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Abstract

In this paper we use the cumulative distribution of a ran-
dom variable to define the information content in it and use
it to develop a novel measure of information that parallels
Shannon entropy, which we dub cumulative residual entropy
(CRE). The key features of CRE may be summarized as, (1)
its definition is valid in both the continuous and discrete do-
mains, (2) it is mathematically more general than the Shan-
non entropy and (3) its computation from sample data is
easy and these computations converge asymptotically to the
true values. We define the cross-CRE (CCRE) between two
random variables and apply it to solve the uni- & multi-
modal image alignment problem for parameterized (rigid,
affine and projective) transformations. The key strengths of
the CCRE over using the now popular mutual information
method (based on Shannon’s entropy) are that the former
has significantly larger noise immunity and a much larger
convergence range over the field of parameterized transfor-
mations. These strengths of CCRE are demonstrated via
experiments on synthesized and real image data.

1. Introduction
Entropy is a central concept in the field of Information The-
ory and was originally introduced by Shannon in his sem-
inal paper [13], in the context of communication theory.
Since then, this concept and variants thereof have been ex-
tensively utilized in numerous applications of science and
engineering. To date, one of the most widely benefiting ap-
plication has been for data compression and transmission.
Shannon’s definition of entropy originated from the discrete
domain and its continuous counterpart called the differential
entropy is not a direct consequence of the definition in the
discrete case. It is well known that the Shannon definition of
Entropy in the discrete case does not converge to the con-
tinuous definition [6]. Moreover, the definition in the dis-
crete case, which states that the entropy H(X) in a random
variable, X , is H(X) = −∑

x p(x)log(p(x) is based on
the density of the random variable p(X), which in general
may or may not exist [6] and if does exist, needs to be esti-

mated. The estimates however converge to the true density
only under some conditions. Several alternative measures
have been defined in literature [10, 1, 7] to overcome some
of these drawbacks. In this regard, all of the methods either
simply replace the summation with an integral or use the di-
rected divergence from the uniform distribution. The use of
directed divergence. For more details, we refer the reader
to [7]. However, this approach is not a direct solution to the
problem i.e., uses a comparative/relative measure. In this
paper, we present a new measure of information in a random
variable that will overcome the aforementioned drawbacks
of the Shannon entropy and has very general properties as
a consequence. This new measure is a fundamental depar-
ture from all the existing measures of entropy in that it is
based on the probability distribution of a random variable
rather than its density function. We will also present some
interesting properties of this measure and then state some
theorems which are proved elsewhere [4]. Following this,
we will define a new matching criterion – based on our in-
formation theoretic measure – for application to the image
alignment problem and compare it to methods that use the
Shannon entropy in defining a match measure.

1.1 Previous Work on Image Alignment

In the context of the image alignment problem, informa-
tion theoretic measures for comparing image pairs differing
by an unknown coordinate transformation have been pop-
ular since the pioneering works of Viola & Wells [17] and
Collignon et.al., [5]. There are numerous methods in lit-
erature for solving the image alignment problem. Broadly
speaking, these can be categorized as feature-based and di-
rect methods. We will briefly review the direct methods and
refer the reader to a recent survey [9] for others.

Sum of squared differences (SSD) has been a popular
technique for image alignment [15, 16]. Variants of the
original formulation have been able to cope with the de-
viations from the image brightness constancy assumption
[8]. Other matching criteria use of statistical information in
the image e.g., correlation ratio [11]. Image alignment is
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achieved by optimizing these criteria over a set of param-
eterized coordinate transformations. The statistical tech-
niques can cope with image pairs that are not necessarily
from the same imaging modality.

Another direct approach is based on the concept of max-
imizing mutual information (MI) – defined using the Shan-
non entropy – reported in Viola and Wells [17], Collignon
et al., [5] and Studholme et al., [14]. Reported registration
experiments in these works are quite impressive for the case
of rigid motion. In [14], Studholme et.al., presented a nor-
malized MI scheme for matching multi-modal image pairs
misaligned by a rigid motion. Normalized MI was shown to
be able to cope with image pairs not having the same field
of view (FOV), an important and practical problem. Most
of the effort in the recent past has been spent on coping
with non-rigid deformations between the source and target
multi-modal data sets [12, 3].

