection points. In case the selected lines
indeed delineate a rectangular planar patch, there should
exist real corners points within a small neighborhood of
the predicted corner position. If all four points satisfy the
requirement we initiate a rectangular structure hypothesis.
This enables us to reject hypotheses as the one depicted in
Figure 3. The image patch represented by the four hypoth-
esis corners and corresponding line segments undergoes an
additional verification stage.



Hypothesis verification

In this stage, given the rectangular structure hypothesis, we
choose to keep or discard it by checking whether the whole
patch delimited by four line segments indeed comes from
the same plane. Recall that any planar mapping between the
3D world plane and the image plane can be characterized by
a homography H ∈ R

3×3 which relates the coordinates of
points from two respective planes. Without loss of general-
ity we can assume that the points in the plane in 3D world
are specified by homogeneous coordinates X = [X, Y, 1]
and point coordinates in the image plane are denoted by
x = [x, y, 1]T . The relationship between the points is then

x ∼ HX (5)

where ∼ denotes an equality up to scale and H is the ho-
mography matrix. Consider the coordinate frame associated
with the plane with one of the rectangle points (e.g. upper
left) being the origin and the axis aligned with the sides of
the rectangle. The coordinates of four extremal points of a
rectangular structure S expressed in this frame are then

S =


 0 a 0 a

0 0 b b
1 1 1 1


 , (6)

where a and b the dimensions of 3D rectangle. Given at
least four corresponding points and knowledge of S, H can
be recovered linearly from equation 5. However H can be
recovered only up to scale and in general a and b are un-
known. For the purpose of hypothesis verification we can
assume a = b, which will only introduce a different scal-
ing of two principal directions but won’t affect the verifi-
cation. The recovered homography enables us to warp the
hypothesized image patch to a normalized fronto-parallel
view. Since the choice of the scale a essentially controls the
resolution of the warped image we adjust its value depend-
ing on the size of the image patch.

The verification step is based on our previous assumption
of the presence of dominant orientations used in the van-
ishing points detection stage. The gradient orientation his-
togram of warped image should also contain two dominant
horizontal and vertical directions. In case additional peaks
in the histogram are detected the hypothesis is discarded.
Figure 4 shows two rectangular hypotheses and their cor-
responding warped images. We can easily identify the true
one by either of the proposed methods. In certain instances
checking only the corner areas of the warped image is suffi-
cient for verification, since corners are the most likely areas
where the planar hypothesis is violated. By discarding the
center part, the verification becomes more robust, in sce-
narios where for example there is a tree or clutter in front
of the building. Currently we consider only larger struc-
tures in order reduce the number of initial hypotheses. The

Figure 4. Hypothesis rectangles and their cor-
responding warped images, the left is invalid
hypothesis and the right one is correct. Verifi-
cation based on corner areas only, is demon-
strated on the warped image patch in the cen-
ter.
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Figure 5. Rectangle structure extraction re-
sult and two initialized building facades.

detected structures can be alternatively organized in hierar-
chical manner. Figure 5 shows the final set of the verified
rectangular structures. Note that they are naturally divided
into two groups, coming from the composition of vertical
directions with two horizontal vanishing directions respec-
tively and cover most area of the two facades. In this case,
the intersection line of the two facades is well defined. This
information will be used later for merging the individual
single reconstructions to obtain consistent relative pose be-
tween the views. Figure 5 depicts the examples of detected
rectangular structures. Some of the rectangles in the figure
are artifacts of the visualization method, since they due to
intersections of more dominant rectangular structures and
do not correspond to structures detected from and verified
by images.



