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Abstract

We propose a spectral partitioning approach for large-scale
optimization problems, specifically structure from motion.
In structure from motion, partitioning methods reduce the
problem into smaller and better conditioned subproblems
which can be efficiently optimized. Our partitioning method
uses only the Hessian of the reprojection error and its eigen-
vectors. We show that partitioned systems that preserve the
eigenvectors corresponding to small eigenvalues result in
lower residual error when optimized. We create partitions
by clustering the entries of the eigenvectors of the Hessian
corresponding to small eigenvalues. This is a more general
technique than relying on domain knowledge and heuristics
such as bottom-up structure from motion approaches. Si-
multaneously, it takes advantage of more information than
generic matrix partitioning algorithms.

1. Introduction

In many large optimization problems, partitioning the pa-
rameter spacce yiclds smaller and better conditioned prob-
lems. Structure from motion (SFM), the optimization prob-
lem we are addressing, is the process of estimating camera
and feature parameters from a set of images. When the im-
ages are obtained from a video sequence, the number of
optimization parameters becomes very large. It is expected
that many of the images will be similar and will contain re-
dundant information. Our goal is to group such images into
rigid partitions to limit the dimensionality of the problem
and thereby the computational load.

As a way of visualizing the problem and our approach,
imagine a thin, deformable rod. Optimizing the camera tra-
jectory is similar to estimating the non-rigid deformation
the thin rod undergoes as a force is applied. The rod will
tend to deform according to its low energy modes as a force
is applied to it. Similarly, measurement noise tends to per-
turb the camera trajectory along low error modes. To es-
timate the rod’s deformation, the continuous problem can
be broken up into a discrete set of rigid deformations. The

more the problem is partitioned, the better the solution ap-
proximates the continuous solution.

In this paper, we will show that the quality of a partition-
ing method is related to how well it preserves the low error
modes of the system. We will outline a method for gen-
erating partitions that preserve the low error modes of the
system. Lastly, we will use an objective metric for compar-
ing methods of partitioning a system.

Overview of our approach: In SFM, features corre-
sponding to 3D objects (points, lines, curves, surfaces, efc.)
are extracted and matched across images. The goal is then
to find the position of the cameras and 3D objects so that the
reprojection error is minimized. There are a number of sys-
tems for matching features and building up an initialization,
such as [3] [9] and [10]. They typically all conclude with
a non-lincar minimization stage (bundle adjustment) which
refines the camera and scene parameters [14].

A specific example where partitioning is useful is for se-
quences with loops, such as in the turntable sequences of
[3]. Typical trackers will select some features, track them
for a while and then replace them with new features. In se-
quences where the camera is fixated on a rotating object,
many of the features from the first frame will have been lost
before the camera comes back around to its original posi-
tion. Once the scene has been reconstructed, the tracker
can use the position information of the camera to reacquire
lost tracks and close the loop [5]. If the system is not well-
conditioned, noise in the measurements can cause the cam-
era trajectory to be perturbed significantly along low error
modes.

Instead of reoptimizing the entire system, a lower di-
mension, partitioned system can be optimized to correct for
gross misregistrations. In the partitioned optimization, all
the cameras and features in a partition move with a single
rigid transformation. Therefore, instead of optimizing all
the parameters of each camera and feature, only the rigid
transformation parameters of the partitions are optimized,
greatly reducing the dimensionality of the problem.
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In the previous loop closing example or any general sub-
sequence merging problem, a good partitioning choice is
one that yields a low total reprojection error. Since mea-
surement errors tend to cause perturbations in the system
along the low error (or non-rigid) modes, a partitioning that
preserves the low error modes of the system can compensate
for the measurement noise with less error increase. This is
cquivalent to saying that we want the connections between
partitions to be as weak as possible.

In Section 4, we will outline a way to partition the system
based on clustering the entries of the low error eigenvectors
of the Hessian. We will show that this technique generates
partitions that preserve the low error modes of the system.
In Section 5, we present comparisons of partitioning meth-
ods based on an objective metric.

2. Motivating Approaches

Partitioning, specifically graph partitioning, is not new to
computer vision and has recently found much favor in the
form of normalized cuts for image segmentation [11]. Also,
graph cuts using min-cut/max-flow for exact or approximate
energy minimization in low-level vision problems [1] and
stereo reconstruction [6] have received much attention re-
cently. Additionally, Shum ez al. [12] have used hierarchical
methods for SFM. However, their focus was not on how to
determine the partitions, but on an optimization technique
given a partitioning.

