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Abstract

This paper addresses the problem of calibrating cam-
era lens distortion, which can be signi£cant in medium to
wide angle lenses. While almost all existing nonmetric dis-
tortion calibration methods need user involvement in one
form or another, we present an automatic approach based
on the robust the-least-median-of-squares (LMedS) estima-
tor. Our approach is thus less sensitive to erroneous in-
put data such as image curves that are mistakenly consid-
ered as projections of 3D linear segments. Our approach
uniquely uses fast, closed-form solutions to the distortion
coef£cients, which serve as an initial point for a non-linear
optimization algorithm to straighten imaged lines. More-
over we propose a method for distortion model selection
based on geometrical inference. Successful experiments to
evaluate the performance of this approach on synthetic and
real data are reported.

1. Introduction

Camera lens distortion can be signi£cant in medium to
wide angle lenses. The distortion parameters are often cali-
brated along with all (extrinsic and intrinsic) parameters of
the camera model [13]. The problem with these methods is
their need for metric information about the imaged scene.
Moreover, there is some kind of coupling between internal
parameters, including distortion parameters, and external
parameters that result in high errors on the camera internal
parameters [5]. In contrast, another family of non-metric
methods have been proposed, which do not rely on known
scene points [4, 5, 8, 11]. Instead, most these methods rely
on the fact that straight lines in the scene must always per-
spectively project to straight lines in the image.

∗This work was supported in part by the US Army Grants DABT60-
01-P-0046 and DABT60-02-P-0063.

In this paper, we propose a complete, automatic non-
metric approach to camera lens calibration. Several aspects
about our approach are novel. Firstly, in almost all existing
nonmetric distortion calibration methods [4, 8, 11], some
user involvement for data preparation is needed in one form
or another. For example, the user should manually select the
image curves that correspond to scene linear segments [11].
We propose to use a robust approach based on the least me-
dian of squares (LMedS) estimator to discard outliers in
the data. Our approach is thus able to proceed in a fully-
automatic manner while being less sensitive to erroneous
data such as image curves that are mistakenly considered as
projections of 3D linear segments.

Secondly, we £nd fast, closed-form solutions to the dis-
tortion coef£cients, which are re£ned later using non-linear
search techniques to £nd the best distortion parameters that
straighten the image lines. The existing methods typically
start with a non-linear optimization algorithm assuming
zero distortion, which may lead to a less accurate result
and/or a longer search time with increased probability of
being stuck in a local minimum.

Lastly, the paper addresses the problem of how to select
a proper model for lens distortion. Almost all previous ef-
forts (e.g., [13, 4, 5, 8, 11]) calibrated a £xed, pre-speci£ed
distortion model. As such, they may suffer from over/under-
parameterization. Here we propose to exploit, for the £rst
time, geometric inference [6, 7] for distortion model selec-
tion as it £ts more geometrical problems of computer vision.
We investigate and compare the application of both the ge-
ometric AIC and geometric MDL criteria.

This paper is organized as follows. Section II describes
the camera distortion model. Section III presents our ap-
proach to distortion calibration, while a method for model
selection is proposed in Section IV. Some experimental re-
sults are reported in Section V, followed by our concluding
remarks in Section VI.

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 



2. Camera Distortion Model

The standard model for the radial and decentering distor-
tion [13] is mapping from the distorted image coordinates,
(xd, yd), that are observable, to the undistorted image plan
coordinates, (xu, yu), which are not physically measurable,
according to the equation:
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d + K2r
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where

xd = xd − cx, yd = yd − cy, r2
d = xd

2 + yd
2,

and K1, K2, K3 are the coef£cients of radial distortion and
P1, P2 and P3 are the coef£cients of the decentering distor-
tion. rd is the radius of an image point from the distortion
center, de£ned as (cx, cy) above. Typically, only few distor-
tion parameters are modeled, as the higher order terms are
comparatively insigni£cant [13]. The lens distortion cal-
ibration problem thus becomes to recover the practically
signi£cant distortion coef£cients along with the distortion
center (cx, cy).

3. Proposed Approach

To £nd the distortion parameters, the following fact is
often used: a camera follows the perspective camera model
if and only if the projection of every 3D line in space onto
the camera plane is a line. The techniques based on this fact
lead to non-linear objective functions (error measures) that
need ef£cient search algorithms in order to £nd the best cal-
ibration parameters. One common such measure (denoted
ξl) is the sum of squared distances of the edge points from
the straight lines on which they should lie [4, 5, 8].