3 Camera pose recovery and partial scene re-
construction

In this section we describe a method for recovery of
the relative pose of the camera with respect to the world
plane from single view. This problem is a variation of tech-
niques used previously for camera pose recovery from a
single view [5], and can be solved very efficiently. Re-
call the image coordinate x is related to its 3D counterpart
X via projection equation (1). In case sufficient number
of 3D coordinates is available, the entire projection matrix
Π = KPg ∈ R

3×4 can be recovered and factored into
intrinsic and extrinsic parameters of the camera. For un-
calibrated camera, its intrinsic calibration matrix K and its
simplified form Kf have following form

K =


 f αθ ox

0 kf oy

0 0 1


 Kf =


 f 0 0

0 f 0
0 0 1




where f is the focal length of the camera in pixel units,
k is the aspect ratio, αθ is skew factor and [ox, oy] is the
principal point of the camera. We assume zero image skew
αθ = 0, the aspect ratio is k = 1 and principal point
[ox, oy]T lies in the center of image (or is known) and the
calibration matrix thus assumes simple form of Kf above.
The basic projection equation can be simplified in the spe-
cial case, when the partially calibrated camera is viewing
a planar scene. Without loss of generality we assume that
3D planar points X = [X, Y, 0, 1]T lie on the plane which
goes though the origin in the world frame and has a normal
vector ν = [0, 0, 1]T . In such case we have

λx =


 πT

1

πT
2

πT
3







X
Y
0
1


 , (7)

where πT
1 , πT

2 , πT
3 are the rows on the projection matrix Π.

Since the third coordinate of X is zero and the intrinsic pa-
rameter matrix is Kf , the projection equations can be writ-
ten explicitly in the following form

λx =


 fr11 fr12 ftx

fr21 fr22 fty
r31 r32 tz





 X

Y
1


 = H


 X

Y
1


 .

(8)
H ∈ R

3×3 here gives an explicit form of homography be-
tween the world plane and image plane in case only the fo-
cal length f of the camera is unknown. In order to estimate
the homography we need to know at least four correspon-
dences between the world and the image plane. Note that
despite the fact that we do not know the actual world co-
ordinates of the points X, assuming that we are viewing

a rectangular structure, we can parameterize the unknown
shape S in the following way. The four corner points of the
rectangular structure S are

S =


 0 0 αb αb

0 b b 0
1 1 1 1


 , (9)

where b is the height of the rectangle in 3D world and α is
ratio between the height and width of the rectangular struc-
ture. Factoring S into scaling matrix and the structure part

S = SαSs =


 αb 0 0

0 b 0
0 0 1





 0 0 1 1

0 1 1 0
1 1 1 1


 . (10)

Substituting it into equation (8) we obtain

λx = HSαSs. (11)

Denote Hα = HSα which has the following form

Hα =


 αbfr11 bfr12 ftx

αbfr21 bfr22 fty
αbr31 br32 tz


 =


 h11 h12 h13

h21 h22 h23

h31 h32 h33


 .

Note that Hα is the homography between the rectangular
structure and a unit square, which is well defined by the
four corner points. Now we are in the position that given the
structural information S the unknown homography H α can
be recovered up to scale as H = γHα from the constraint
(11). In case the homography estimation is poorly condi-
tioned, we choose an alternative dominant rectangular struc-
ture from the detected set for the purpose of pose recovery.
Due to the special structure of Hα it is now possible to re-
cover the unknown camera pose as well as dimensions of
the rectangular structure. Note now that the columns of the
rotation matrix can be expressed in terms of the homogra-
phy matrix and unknown scales. Exploiting the constraints
that the columns of the rotation matrix have to be orthogo-
nal (rT

1 r2 = 0) and of unit norm (‖r1‖ = ‖r2‖ = 1), we
can solve for unknown scaling factors by expressing these
constraints in terms of entries of the homography matrix.
From the orthogonality constraint we obtain

1
γ2

1
α

1
b2

(
h11h12 + h21h22

f2
+ h31h32

)
= 0. (12)

From the above equation we can estimate f in the following
way

f̂ =
√ −h31h32

h11h12 + h21h22
(13)

Note that the recovered f̂ is independent of b. Dividing the
first two rows of H by f̂ we obtain

H ′ = γ


 αbr11 br12 tx

αbr21 br22 ty
αbr31 br32 tz


 = γ[h′

1, h
′
2, h

′
3]. (14)



Imposing the unit norm constraint on the rotation matrix
columns the unknown ratio of dimensions can be calculated
as α̂ = ‖h′

1‖
‖h′

2‖ where h′
1, h

′
2 are the column vectors of H ′.