2 Cumulative Residual Entropy: A
new measure of information

In this section we define our new information theoretic mea-
sure and derive some properties/theorems. We do not delve
into the proofs but refer the reader to a more comprehensive
mathematical – unpublished technical – report [4].

The key idea in our definition is to use the cumulative
distribution in place of the density function in Shannon’s
definition of entropy. The distribution function is more reg-
ular because it is defined in an integral form unlike the den-
sity function, which is computed as the derivative of the
distribution. Moreover, in practice what is of interest and/or
measurable is the distribution function. For example, if the
random variable describes the life span of a light bulb, then
the event of interest is not whether the life span equals t,
but whether it exceeds t. Our definition also preserves the
well established principle that the logarithm of the proba-
bility of an event should represent the information content
in the event. We dub this measure as cumulative residual
entropy henceforth abbreviated CRE.

Definition: Let X be a random vector in RN , we define
the CRE of X , by :

E(X) = −
∫
RN

+

P (|X| > λ) log P (|X| > λ)dλ (1)

Where X = (X1,X2, ...,XN ), λ = (λ1, ....λN ) and

|X| > λ means |Xi| > λi and RN
+ =

(
X ∈ RN ;Xi ≥ 0

)
.

CRE is easily computed for various distributions (in some
cases numerically). For example, in the case of the In
the case of the exponential distribution with mean 1/λ and
density function: p(x) = λe−λx, the CRE computes to,
E(X) = 1/λ. For the case of the Gaussian distribution, the
expression for E(X) will involve the error function erf.

Proposition 1 E(X) < ∞ if for all i and some p >
N,E[|Xi|p] < ∞; where E is the expectation operator.

Proposition 2 If Xi are independent, then

E(X) =
∑

i

(∏
i�=j

E(|Xj |)
)
E(Xi)

Proposition 3 (Weak Convergence). Let the random vec-
tors Xk converge in distribution to the random vector X;
by this we mean

lim
k→∞

E[ϕ(Xk)] = E[ϕ(X)] (2)

for all bounded continuous function φ on RN , if all the Xk

are bounded in Lp for some p > N , then

lim
k→∞

E(Xk) = E(X) (3)

This is an important proposition and plays a key role in jus-
tifying the computation of CRE from the samples. In con-
trast with the differential entropy, which can not be com-
puted from sample data, CRE can be easily computed from
the samples. Note that, in order to compute the differential
entropy, one needs to first estimate the probability density
function and then use this estimate to estimate the differen-
tial entropy. Thus, there are at-least two levels of estimation
processes involved here and this leads to several restrictions
under which one may be able to show the convergence of
these estimates to the differential entropy. In contrast, no
density estimates are required for computing the CRE from
samples and therefore no such restrictions apply.

Definition: Given random vectors X and Y ∈ RN , we
define the conditional CRE E(X|Y ) by :

E(X|Y ) = −
∫
RN

+

P (|X| > x|Y ) log P (|X| > x|Y )dx

(4)
Proposition 4 For any X and Y

E[E(X|Y )] ≤ E(X) (5)

Equality holds iff X is independent of Y . This is analo-
gous to the Shannon entropy case. Essentially, it states that
conditioning reduces CRE.

Definition: The continuous version of the Shannon entropy
called the differential entropy [6] H(X) of a random vari-
able X with density f is defined as

H(X) = −E[log f ] = −
∫

f(x) log f(x)dx

The following proposition gives a lower bound on E(X) in
terms of the differential entropy H(X).
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Proposition 5 Let X ≥ 0 have density f , then,

E(X) ≥ C. exp(H(X)), (6)

C = exp(
∫ 1

0

log(x| log x|)dx)

Definition: The mutual information I(X,Y ) of two con-
tinuous random variables X and Y using Shannon entropy
is defined as :

I(X,Y ) = H(X) − E[H(X/Y )] (7)

This measure for the discrete random variable case is now
widely employed in assessing the misalignment between a
pair of uni- or a pair of multi-modality image data sets.

