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Abstract  
 

In this paper, we formulate the shape localization prob-
lem in the Bayesian framework. In the learning stage, we 
propose the Constrained RankBoost approach to model 
the likelihood of local features associated with the key 
points of an object, like face, while preserve the prior 
ranking order between the ground truth position of a key 
point and its neighbors; in the inferring stage, a simple 
efficient iterative algorithm is proposed to uncover the 
MAP shape by locally modeling the likelihood distribution 
around each key point via our proposed variational Lo-
cally Weighted Learning (VLWL) method. Our proposed 
framework has the following benefits: 1) compared to the  
classical PCA models, the likelihood presented by the 
ranking prior likelihood model has more discriminating 
power as to the optimal position and its neighbors, espe-
cially in the problem with ambiguity between the optimal 
positions and their neighbors; 2) the VLWL method guar-
antees that the posterior probability of the derived shape 
increases monotonously; and 3) the  above two methods 
are both  based on accurate probability formulation, 
which spontaneously leads to a robust confidence measure 
for the discovered shape. Moreover, we present a theoreti-
cal analysis for the convergence of the Constrained Rank-
Boost. Extensive experiments compared with the Active 
Shape Models demonstrate the accuracy, robustness, and 
stability of our proposed framework. 
 

1. Introduction 
 

Accurate localization of representative points of a face is 
essential to many face analysis and synthesis problems, 
such as 3-D modeling[16], face synthesis and recognition 
[11][12][14]. The geometry structure, i.e. shape, normal-
ized texture patch, and local features associated with the 
key points, provide important clues for the face interpreta-
tion. The traditional algorithms, like Active Shape Model 
(ASM) [4] and its variations [8][9][15], Active Appear-
ance Models (AAM) [4] and its variations [17], make use 
of part or all of these clues for shape localization.  

In this paper, we focus on exploring the shape localiza-

 
* The work was performed at Microsoft Research Asia. 

tion problem by only using the shape information and local 
features due to the observation that the local features are 
more robust to illumination and expression variations than 
the normalized texture patch.  The problem is formulated 
in a Bayesian framework with two novel approaches for 
learning and inferring.  The framework is motivated by the 
following observations: 1) the local features associated 
with the neighborhood points of a key point are often simi-
lar to, thus somehow ambiguous with that associated with 
the key point; moreover, the most representative features 
are not always the best discriminative features. Therefore 
the traditional Principle Components Analysis is insuffi-
cient to present discriminative likelihood for differentiating 
a key point from its neighbors; and 2) the traditional shape 
localization algorithms using only local features, like ASM, 
search for the optimal shape without explicit objective 
function. These algorithms can not guarantee that the 
searched shape has monotonously increasing posterior 
probability in each step in the sense of Bayesian modeling. 
They provide neither a robust confidence evaluation for the 
searched shape nor a stop criterion for the entire searching 
process in a principled manner. 

In this work, first, a semi-supervised learning algorithm, 
Constrained RankBoost, is proposed to build the likeli-
hood model that ensures the ground truth position will 
more likely have a higher likelihood than its neighbors.  It 
aims at providing more discriminative likelihood for the 
key points and their neighbors.  Second, we present a sim-
ple effective iterative algorithm for the optimization of the 
objective functions by dynamically locally learning the 
likelihood distribution around each key point using our 
proposed Variational Locally Weighted Learning method.  
It guarantees that the objective function increases monoto-
nously. These two approaches are both based on accurate 
probability formulation, which naturally leads to a robust 
confidence measure for the searched shape. It can be used 
as stopping condition for the inferring process. Moreover, 
we present a theoretical proof for the convergence of our 
proposed Constrained RankBoost which can be applied to 
the general classification and ranking problems.   

The rest of this paper is organized as follows.  In Section 
2, the shape localization problem is formulated in a Bayes-
ian framework.  In Section 3, the Constrained RankBoost 
method is introduced to build the ranking prior likelihood 
model.  We systematically introduce the efficient iterative 
optimization method for the posterior probability function 
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and give a summary for the whole inferring process in Sec-
tion 4.  Experimental results are presented in Section 5.  
Finally, the concluding remarks are given in Section 6. 
 