In the following, we describe our proposed approach. At
£rst, our approach, uniquely, derives closed-form solutions
to the distortion coef£cients, which are re£ned by nonlin-
ear search. Then we propose a robust version of the ap-
proach which follows the general outline [10] of the LMedS
method after taking some critical issues into account.

3.1. Closed-form Solutions

Suppose we have a line l in the undistorted image plane.
Each point on the line is related to a point (xd, yd) in the
distorted image plane according to (1). It can be shown [2]
that the slope of the line, s, in the undistorted plane is re-
lated to the slope of the tangent, δyd

δxd
, to the curve at point

(xd, yd) by

s(xd, yd) =
∂yu
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+ ∂yu

∂yd

δyd

δxd

∂xu

∂xd
+ ∂xu

∂yd

δyd

δxd
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where all the four partial derivatives can be directly com-
puted from (1). In the problem of distortion calibration,
we usually have a number of distorted points in the image
plane. Under the correct values of the distortion parame-
ters, the slopes computed from the last equation for all these
points should be the same if the points are to lie on the same
line in the undistorted image. Therefore, we can de£ne the
following distortion measure. Given a chain of edge points,
(xi

d, y
i
d), i = 1, · · · , N , that should belong to the same line

in the undistorted image, we can compute approximately
the slopes of the tangents at the chain points and hence we
can solve for the distortion parameters that minimize the er-
ror ξs =

∑N
i=2(s(x

i
d, y

i
d) − s(xi−1

d , yi−1
d ))2. To improve

the accuracy, several curves distributed through the image
ought to be used with the error ξs being computed for all
the chains.

Closed-form solutions for rest of the distortion param-
eters can be obtained if the distortion center is assumed
known (see below). At each point of the curves extracted
from the distorted image, Eq. 2 can be applied, with the
left-hand side (LHS) being the slope of the undistorted line
to which these points belong. That slope can be estimated
from the curve points by least-square linear regression1.
With the LHS of Eq. 2 being known, each point will thus
yield one linear equation in the distortion coef£cients. All
the equations obtained from all points are stacked in the
form A x = b. This over-determined set of equations can be
ef£ciently solved using singular value decomposition. The
obtained solution is re£ned further using the Levenberg-
Marquardt (LM) algorithm minimizing the distortion error
ξs or ξl.

It was observed in our experiments as well as in [11, 4]
that including both the distortion center and the decentering
coef£cients in the non-linear search may lead to instabil-
ity. Neither paper gave any explanation for this observation,
while it was recommended in [11] the estimation of the dis-
tortion coef£cients be nested within a coarse-to-£ne search
for the distortion center in order to avoid the instability. In
[1], we are able to explain this observation, both analytically
and experimentally, as both the distortion center and the de-
centering coef£cients tend to adjust for each other during
the non-linear search. Thus by £xing the distortion center
at a appropriate location (we use the image center) and then
using the two decentering distortion coef£cients P1 and P2

to compensate for reasonable deviations of the center from

1Our experiments [1] veri£ed that the slope, unlike the intercept, ob-
tained from best-£t line of the distorted curve points is usually close to the
”unknown” slope of the undistorted line.
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the true location. As such, one can exclude the distortion
center from the set of unknown variables. This reduces the
dimension of the search space without signi£cant loss in
accuracy, which leads to faster calibration. Moreover, this
result makes it even more straightforward to use the closed-
form solution.

3.2. Robust Calibration

The distortion calibration method requires a number of
chains of edge points that correspond to real 3D linear seg-
ments. To meet this requirement, some user involvement
in one form or another is needed. The user ought to se-
lect the edge chains that are projections of straight lines
in the scene [11]. Moreover, some ”sample” points from
each selected chain can be picked out and fed to the calibra-
tion algorithm [11]. Besides, a number of system param-
eters, such as edge linking thresholds, may need manual
tuning. A fully-automatic method should be more tolerant
to erroneous data that might enter the estimation algorithm
in different forms. For example, some image curves may
be mistakenly considered as projections of 3D linear seg-
ments. Another error source is image curves that do really
correspond to 3D linear segments but are linked together
as one chain after the edge linking process. Using a smaller
linking threshold can help but would yield smaller segments
that may contain more noise than useful information about
distortion. With a robust estimation method, one can risk
using a bigger linking threshold to produce longer imaged
segments that contain more useful information.