We now define a quantity called cross-CRE (CCRE)
given by

C(X,Y ) = E(X) − E[E(Y/X)] (8)

Note that I(X,Y ) is symmetric but C(X,Y ) need not be.
We define the symmetrized version of C as,

C̃(X,Y ) =
1
2

(
E(X) − E[E(Y/X)]

)

+
1
2

(
E(Y ) − E[E(X/Y )]

)
(9)

¿From Proposition 4, we know that C̃ is non-negative. In our
experiments, we found that the non-symmetric CCRE given
by C was sufficient to yield the desired results. We empiri-
cally show the superior performance of CCRE over MI and
normalized-MI under low signal to noise ratio (SNR) con-
ditions and also depict its larger capture range with regards
to the convergence to the optimal parameterized transfor-
mation.
2.1 Estimating Empirical CRE
In order to compute CRE of an image, we use the histogram
of an image to estimate the P (X > λ) where X corre-
sponds to the image intensity which is considered as a ran-
dom variable. Note that as a consequence of proposition
3, empirical CRE computation based on the samples will
converge in the limit to the true value. This is not the case
for the Shannon entropy computed using histograms to esti-
mate the probability density functions, as is usually done in
current literature. In the case of CRE, we have,

E(X) = −
∫ ∞

0

P (X > λ) log P (X > λ)dλ

= −
∑

λ

P (X > λ) log P (X > λ) (10)

Hence, using a histogram to compute the CRE is well de-
fined and justified theoretically.

Note that estimating E(X/Y ) is done using the joint his-
togram and then marginalizing it with respect to the condi-
tioned variable.

3 The Alignment Problem

The alignment problem is defined as: Given a pair of images
f(x, y) and r(x′, y′), where (x′, y′)t = T (x, y)t where
T is the matrix corresponding to the unknown parameter-
ized transformation to be determined, define a match met-
ric M(f(x, y), r(x′, y′)) and maximize/minimize M over
all T . In our case, the matching criterion M is defined
by CCRE. The class of transformations that we consider
are, rigid motions, affine motions and projective transfor-
mations.

To show the marked contrast in the range of values taken
by C and I , we compare their ranges in Figure 1 for a pair
of registered MR&CT images over a range of rigid motions
applied to one of the two given pair of registered images.
The second row of Figure 1 shows the zoom in view (at
the location of indicated by the arrow) of the range plot be-
tween 1◦ and 2◦. Note the significant difference in the range
of values of C and I . It is also evident that CRE is much
smoother than the other two measures. As evident from
the experiments described later, this characteristic of CCRE
will prove to be very useful in demonstrating a large range
of convergence and noise immunity for a given optimiza-
tion procedure over MI defined using the Shannon Entropy.
This we believe is a significant strength of our approach.
Not only it is easier to find the optimum, but also from nu-
merical computation point of view, it can depict improved
tolerance to numerical roundoff errors.

4 Experiment Results

In this section we demonstrate alignment by maximization
of CCRE for a variety of transformations. The performance
of the CCRE was evaluated for each set. The first exper-
iment (with 30 image pairs) was done for synthetic mo-
tions, where we compare the estimated alignment with the
ground-truth alignments. The second experiment (two pairs
of data sets) is done on the real data image pair. In all of
the following experiments, bi-linear interpolation was used
when needed for non-integral indexing into the image.

4.1 Synthetic Motion Experiments

In this section, we demonstrate the robustness property
of CCRE and hence justifying the use of CCRE over MI
and NMI (normalized-MI) in the alignment problem. This
is demonstrated via experiments depicting superior perfor-
mance in matching under noisy inputs and larger capture
range in the estimation of the motion parameters.