Denoting γb = γb = ‖h′
2‖ as a scale factor and eliminating

the unknown scales γb and α, the unknown camera pose can
be extracted from the above equation as

g =


 r11 r12

tx

b

r21 r22
ty

b
r31 r32

tz

b


 . (15)

The final column of the rotation matrix can be obtained as
r3 = r1 × r2. So finally we recover the focal length and
the complete camera pose (R, T ) as well as the dimensions
of the rectangle up to universal scale. Note the recovered
T is inversely proportional to true rectangle dimension b,
because we are using a unit square instead of true dimension
to compute the homography.

Partial reconstruction of facade

The two rectangular structures belonging to different domi-
nant planes enables us to recover their dimensions and cam-
era pose with regard to the reference frames they define, say
(Rl, Tl) and (Rr, Tr), up to ”different” universal scales. We
can reconcile this by assigning the same origin to the two
frames. Any point in the intersection line between of the
two planes can be used, with the end corner point they share
being the most convenient one. The most upper vertex of
the building is chosen in Figure 5. The relative scale is
then η = Tr

Tl
and scale Tl can then be adjusted accordingly

to ηTl, because the two translations should be the same. The
two recovered rotations show the perpendicular relationship
between two facades with only 3o error. To visualize the re-
sult, we still use the world coordinate frame defined by two
facades, with the camera pose expressed in this frame as
g′ = (RT ,−RT T ). Figure 6 shows the recovered struc-
ture and pose based on two facades recovered in Figure 5.
Additional examples of the structure detection results are in
Figure 7 and Figure 8 applied to indoors environment.

Given the detected rectangular structures in two views
we now demonstrate how to establish their correspondence,
and use it for the recovery of the relative camera pose be-
tween the views.

4 Matching rectangular structures

Similarly as in the verification stage we warp the rect-
angular structures detected in individual views into canon-
ical fronto-parallel view. The matching uses both pictorial
and geometric information and proceeds in three stages: (1)
comparison of ratios of rectangle sizes; (2) normalized cross
correlation of canonical views; (3) consistency coplanarity
check based on homography between the two views.
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Figure 6. Frontal view (left) and top view
(right) of recovered structures and camera
pose based on the two initiated facades of
a building in Figure 5.

Figure 7. Rectangle structure recovered for
another building, crosses mark the corners of
structures which failed the verification stage.

(1) Since we already have the size ratio α = a
b of the

height and the width of each rectangular structure, in order
for two structures to match, they must in ideal case have the
same size ratio α. In practice, we allow for a small variance
of α. In case the structure to be matched has ratio α t, can-
didates with α between [ αt

1+err , (1+err)×αt] will pass the
pre-selection, err is set to be 20% in our experiments.

(2) In the second stage the remaining candidates are
compared based on pictorial cues. Given the normalized
warped views of rectangular structures, we simply choose
Normalized Cross Correlation (NCC) measure to asses the
similarity between the structures. The corresponding pair is
kept if their correlation score is larger than some specified
threshold tncc.

(3) After these two stages there are still remaining ambi-
guities, due to the repetitive nature of the rectangular struc-
tures in man-made environments; i.e. for one candidate in
the first view, there still may be several structures in the
second view matching both geometrically and pictorially.
As the top of Figure 9 illustrates, multiple structures pass



Figure 8. Rectangle structures detected in in-
door environment.