2. Bayesian Shape Localization Formulation  
 

Suppose a set of labeled samples { , }I S are given, where 

the shape S =  1 1(( , ),..., ( , ))K Kx y x y  2K∈R  is a sequence 

of K labeled key points representing the object, such as a 
face, in image I . The task of shape localization is to infer 
the optimal shape with the maximal posterior probability in 
an image by learning from the training samples, i.e. 

* arg max ( | )
s s

S p S I
∈

=
S

                             (1) 

where sS  is the learnt traditional tangent shape space 

[5][6][10][18] by Principle Components Analysis [4].  The 
shape S  can be decomposed into two parts: intrinsic shape 
space parameters and the geometrical transformation, i.e. 

( )cS Ts S Us= +                                         (2) 

where shape parameter ss ∈S  , S  is the average shape 

and U  is the first k  leading eigenvectors; ( )*cTs  is the 2-

D geometrical transformation function based on four pa-

rameters: scale (r), rotation (θ), and translations ( T ,Tx y ). 

From the Bayesian rule and the assumption that the local 
features around different key points are independent to 
each other, Eq. (1) can be reformulated as: 

          

*

1

arg max ( | ) ( )

arg max ( | ) ( )
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i
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s
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n

i i
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i

S P I S P S
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∈

∈ =

=

= ×∏
S

S

                  (3)  

where ( | )in
i iP I S  is the likelihood of the i-th point iS  with 

in  being the normal direction to the contour. 

From Eq. (3), the accurate inferring of the optimal shape 
consists of two fundamental problems: 1) accurate likeli-
hood modeling for local features; and 2) proper optimiza-
tion method for the objective function.    

For the first problem, the classical way is to model the 
likelihood by Principle Components Analysis or Mixture 
Gaussian Models [9].  However, it is often the case that the 
points around a ground truth position have similar local 
features especially in low-resolution images. The ambigui-
ties between a ground truth position and its neighbors lead 
to that the principle components are insufficient to formu-
late the difference between the optimal position and its 
neighbors; moreover, the most representative features are 
not always the best discriminative features. These consid-
erations motivate us to explore a supervised learning algo-
rithm for the likelihood modeling.  In the following, we 
propose the Constrained RankBoosting algorithm to model 
the likelihood while preserving the prior likelihood ranking 

order between the optimal positions and their neighbors.  
For the second problem, the objective function can not 

be optimized using gradient descent methods directly since 

the distribution of ( | )in
i iP I S  is hard to model in advance 

due to the randomicity of in . Liu [13] proposed a hierar-

chical data-driven Markov Chain Monte Carlo 
(HDDMCMC) approach to infer the optimal shape; how-
ever, it converges very slowly and hence is not suitable for 
real world applications that require real-time performance.  
In this paper, we present a simple efficient iterative ap-
proach to optimize the objective function by online locally 
modeling the likelihood distribution ( | )in

i iP I S  via our 

proposed variational Locally Weighted Learning algorithm.  
The ranking prior likelihood models and the optimiza-

tion strategy are both based on the accurate probability 
models and they are integrated for accurate inferring of the 
optimal shape in the Bayesian shape localization frame-
work. 
 
3. Ranking Prior Likelihood Models 
 

As discussed in Section 2, the ambiguity between the 
ground truth position and its neighbors requires that the 
local likelihood model should be able to correctly rank the 
likelihoods of these ambiguous positions.  A natural way is 
to take into account the ranking priors of these positions in 
the construction of the local likelihood model.  Conse-
quently, we propose a semi-supervised approach to learn 
the ranking prior likelihood models that not only character-
ize the local features of a ground truth position, but also 
preserve the likelihood ranking order between the ground 
truth position and its neighbors using the Constrained 
RankBoost algorithm. 