4.1.1 Rigid Motion

In order to compare the robustness property of CCRE ver-
sus MI and NMI, we designed a series of experiments as
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Figure 1: Comparison of the magnitude of C and I over a range of rotations, for a pair of MR & CT images.

follows: with the MR & CT image pair as our data, we
choose the MR image as the source, the target image is ob-
tained by applying a known rigid transformation to the CT
image. The source and target image pair along with the re-
sult of estimated transformation using CCRE applied to the
source with an overlay of the target edge map are shown in
Figure 2. The registration is quite accurate as evident visu-
ally. Quantitative assessment of accuracy of the registration
is presented subsequently.

Figure 2: Rigid motion example, Left:The MR (source) im-
age, Right: Synthetically transformed (with a rigid motion) CT
(source) image. Middle: Overlay of the target edge map on the
transformed source image obtained by applying the CCRE esti-
mate of the rigid motion.

Next, we applied CCRE together with other MI algo-
rithms to estimate motion parameters, with 30 randomly
generated rigid transformations. These are normally dis-
tributed around the values of (0◦, 5pixel, 5pixel), with
standard deviations of ( 8◦, 3pixel 3pixel) for rotation and
translation in x and y respectively. Table 1 shows the statis-
tics of errors resulting from the 3 different methods. In
each cell, the leftmost value is the rotation angle (in de-
grees), while the right two values show the translations in x
and y directions. Of the 30 trials, the MI algorithm failed

3 times while CCRE and Normalized MI both failed only
once (“failed” here means that the optimization algorithm
– sequential quadratic programming (SQP) – primarily di-
verged). If we only count the cases which gave reasonable
results, as shown in the first (for CCRE), second (for tradi-
tional MI) and third (for normalized MI) rows, CCRE and
the traditional MI have comparable performances, all being
very accurate. Thus, in terms of accuracy, CCRE and NMI
are comparable and are both better than MI.

mean standard deviation
1 0.057◦ 0.456 0.286 0.022◦ 0.236 0.079

2 0.165◦ 0.645 0.478 0.067◦ 0.271 0.204

3 0.122◦ 0.397 0.466 0.040◦ 0.093 0.077

Table 1: Comparison of estimation errors for rigid motion between
CCRE, MI and normalized MI.

In the second experiment, we compare the robustness
of the three methods (CCRE, MI and normalized MI) in
the presence of noise. Still selecting the aerial image from
the previous experiment. as our source image, we generate
the target image by applying a fixed synthetic motion. We
conduct this experiment by varying the amount of Gaus-
sian noise added and then for each instance of the added
noise, we register the two images using the three tech-
niques. We expect all schemes are going to fail at some
level of noise. By comparing the noise magnitude of the
failure point, we can show the degree to which these meth-
ods are tolerant. We choose the fixed motion to be 10◦

rotation, and 5 pixel translation in both x and y direction.
The numerical schemes we used to implement these regis-
trations are all based on sequential quadratic programming
(SQP) technique. Table 2 show the registration results for
the three schemes. From the table, we observe that the MI
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σ True Motion CCRE MI NMI
13 5 6 6 4.997 6.002 5.997 5.008 5.987 6.004 5.003 6.007 6.022

5 7 7 4.995 7.004 7.012 0.087 6.988 7.018 5.384 7.995 6.541

10 10 10 10.015 9.985 9.972 FAIL 0 − 18.748 − 21.041

20 10 10 20.002 9.975 9.990 FAIL

30 13 13 31.950 14.037 12.974

35 14 14 FAIL

Table 3: Comparison of the convergence range of the rigid registration between CCRE and other MI schemes for fixed noise variance.

fails when the standard deviation of the noise is increased
to 15. It is slightly better for normalized MI, which fails at
19, while CCRE is tolerant until 60, a significant difference
when compared to the traditional MI and the normalized MI
methods. This experiment conclusively depicts that CCRE
has more noise immunity than both MI and the normalized
MI.