Figure 9. Structure in first view have multiple
matches pictorially (top). The repeated pat-
tern causes mismatch (bottom).

both the geometric and the pictorial test. Note that in the
second view (Figure 9 top-left), there are valid matches on
the left side of the building, demonstrating that the selected
matching criteria and our structure detection method can
handle very large distortion. These remaining ambiguous
matches are resolved by using a geometric consistency cri-
terion. The basic assumption behind this criterion is the fact
that the dominant rectangular structures detected in the in-
dividual views come from the same 3-D plane. In such case,
we can exploit the two view relationship between matched
structures characterized by a homography matrix H which
relates coordinates of two sets of planar points between two
views; x2 ∼ Hx1. Hence, the two view homography can
be estimated by selecting a pair of rectangular structures in
respective views. For the remaining structure candidates it
can be then verified whether they are consistent with the de-
tected homography, by looking at the residual error between
warped and actual corner points coordinates

|xj
2 − Hxi

1| < ε (16)

where xi
1 are coordinates of i-th rectangular structure in the

first view and xj
2 are coordinates of j-th rectangular struc-

Figure 10. Library image pair: structure de-
tected in the first view (upper left); structure
detected in the second view (upper right);
successfully matched structures (bottom).

ture in the second view. Within some tolerance character-
ized by value ε, two structures which are not exactly in the
same 3D plane can be matched, as long as the distance of the
plane from the camera coordinate system differs by a small
amount. This process of estimation of the dominant ho-
mography is carried out in spirit similar to RANSAC. First
a pair of corresponding structures is picked randomly and
it’s support is computed. In the final stage the homogra-
phy with the largest support is chosen. The final estimate
is then obtained using all correspondences which comply
with the homography. This process enables us to elimi-
nate the remaining mismatches and establish a small num-
ber of corresponding rectangular structures in two views.
Given the estimated homography H the relative displace-
ment between the views can be obtained by standard de-
composition of H into motion (R, T ) ∈ SE(3) and struc-
ture parameters. Once the correspondence between rectan-
gular structures has been established the relative displace-
ment can be alternatively computed from the two abso-
lute displacements between the camera and planar struc-
ture. Figure 11 shows structure extraction results of two
views of a library and their matching results. The motion
estimates obtained from the homography decomposition
are: the rotation axis ω = [0.98408, 0.15094,−0.093846]T

and rotation angle θ = 12◦, and translation is T =
[−0.080845, 0.34867,−0.36336]T , where x-axis is aligned
with the vertical direction.

Additional examples of matched structures and recov-
ered relative pose are shown in Figure 12. Note that even
though our matching algorithm uses more global informa-
tion captured by dominant rectangular structures, occlu-
sions caused by trees does not affect the matching results.
In the example in Figure 12 the actual camera poses were in



Figure 11. Pose recovery results for the li-
brary image pair.

reality far apart, but the focal length in the right view was
much larger, yielding almost the same apparent size of the
building.

5 Summary and discussion

In this paper we proposed an approach for extraction and
matching of dominant rectangular structures. The approach
was motivated by our previous work on vanishing points
detection and used the assumption that the majority of de-
tected line segments comes from principal vanishing direc-
tions associated with the world coordinate frame. We have
also demonstrated a simple method for the recovery of pla-
nar structure and camera pose from a single view. This
enabled us to develop a three stage wide baseline match-
ing strategy, which utilized both pictorial and geometric
cues. We have demonstrated successful matching and rela-
tive pose recovery from widely separated views in the pres-
ence of multiple repetitive structures.

We are currently exploring applicability of the proposed
method in the context of robotic visual navigation and im-
age based rendering. The presented approach demonstrates,
that the use of descriptors with a larger spatial extent, which
utilize higher level structural constraints, simplifies certain
difficult matching tasks. We are currently investigating al-
ternative choices of matching primitives and representations
of their spatial relationships which would enable the appli-
cability of both geometric and appearance based matching
in the context of wide-baseline pose and structure recovery
as well as recognition tasks.
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