Outlying data will severely degrade the distortion esti-
mation algorithm if one directly applies the methods de-
scribed above or in the literature since they are all least-
squares techniques. We are aware of only one work [5] that
tried to reduce the effect of outliers on distortion calibra-
tion. In that work, Devernay and Faugeras used a smaller
linking threshold to produce the edge chains that are to be
used by the optimization process. Then by repeating dis-
tortion minimization and polygonal approximation on the
undistorted edges using the resultant distortion parameters,
many outliers can be eliminated and longer, more useful
segments can be obtained and thus more accurate calibra-
tion. Their technique relies on that undistorting the edges
after the optimization would make identifying outliers dur-
ing the next polygonal approximation easier. However this
would not be the case when the image has severe distortion,
when many 3D segments are broken into smaller edges, or
when too many outliers are found in the data. In any of
these cases, the distortion parameters obtained after the £rst
iteration will be highly perturbed, and will not make outlier
identi£cation in the next iteration any easier.

Here we propose an automatic method for lens distor-
tion calibration based on robust estimators. The LMedS

method estimates the parameters by solving the non-linear
minimization problem: min mediani r2

i , where ri denotes
the residual of the ith datum. The algorithm which we have
implemented for robustly estimating the lens distortion pa-
rameters generally follows the structure outlined in [10] and
is summarized below. Some issues critical to the implemen-
tation and application of the LMedS method to the problem
of distortion calibration are pointed out in the next subsec-
tion.

Given n edge points, a Monte Carlo type technique is
used to draw m random subsamples of q different points.
For each subsample, indexed by j, we determine the distor-
tion parameters Pj using the method described above. For
each Pj , we can determine the median of the squared resid-
uals, denoted by Mj with respect to the whole set of points.
We retain the estimate Pj for which Mj is minimal among
all m Mj’s. The number of subsamples m should be big
enough such that at least one of the subsamples is ”good”.

The LMedS ef£ciency is poor in the presence of Gaus-
sian noise [10]. To compensate for this de£ciency, one £rst
make a good, robust estimate of the standard deviation of
the errors of good data (inliers). This estimate is related
to the median of the absolute values of the residuals, given
by [10]: σ̂ = 1.4826 [1+5/(n−q)]

√
MJ , where MJ is the

minimal median. Any data item whose error is larger than a
certain number (e.g. 2.5−3.0) of σ̂ can be considered as an
outlier and removed. The distortion parameters are £nally
estimated by applying the distortion calibration algorithm
once again on the inlying points.

3.3. Implementation Details

Here we discuss in more detail some issues related to the
implementation of the robust algorithm. The £rst issue is
how to compute the residual ri for each point. The residual
of a particular point should re¤ect its own contribution to the
£tting error of the model. Previously proposed distortion
measures gauge the distortion carried by a point but in ac-
cordance with one or more points on the same imaged line,
some of which may be outlying. Therefore once we solve
for the distortion parameters for a subsample, the residual ri

for each point is computed as the distance from the point to
the line robustly estimated from the curve points. The best-
£t parameters of a line are computed by using the LMedS
estimator once again. The robustly-estimated line slope is
also used to £nd the closed-form solution.

Moreover, to select the points of a subsample, one should
take care of two concerns. On one hand, the points of a
subsample ought to be distributed across the image in or-
der that the obtained parameters be not biased by the re-
gion from which the points come. On the other hand, the
points selected should provide enough constraints to solve
for the distortion parameters. For example, we need at least
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2 points from any line to impose one constraint on the dis-
tortion parameters. In order to consider these concerns and
achieve higher ef£ciency and stability, we used a random se-
lection method based on bucketing techniques [14] on two
levels: the £rst to select a bucket from the image, and the
second to select a line from the chosen bucket. The selec-
tion method works as follows.

The minimum and the maximum of the coordinates of
the extracted edge points in the image are calculated. Then
the region within these limits is divided into b × b buckets
(we used b = 2). Each extracted edge chain is attached to
the bucket that includes most of the chain points. Buckets
having no points are excluded. To generate a subsample of q
points, we randomly select q/2 buckets, and then randomly
choose a chain from each selected bucket. From each cho-
sen chain, two points are picked out at random, one from
the £rst half of the chain and another from the second half.
Thus we end up with q selected points per subsample. The
required number of subsamples m is determined based on
the expected number of outliers in the data [10]. For more
details, refer to [1].

Finally, an outline of the robust calibration algorithm is
shown as Algorithm 1.

4. Distortion Model Selection

Algorithm 1 requires the distortion model be pre-
speci£ed through the model order p. This raises the problem
of choosing the proper model for a given lens. The distor-
tion model may be selected experimentally based on inspec-
tion of the input and after-distortion-correction images. The
question here is how to select this model automatically and
ef£ciently even in non-clear situations.