σ CCRE MI NMI
10 9.998 5.016 4.996 9.993 4.999 5.007 10.002 5.256 5.235

15 9.998 5.077 5.005 0 6.003 − 3.000 10.132 5.046 5.998

19 9.998 5.006 5.001 FAIL 0 − 15.890 19.222

30 9.998 5.256 5.235 FAIL

59 10.027 5.124 4.995

60 0 − 3.003 0

61 FAIL

Table 2: Comparison of the registration results between CCRE and
other MI algorithms for a fixed synthetic motion. The true motion
is (10◦, 5, 5)

Next, we fix the variance of noise and vary the magni-
tude of the synthetic motion until all of them fail. With
this experiment, we can compare the convergence range
for each registration scheme. From Table 3, we find that
the convergence range of MI and normalized MI is esti-
mated at (5◦, 6, 6) and (9◦, 10, 10) respectively, while our
CCRE-based algorithm has a much larger capture range at
(32◦, 13, 13). It is evident from this experiment that the cap-
ture range for reaching the optimum is significantly larger
for CCRE when compared with MI and NMI in the pres-
ence of noise. Note that in all the cases, the same numerical
optimization scheme – SQP – was used.

4.1.2 Affine Motion

The affine motion experiment was designed as follows: in
all the experiments, we misalign MR T1&T2 image pair by
a known affine transformation, then try to align them using
our CCRE measure . The MR T1&T2 images are originally
aligned. For the purpose of comparison, we separate the
affine motion into three parts, rotation, translation and scal-
ing. The experiments are similar to the ones for the rigid
motion (table 3), we registered the source and target images
while varying the synthetic affine motion until the methods
fail to find the motion. Each motion parameter is evaluated
independently, Table 4 summarizes the results of applying

our CCRE algorithm as well as the other MI schemes. The
values shown are the maximum capture range (from a zero
initial guess) for each parameter in each algorithm. As ev-
ident, our algorithm has a significantly larger convergence
range.

algorithm Rotation Translation Scaling
CCRE 39◦ 30 3.2

MI 18◦ 15 2.2
Normalized MI 21◦ 14 2.6

Table 4: Convergence range of different algorithms for affine mo-
tion.

The last test for the affine motion involves varying the
amount of Gaussian noise while fixing the synthetic affine
motion. Table 5 depicts the noise variance which causes
each algorithm to fail. Again, observe superior performance
of CCRE over the other MI-based methods.

algorithm noise Standard Deviation(σ)
CCRE 19

MI 6
Normalized MI 5

Table 5: Comparison of the registration results for a fixed affine
motion, (1.4772,−0.2605, 5.0000, 0.2605, 1.4772, 5.0000) and
varying noise levels

4.2 Real Data Experiments

In this section, we demonstrate the algorithm performance
for a pair aerial images taken over time. The transformation
between the two images is assumed to be a projective trans-
formation. Our data is approximated by a planar surface in
motion viewed through a pinhole camera. This motion can
be described as 2D projective transformation.

u(x, y) =
a0x + a1y + a2

a6x + a7y + 1
− x

v(x, y) =
a3x + a4y + a5

a6x + a7y + 1
− y (11)

This projective transformation requires us to estimate eight
parameters for each image pair. For brevity, only one regis-
tration result is shown in Figure 3. Here, the source and tar-
get images are shown in the top row, and the lower left im-
age is the overlay of the transformed source with the source
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edge map (showing the change in the source due to the ap-
plied transformation), while the lower right image shows
the overlay with the target edge map showing the registra-
tion. As evident, the registration is visually quite accurate.

Figure 3: Registration results for the projective transformation.

5 Summary

In this paper, we presented a novel measure of information
that we dub cumulative residual entropy (CRE). This mea-
sure has several advantages over the well known Shannon
entropy whose definition is based on probability density
functions which are hard to estimate accurately. In con-
trast, CRE can be easily computed from the sample data
and these computations asymptotically converge to the true
value. Unlike Shannon entropy, the same CRE definition is
valid for both discrete and continuous domains.

We defined the cross-CRE denoted by CCRE and applied
it to estimate the parameterized misalignments between im-
age pairs and tested it on synthetic as well as real data sets
from uni-modal (single imaging) source and multi-modality
(MR T1 and T2 weighted ) imaging sources. Comparisons
were made between CCRE and MI and normalized MI both
of which were defined using the Shannon entropy. Exper-
iments depicted significantly better performance of CCRE
over the other MI-based methods currently used in litera-
ture.
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