 
3.1. Constrained RankBoost  

 
RankBoost [3][7] is a variation of the classical boosting 

algorithm which produces highly accurate prediction rule 
by combining many “weak” rules that may be only moder-
ately accurate.  It aims at providing high accurate ranking 
evaluation and was originally used in the applications like 
web page ranking. 

In the ranking order problem, we are given a set of  
samples χ  ={x}, where x is the feature vector, and a set 

of crucial pairs with ranking order priors Ω  = { ,( )x x′  : 

,( )R x x′  >0}, where ,( ) 0R x x′ >  means sample x has 

higher confidence than sample x′  and ,( )R x x′ is normal-

ized to satisfy
( , )

( , ) 1
x x

R x x
′ ∈Ω

′ =∑ ; meanwhile, a set of 

“weak” ranking evaluation functions are presented 
as { , 1, , }iF f i L= = L , where L is the number of the 
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functions and if  satisfies 0 1fi≤ ≤  for all x χ∈ .  The task 

of RankBoost is to search for the confidence evaluation 
function :H χ → R with “minimal” weighted number of 

the incorrectly-ranked crucial pairs, i.e. the ranking loss:  
*

( , )

arg min ( , ) ( , )
FH

x x

H R x x H x x
∈ ′ ∈Ω

 ′ ′=  ∑ %
S

               (4) 

where ( , ) ( ) ( )H x x H x H x′ ′= −% ; 1z =    means x and x′  

are mis-ranked, i.e. 0z < , else  0;  FS  is the confidence 

evaluation function space spanned by the functions in F .  
The pseudo code of the classical RankBoost algorithm is 
listed in Figure 1. 

The RankBoost is a procrustes, local optimal algorithm. 

In each step, the large value of tα for local pursing may 

make H(x) escape from the optimal combination, which is 
often observed in our modeling of the likelihood of local 
features. We present an improved RankBoost by banding 
the coefficient tα with 0K when tα is big enough, and we 

call it Constrained RankBoost. The convergence is proved 
as below:   

 

Theorem 1: Assuming that ht  is selected with the largest 

absolute value of the error jε , and      

0

0

21 1
2

1
ln

1

( )

j K

j
j

t

j

when e

sign K else

ε
εεα

ε


 −≤ −

= 




+ 
  −  in each step,  

then the rank loss of the final function 

       
( , ) 1

( , ) ( , )
T

t
x x t

R x x H x x Z
′ ∈Ω =

 ′ ′ ≤ ∑ ∏% and 1tZ ≤ . 

 
Proof.  According to the updating rule of ( , )tD x x′ , we 

have that 

              1

( , )exp{ ( ( ) ( ))}
( , ) t

T
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D x x H x H x
D x x
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α

+
′ ′ −

′ =
∏

. 
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In step t, if 02
1j

Keε −
≤ − , then 21t jZ ε≤ −  [1];  

Otherwise, 02
1j

Keε −
> − , then 
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   The Constrained RankBoost avoids the strong oscillation 
of the coefficient in the selected weak ranking evaluation 
function and makes the algorithm converge more robustly. 
Moreover, it is a general problem in the boosting algo-
rithms and our proposed algorithm can be generalized to 
the other Boosting algorithm for robust convergence. 
    
3.2. Ranking Prior Likelihood Models 
 

For the likelihood ( | )in
i iP I S , there exists ranking or-

ders between the optimal position and its neighbors, al-
though they are ambiguous in many cases. We present the 
Ranking Prior Likelihood Model to formulate the likeli-
hood output via our proposed Constrained RankBoost. In 
the shape localization  problem, the feature vector x is the 
local features sampled around the key point iS ,  and the 

ranking order priors ,( )R x x′ are given by setting the rank-

ing order between the ground truth position and its 
neighborhood points. Notice that the projection to princi-

(Constrained) RankBoost 
 
1) Initiate the weights over the crucial pairs in 

1: ( , ) ( , )D x x R x x′ ′Ω =  

2). For t = 1,…,T:   
For each ranking function fi , the error is 

evaluated with respect to weights D t , 

( , )
( , )( ( ) ( ))j t j j

x x
D x x f x f xε

′ ∈Ω
′ ′= −∑  

Choose the function h ft i=  with the largest 

absolute value | |jε ; Set
11

2 1
ln j

j
t

ε
α ε

 +
  − 

= . 