A naive idea is to choose from among candidate models
the one that gives the smallest residual. This does not work,
however, because a model with more degrees of freedom
will be almost always chosen as it yields a smaller resid-
ual. For a fair comparison, one needs to compensate for the
over£t caused by excessive degrees of freedom. Model se-
lection is one of the central subjects of statistical inference.
Some of the widely adopted criteria for statistical model se-
lection are Akaike’s AIC [3] and Rissanen’s MDL [9]. This
problem has been generalized in abstract terms as geometric
£tting, for which a general theory of statistical optimization
has been developed [6] so it becomes useful for geometric
problems considered in computer vision. In this framework
of geometric £tting, geometric AIC and geometric MDL
have been proposed motivated by their statistical counter-
parts [6, 7] and applied to several computer vision problems
(e.g., see [6]).

In the context of lens distortion calibration, almost all
previous efforts (e.g., [13, 4, 5, 8, 11]) calibrated a £xed,
pre-speci£ed distortion model. As such, they may suffer

Algorithm 1 Robust calibration algorithm.
Input: a distorted image and order of distortion model p

1. Do subpixel edge detection to generate chains of
edge points.

2. For each chain, compute the line best-£t parameters
using a typical LMedS estimation procedure [10].

3. Set the distortion center to a reasonable location
(e.g., image center).

4. Compute the required number of subsamples m .

5. for each subsample do
(a) Select the points of the subsample using the

bucketing technique described before.
(b) Form the set of equations A x = b as de-

scribed in Section 3.1. Use singular value
decomposition to obtain the vector x. The
result is an initial estimate of the distortion
coef£cients.

(c) Re£ne the distortion coef£cients by apply-
ing the Levenberg-Marquardt algorithm to
the distortion measure ξs (or ξl).

(d) Compute the median of the squared residuals
for all points at the estimated coef£cients.

end for

6. Set MJ to the minimal median over all subsamples.

7. Compute σ̂ and identify outliers .

8. Re-compute the distortion coef£cients by applying
the distortion calibration to all data points after dis-
carding the identi£ed outliers.

from over/under-parameterization. We are aware of only
one work [12] that used a statistical inference method based
on Fisher’s distribution to identify the proper distortion
model. Here we propose to exploit, for the £rst time, geo-
metric inference for distortion model selection as it £ts more
geometrical problems of computer vision. Since there ex-
ists no de£nite criterion to favor any of geometric AIC or
geometric MDL [7], we investigate the application of both
criteria.

The geometric AIC of a model S is de£ned as [6, 7]

G-AIC(S) = J(S) + 2(γ η + µ)ε2, (3)

where J(S) is the residual when data of size η are £t to the
model S, µ is the number of degrees of freedom (DOF) of
the model, γ is the dimension of S, and ε is the noise level
in the data. γ can also be de£ned as γ = ν − ρ, where ν is
the DOF of the observed data and ρ is the co-dimension of
the model.

The geometric MDL is similarly de£ned as [7]

G-MDL(S) = J(S) − (γ η + µ)ε2 log(ε/R)2, (4)
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where R is a reference length (we take R= image width).
In order to apply AIC or MDL, we need to know the

noise level ε. An unbiased estimator of ε is obtained from
the most general candidate model S0 (the one with most
DOFs) from (for details, see [7])

ε̂2 =
J(S0)

(ρ η − µ0)
, (5)

where µ0 is the DOFs of S0. Note that the general model
S0 contains other candidate models.

For any lens distortion model S with p parameters, G-
AIC and G-MDL are computed from (3) and (4), respec-
tively, with ν = 2 (as each observed point has 2 DOFs),
ρ = 1 (as each observed point has co-dimension of 1),
γ = ν − ρ = 1, µ = 2 L + p (two for each line in ad-
dition to the model parameters), where L is the number of
lines used for distortion calibration, and η is the number of
points used. The residual J(S) is computed after outlying
data have been removed in the robust calibration algorithm.
For each candidate distortion model, we compute G-AIC
(or G-MDL) and select the model that has the smallest G-
AIC (or G-MDL), while the noise level is the same for all
models and estimated from (5) only from the most general
model.

5. Experimental Results

In this section, the performance of our technique is as-
sessed using both synthetic and real image data. Because
of lack of space, some experiments are reported here, many
more can be found in [1].