In general, work related to ours appears in two categories:
bottom-up approaches to SFM and partitioning sparse ma-
trices over multiple processors to minimize inter-processor
communication.

Bottom-up Approaches to SFM: Bottom-up approaches
are usually employed to generate reconstructions from im-
age sequences [3] [9] [10]. A typical approach might be to
first find pairs of images suitable for calculating the funda-
mental matrix using a baseline extension technique. Next
pairs are merged into triples, with which the trifocal ten-
sor is calculated. Lastly, the sub-blocks are hierarchically
merged using homographies or trifocal tensors until the en-
tire sequence has been reconstructed. This type of bottom-
up method is crucial in order to build well conditioned sub-
problems and establish true correspondences while reject-
ing outliers. Once the baseline extension has been applied
though, the merging techniques degenerate into binary (or
tertiary) tree building. This can be seen as heuristically at-
tempting to merge together coupled sub-blocks using the
connectivity between them.

While the main goal of these techniques is to generate
well conditioned initial reconstructions and reject outliers,
our method is expressly trying to minimize the error cou-
pling between partitions. In addition, since we are generat-

ing a partition based on the low error modes of the Hessian,
any priors, such as constant velocity, are seamlessly inte-
grated into the partitioning, while they would need to be
explicitly added to these bottom-up approaches.

Sparse Matrix Partitioning: Spectral partitioning has
been applied to the problem of minimizing communication
between processors in parallel sparse matrix solvers. This is
of particular intcrest to us because SFM requires repeatedly
solving the sparse system of equations

T T
O iy —atin =22 n
for the update step (¢ + 1) — «(¢). This is a standard
Newton-Raphson update step commonly used in non-linear
minimization. In optimization for SFM, as will be ex-
plained in more detail in Section 4, E' is the reprojection
error as a function of camera and feature parameters, x, and
ET E is the total error being minimized. The Hessian of the

oET 9E .
error, 5 2, is a large but sparse matrix.

The occupancy, or sparsity pattern, of the Hessian de-
fines a graph. Tf the matrix can be permuted such that it is
block diagonal, then the occupancy defines an unconnected
graph and the problem can be broken into independent sub-
problems. If, on the other hand, there are nonzero entries
in the off-diagonal blocks, then there will have to be com-
munication between the processors to solve the system of
equations.

There are two goals in choosing a cut of this graph: (a) to
minimize the number of vertices in each set, or the size of
the matrix on each processor, and (b) to minimize the num-
ber of edges cut, or the amount of communication needed
between processors. The cut ratio is a partitioning quality
metric that takes both of these into account. It is defined as

9(5.5) = B ©)
min (|5, [S5])

where S and S are the two partitions and F(S,S) is the

set of edges between them. It has been shown that the cut

ratio yielded by spectral partitioning is small if the second

smallest eigenvalue is small[13].

While sparse matrix partitioning is usually used in the
context of splitting a large problem up over multiple proces-
sors, it could be used to define a partitioning of the system
for a lower dimensional optimization. This technique would
satisfy our criteria that cameras that see the same portion of
the scene be clustered together, but it does not use any van-
tage point information. All partitions of a scene where all of
the features are projected into all of the cameras would be
considered equivalent if just the occupancy information is
used. The fundamental problem with partitioning using just
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Figure 1: A few images from the model house (top left), Oxford corridor (top right) and pillar (bottom) sequences.

the sparsity pattern is that our goal is to minimize the er-
ror coupling between partitions, not merely the connections
between them.

3. Spectral Graph Partitioning

Pure spectral partitioning is an approximation algorithm for
graph partitioning. There are a number of variants, and here
we will describe the general Laplacian based method. For
an undirected graph G, the adjacency matrix, A, is a matrix
where a;; = 1 if there is an edge between vertices ¢ and
j and zero otherwise. D is defined as a diagonal matrix
where d;; is the degree of vertex ¢. The Laplacian, L, of a
graph is then defined as D — A. For undirected graphs, the
Laplacian is a symmetric matrix whose rows and columns
sum to 0. The number of rows and columns of the Laplacian
is equal to the number of vertices in the graph.