 Constrained  RankBoost： 

( If 02| | 1 K
j eε −> − , set 0( )jsign Ktα ε= )  

 Update the weights:   

1

( , )exp{ ( ( ) ( ))}
( , ) t t t t

t
t

D x x h x h x
D x x Z

α
+

′ ′ −
′ =  

where Zt  is a normalization factor, mak-

ing 1tD + be a distribution. 

3). Output the final ranking function: 
T

1
( ) ( )

i
H x h xt tα

=
= ∑    

 

Figure 1. (Constrained) RankBoost Algorithm 
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ple components of the local features from ground truth 
position presents fundamental ranking evaluation; we con-
struct the “weak” ranking evaluation function set using 
different combinations of these principle components.  Let 

'L denote the number of the principle components. There 

are L(2 1)′ − kinds of different combinations: 
2

1

1( ) exp{- }
2

l jk
j

k jk

x
f x

λ=
= ∑

%
                      (5) 

where jkx%  is the projection of x to the jk-th principle com-

ponent of the local features from the ground truth positions; 

jkλ  is the jk-th largest eigenvalue; 1 ≤ 1j < 2j jl< <L  
L≤ . Since the ranking order of candidate pairs is only 

determined by the sign of their likelihood difference, we 
normalize H(x) such that H(x) 1dx =∫� . 

By taking into account the prior information in the learn-
ing stage, the ranking prior likelihood model is able to pre-
sent more accurate likelihoods for the candidate positions 
than the traditional PCA model does.  We conducted ex-
periments to compare the performance of the new models 
using Constrained RankBoost with that using classical 
RankBoost and the traditional PCA models by systemati-
cally comparing the likelihood of each point of the ground 
truth shape with that of its neighbors on 100 testing sam-
ples.  It is observed that our proposed Constrained Rank-
Boost outperforms the Classical RankBoost, and the clas-
sical RankBoost performs better than traditional PCA 
Models. The statistics results are listed in Table 1. 

 
Table 1. The percentages of right-ranked pairs of 
ground truth position and its neighbors compared be-
tween models constructed by Constrained RankBoost, 
classical RankBoost and PCA. 

  

Approach 
Constrained 
RankBoost 

Classical 
RankBoost 

PCA 
Models

Accuracy 89% 84% 76% 

 
4. Locally Weighted Learning for Optimal 

Shape Inferring  
 

As analyzed in Section 2, it is difficult to directly under-
take the optimization for the complex global structure of 
function ( | )in

i iP I S .  An intuitive way is to locally learn the 

distribution of ( | )in
i iP I S , which fascinates discovering the 

local optimal shape. In this section, we present a simple 
efficient iterative approach to maximize the posterior 
probability of the observed shape by locally modeling the 
likelihood of ( | )in

i iP I S  via a variational locally weighted 

learning (LWL) [1][2] approach.  The LWL dynamically 

models the complex function using simple local models, 
with no necessity to find an appropriate structure for a 
global model.  We simplify this idea and present a varia-
tional Locally Weighted Learning (VLWL) method to lo-
cally model the complex function ( | )in

i iP I S  using classi-

cal semi-Gaussian functions.  Consequently, the optimum 
of the shape localization problem in the neighborhood of 
the original shape can be obtained by using this local 
model, namely adaptive local likelihood distribution model.  
In the following subsections, we begin with the introduc-
tion of this new model, and then present a new optimiza-
tion framework for the shape localization problem. 
 