5.1. Synthetic Data

In this experiment, the performance of the proposed
approach on model selection is tested and evaluated. A
320 × 242 image consisting of 10 lines is used as a test
image. The lines were generated with random orientations
and positions. We de£ned 3 distortion models: distortion-
free model S1, S2 = {K1 = 20 × 10−6} and, S0 = S3 =
{K1 = 20 × 10−6,K2 = 30 × 10−9}. We carried out
a series of simulations as follows. In each time, a distor-
tion model from the de£ned three is selected at random and
points (about 880 in total) sampled from the lines were dis-
torted. To simulate errors in feature extraction, the location
of each point was then perturbed in a random direction by
a distance governed by a Gaussian distribution with zero-
mean and standard deviation, σ, starting from 0.2 pixels up
to 1.2 pixels with increment 0.2.

The proposed calibration approach (skipping the steps
needed for the LMedS procedure since no outliers were as-
sumed in this experiment) was applied to these data in order

to £nd a proper distortion model and the corresponding dis-
tortion parameters. Both the G-AIC and G-MDL criteria
were tested, with the noise level estimated using the model
S3. Moreover, for each value of σ the experiment was re-
peated 200 times, each with a different seed point for the
random number generator. Table 1 shows the rate of select-
ing the correct distortion model at each noise value for both
the G-AIC and G-MDL. Clearly G-MDL performs an ex-

Table 1. Rate of identifying the correct distortion model
at different noise levels.

Criterion 0.2 0.4 0.6 0.8 1.0 1.2
G-AIC 100% 91% 84% 76% 68% 59%
G-MDL 100% 100% 99% 93% 90% 81%

cellent job in selecting the correct model as the rate is no
less than 99% up to noise level=0.6 pixels. Whereas G-AIC
performance is considerably less as it tends to favor a model
that is one parameter more than the correct model (e.g., S2

instead of S1). This experiment veri£es that the proposed
approach can indeed select a proper model for lens distor-
tion.

5.2. Real Data

We applied the complete, automatic approach to sev-
eral real images. One such example is the image shown in
Fig. 1(a). The acquired image is 640 × 480 pixels and typ-
ically has noticeable lens distortion due to the cheap wide-
angle lens. Fig. 1(b) shows the undistorted image using the
robust distortion algorithm. Some straight lines are imposed
in dashed-lines on the image to help demonstrate the effect
of distortion and correction on the image. The approach

(a) (b)

Figure 1. Performance on desk image (straight lines are
imposed on the images to highlight the effect of distortion
correction): (a) input distorted image. (b) output undis-
torted image.
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has been tested with several images with severe lens dis-
tortion. One example is shown in Fig. 2(a). The extracted
edge chains used in the estimation are shown in Fig. 2(b). It
is interesting to see the performance of only the closed-form
solutions on this highly-distorted image. The result of the
robust algorithm using only the closed-form solution with-
out any non-linear optimization is shown in Fig. 2(c). Sur-
prisingly, the closed-form solution provided a fairly good
undistorted image. Afterwards, the non-linear minimization
gave the image a £nal polish as seen in Fig. 2(d). The se-
lected distortion model consisted of two radial coef£cients.
The approach took 1 : 18 minutes on a SGI-O2 workstation.
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(c) (d)

Figure 2. Performance on the exhibit
scene: (a) input distorted image (obtained from
http://www.media.mit.edu/s̃beck/results/Distortion/),
(b) the extracted edge chains, (c) undistorted image using
the closed-form solution, (d) £nal undistorted image.

6. Conclusions

In this paper, we have proposed a fully automatic ap-
proach to non-metric calibration of lens distortion, with
some new results in several aspects of the problem. A robust
approach to distortion calibration is proposed to discard out-
liers in the data that might enter the estimation algorithm in
different forms. As such, the proposed approach is able to
proceed in a fully-automatic manner, whereas almost all ex-
isting nonmetric distortion calibration methods need some
user involvement for data preparation in one form or an-
other.

The paper has presented fast, closed-form solutions to
the distortion coef£cients. This solution serves as an ini-
tial point for a following re£ning stage based on non-linear
optimization. This represents a major advantage of our ap-
proach over the other existing nonmetric calibration tech-
niques.

Moreover, we have proposed a method for distortion
model selection based on geometrical inference. We inves-
tigated the use of both geometric AIC and MDL. In that
regard, we found that G-MDL performed considerably bet-
ter than G-AIC as the latter seemed to have bias to choose a
more general model, the observation that was also made by
other researchers in other applications [6].
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