4.1. Adaptive Local Likelihood Distribution 
Model 
 

There is no close form solution for the objective func-
tion (3).  A natural way is to search for the solution in an 

iterative manner.  Denote kS  as the resulted shape from the 
(k-1)-th iteration, the task of each step is to find the opti-

mal shape in the neighborhood of kS  using local optimiza-
tion approach. Following the ideas of VLWL approach, 

( | )in
i iP I S can be locally approximated around k

iS  using 

the confidences presented by the i-th ranking prior likeli-
hood model.  An efficient way is to fit the distribution us-
ing semi-Gaussian models.  As described later, these sim-
ple models fascinates the objective function be optimized 
increasingly. These models can be constructed by two 
steps: (1) local neighbor selection; and (2) local distribu-
tion model construction. 

In the first step, the local neighbors of k
iS  are sampled 

following the distribution: 
1 ( , )

2p(x,y)=

0

k

iwhen x y S

else

θ
πθ

− ≤



        (6)  

where θ is the coefficient determining the sampling range 

around the point k
iS .  Let (k,i)

m{A }  denote the sample set, 

the confidence for each sample can be obtained as:  
( , ) ( , )

( ) ( ( , ))k i k i k
i m i m iCf A AH x n=                            (7) 

where ( , )( , )k i k
m iAx n is the local features around ( , )k i

mA  and 

( )iH ⋅  is the learnt ranking prior local likelihood  evalua-

tion function for the i-th point. 
In the second step, the confidence distribution in the 

neighborhood of k
iS  is approximately modeled from the 

samples (k,i)
m{A }  and their confidences ( , )

{ ( )}
k i

i mCf A  by the 

semi-Gaussian Model:  

( )
( | ) ( ),

k
i

k
i

n k k
i i iN S

p I S C N µ= ⋅ ∑                         (8) 
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where parameter C, k
iµ  and k

i∑  can be easily learnt via  

least square method. 
 
4.2. Shape parameter Inferring 
 

From Eq. (3), we can write the object function for shape 
localization problem as follows: 

1
( , ) ( | ) ( )i

K
n

i i
i

F S I P I S P S
=

= ×∏                         (9) 

In the k-th iteration, ( , )F S I can be optimized in the 

neighborhood of  kS  in term of the adaptive local likeli-
hood  distribution models, then the object function is 
changed to： 

           
( ) ( )

1
( , ) ( | ) ( )

k
i

k k
i

K
n

iN S N S
i

F S I P I S P S
=

= ×∏                 (10) 

Thus, the local optimum of the shape localization problem 
can be derived from the energy function: 

*
( )

1s

2
2

1 1s

S arg min ( ; ) ( )

arg min ( )

k
i

k
i

K
n

iN SS i

K K js k
c i i

S i jk j
i

En I S En S

s
Ts M µ

λ

∈ =

′

∈ = =
∑

= +∑

= − +∑ ∑

S

S

          (11) 

where En( )⋅  is the corresponding energy function of the 

distribution p( )⋅ , namely ( ) exp{- ( )}p x En x∝ ; K ′ is the 

dimension of sS ; jλ  is the j-th largest eigenvalue of the 

covariance matrix from the training shapes; s  is the corre-

sponding shape parameter; sM S Us= + ; and cTs is the 

geometric transformation function based on the transfor-
mation parameter ( , , , ) :x yc r T Tθ=  

( , )
x x

c
y y

T Tx a b x
Ts x y Tr

T Ty b a y

   −    
= + = +       

       
      (12) 

where cos , sina r b rθ θ= = . 

In Eq. (11), the optimization function is multinomial but 
has no close form solution.  As discussed in [9], the solu-
tion can be approximated iteratively using a two-step opti-
mization method as following: 

 
Transformation parameter estimation with given s : 

Given the shape parameter s, sM and ( )En S are constant.  

In this case, we only need to minimize the following en-
ergy function: 

2

1
( )

K xs k
i i

i y n
i

Ta b
En c M

Tb a
µ

=
∑

−   = + −∑   
   

           (13) 

In order to obtain the optimal transformation parameter, we 
set the partial derivative of ( )En c to zero.  That is, the op-

timal parameters are obtained by solving the following 
linear functions: 

0,S c

( )
( | )

k
j

k
j

n
jN S

p I S

( )
( | )

k
i

k
i

n
iN S

p I S

max &

( | )k

k K

P s I θ
<

∆ > %

,k ks c

Figure 2. The inferring process for Bayesian shape local-
ization. 
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= =
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Shape parameter estimation with given c : Given the 
transformation parameter c , the energy function is changed 
to: 

2 2

1 1
( )

K Kx jk
i i i

i jy jn
i

T s
Tr S U s

T
µ

λ
′

= =
∑

 
+ + − +∑ ∑ 

 
               (15) 

where iU is a matrix consisting of the (2i-1)-th and 2i-th 

row of  U .  Using the same approach as above, s can be 
obtained by solving the following linear functions: 

( ) ( )

( )
1

1

1

( )

K
k

i i i
i j

K
k k

i i i i
i

T
TrU TrU s

T
TrU TrS T

λ

µ

=

=

 ∑ +∑  

= ∑ − −∑

              (16)    

where ( , )T
x yT T T= . 

We summarize the entire inferring process in Figure 2, 
where maxK is the manually defined maximal iteration num-

ber and 1( | ) ( | ) ( | )k k kP S I p S I p S I+∆ = −  and θ% is the 

least posterior probability increasing value each step must 
achieve. 
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5. Experimental Results 
 

The experiments have been conducted on a data set con-
sisting of 500 frontal face images, in which each face area 
is about 150*150 pixels and many faces have ambiguous 
key points as those shown in Figure 8.  All faces were 
manually labeled with 83 key points.  400 of them were 
randomly selected for model construction, and the rest 100 
for testing. 

For comparison, ASM and the proposed shape localiza-
tion framework, referred as RPBF (Ranking Prior likeli-
hood Distributions for Bayesian Shape Localization 
Framework) were trained on the same data set, in a four-
level image pyramid (Resolution is reduced 1/2 level by 
level).  All results were obtained by maximally searching 
five times per layer. 

The most commonly used criterion to evaluate the 
searched shape is the average point-point or point-curve 
distance between the searched shape and the ground truth.  
In all our experiments, the results were evaluated using the 
average point-point distance. 
 
5.1. Accuracy evaluation 

 
The average point-point distance between a searched 

shape and the manually labeled shape of ASM and RPBF 
are compared and showed in Figure 3.  The vertical axis 
represents the distribution of point-point distance. It shows 
that most results from using RPBF have smaller point-
point error than those from ASM. 

We have also explored the performance when only using 
the ranking prior local confidence model or our proposed 
shape parameter estimation approach. As shown in Table 2, 
the performance was improved when only using one of our 
proposed approaches; moreover, our proposed framework 
integrated the two approaches and significantly improved 
the performance of the shape localization compared to the 
other three algorithms. 
 
5.2. Algorithm robustness and stability  
 

In Figure 4, the statistics of the average point-point dis-
tance of each step of search are compared between ASM 
and RPBF.  The statistics are obtained from 100 testing 
images with initial displacements about 20 pixels from the 
ground truth.  The standard deviation of point-point dis-
tance of each step is also plotted as bars in both mean lines, 
respectively. 

The capture range of in-plane rotation angle is an impor-
tant criterion to evaluate shape localization algorithms.  
Figure 5 demonstrates that RPBF can capture a larger per-
centage of the rotation cases in the range of [-40o, 40o]. 
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Figure 3. Shape localization accuracy comparison: 
ASM vs. RPBF. Note that most results of RPBF have 
smaller point-point distances than those from ASM. 

We measure the stability by the standard deviation of 
different results from different initializations with similar 
point-point distances between the initial shapes and the 
ground truths.  The results from using RPBF and ASM are 
compared in Figure 6, where the vertical axis represents 
the average standard deviation of the results obtained from 
9 different initializations.  The result conveys that RPBF is 
more stable in initialization than conventional ASM. Fig-
ure 7 shows the average error and standard deviation of the 
localization results from ASM and RPBF in terms of the 
initial errors in the x direction. It indicates that RPBF has   
a little larger capture range to initial error in x direction 
and much better accuracy in all conditions than ASM. 

A comparative example of RPBF and ASM is presented 
in Figure 8, in which ASM fails to accurately locate the 
contour points for ambiguous furrow on the face; however, 
RPBF accurately locates the contour.  Figure 9 shows some 
more experimental results by using RPBF computed on the 
images with diverse challenging conditions for conven-
tional ASM algorithm, such as low resolution, small faces, 
strong expression and in-plane rotation. 

RPBF is a fast algorithm. It costs only 80 ms per itera-
tion (on P4 1.8G computer with 512M memory) although it 
is slower than the classical ASM for the locally learning of 
the local likelihood distribution. It takes about 8 iterations 
to converge in average. As discussed above, it outperforms 
much better than ASM in accuracy, stability and robustness. 

 
Table 2. Mean value of the average point-point dis-
tance in #1: ASM, #2: Ranking prior likelihood 
model + conventional shape parameter estimation 
approach; #3: Conventional PCA model + our pro-
posed shape parameter estimation approach, #4: 
Our proposed shape localization framework. 

 
Algorithm #1 #2 #3 #4 
Average Error 4.99 4.14 4.01 2.77 
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6. Conclusions and future work 
 

In this paper, the shape localization problem is formu-
lated in a Bayesian framework and two novel methods are 
proposed for highly confident inferring of the optimal 
shape. The likelihood of the local features associated with 
the key point is modeled using a Constrained RankBoost 
method which is introduced to ensure the ground truth po-
sition has higher likelihood than its neighbors.  This model 
is learned in a semi-supervised manner and presents dis-
criminative likelihood output for the local features.  On the 
other hand, the optimal shape is inferred in an iterative 
method that locally models the likelihood distribution 
around each key point via the Variational Locally 
Weighted Learning method and simplifies the task into a 
general multinomial optimization problem in each step.  

A large part of our work focus on the highly confident 
likelihood modeling. We propose the Constrained Rank-
Boost method for the ranking prior likelihood modeling. It 
prevents the coefficients of the selected weaker functions 
from strongly oscillating and makes sure that the algorithm 
can converge robustly. We present a theoretical analysis on 
the convergence of the Constrained RankBoost algorithm. 
It is a general approach for classification and ranking prob-
lems. Moreover, the coefficients constraints analysis can 
be generalized to other Boosting algorithms for roust con-
vergence.      

Our proposed framework of face shape localization can 
be easily extended to multi-view face shape localization 
problem by properly modeling the multi-view shape space 
in linear or nonlinear manner.  On the other hand, the key 
points used in our experiments are manually selected; the 
automatic feature point selection algorithm is helpful for 
compact shape space and robust local likelihood modeling. 
We are currently exploring these extensions in both theory 
and practice. 
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Figure 5. The capture range comparison of in-plane 
rotation angle:  ASM vs. RPBF.  
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Figure 6. Standard deviation of results from different 
initialization compared between ASM and RPBF. 
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Figure 4.  Mean error (curve) and standard deviation (bars) of the point-point distances between the searched 
results and the ground truths as a function of iteration number for the ASM (left) and RPBF (right) methods. 
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Figure 7. Mean error and standard deviation of the 
localization results from ASM (left) and RPBF (right) 
in terms of localization errors in the x direction. 
 

 
Figure 8. A case ASM (Left) fails for the ambiguous 
furrow in the face, RPBF (Right) performs well. 
 

 
  

Figure 9. Some results of RPBF from the images 
with challenging conditions: low resolution, small 
face，strong expression and in-plane rotation. 
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