A 2-way graph cut can be written as the vector x, where
x; is 1 if vertex 4 is a member of set .S and —1 if vertex 4 is
a member of the complement S. The cut size is then

— 1
£ (S,8) = ZxTL:Jc. 3)
Clearly, the vector (1,1,...,1)T results in a cut size of 0,

but this is not useful since it corresponds to assigning all
vertices to the same set. The min k-way cut, then, is the
vector x that minimizes Equation (3) subject to the con-
straints x; € {s1,82 ...}, where s; are a set of discrete,
nonzero numbers, (1,1,...,1)z = 0 and xTz = 1. These
constraints restrict x to representing discrete, non-trivial set
assignments.

This discrete minimization problem bears a strong resem-
blance to the continuous eigenvalue problem of minimizing
Equation (3) subject to 27z = 1. The smallest eigenvec-
torof Lis (1,1,...,1) and its corresponding eigenvalue is
0. The second smallest eigenvector of the Laplacian, called
the Fiedler vector, minimizes Equation (3) and satisfies the
constraints (1,1,...,1)z = 0 and z72 = 1. The values
of the Fiedler vector are continuous though, so it does not

represent a discrete set assignment and does not, in general,
satisfy «; € {s1,82...8}.

This similarity is the basis for spectral methods. The so-
lution to the continuous eigenvector problem is rounded to
yield an approximation to the discrete minimization prob-
lem. Much of the work of spectral partitioning centers
around how to transform this continuous assignment into
a discrete assignment. One method is to simply threshold
the entries of the Fiedler vector. This threshold yields the
discrete 2-way cut assignment, {z; < 7,z; > 7}. Many
techniques for choosing 7 have been tried, including 0 and
the median of z [2].

TFundamentally though, the problem of partitioning the
graph has been transformed to clustering the values of x.
The thresholding methods arc cquivalent to choosing a clus-
ter based on a 1D planar scparator.

If more that a bipartition is desired, one option is to recur-
sively partition the graph. Alternatively, using more eigen-
vectors and performing a multi-way cut has been suggested
[8][15]. If the p smallest nonsingular eigenvectors are used,
then the problem is one of clustering p-dimensional feature
vectors.

4. Hessian-based Partitioning

We want a partitioning that preserves the low error modes
of the system, which correspond to eigenvectors of the Hes-
sian of the error with small eigenvalues. Intuitively, this
means we want our partitioned system to be able to bend
easily in non-rigid modes. Since measurement noise will
tend to perturb the system along the low error modes, a par-
titioned system that preserves the low error modes will yield
a lower error solution when used in the loop closing exam-
ple described earlier.

‘We will now be more objective about evaluating how well
a partitioned system preserves low error modes. First of all,
an eigenvector, v, and eigenvalue, A, of a matrix A are the

solution to Av = wA. The Rayleigh quotient is defined

as A = T’ITT@” and the Rayleigh quotient of an eigenvec-

tor is the corresponding eigenvalue. It also describes how
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rigid a system is when perturbed by an arbitrary vector .
The eigenvector of the Hessian corresponding to the small-
est eigenvalue describes how to perturb the system with the
least amount of error being introduced. If there are gauge
freedoms in the system, then the system can be transformed
in the gauge space with no increase in error. We will as-
sume, without loss of generality, that the gauge freedoms of
the system have been constrained away and that the smallest
cigenvalue of the system is non-zcro.

In general, a partitioned system will not be able to re-
produce the perturbation described by the eigenvector, vy,
corresponding to the smallest eigenvalue of the unparti-
tioned system. The eigenvector of the Hessian of the parti-
tioned system with the smallest eigenvalue can be mapped
to a perturbation vector for the unpartitioned system, vY.
By the definition of the minimum eigenvalue problem, the
Rayleigh quotient of v, must be at least as large as that of
0,

BT AR woT Avg

pT p = yTyy
vh b 0" Vo

@

This allows us to concretely describe our goal. The best
partitioning assignment generates the minimum v}. Tinding
the optimal assignment is not practical, so we will resort to
finding an approximate solution.

If we know the eigenvector of a system corresponding
to the smallest eigenvalue and are given a partitioning, we
could try to generate a perturbation for the partitioned sys-
tem 05 so that it maps to a perturbation that matches vg as
well as possible. This will be a deformation that the parti-
tioned system can generate but will not necessarily be v?.
This allows us to extend equation (4) to

5T A =D pT 4 P T

Uy Aty _ vy Avg _ vot Avg 5)
oT-p = pT p voTlvg

0y U vy v 0" Vo

Therefore, if ¥} has a Rayleigh quotient close to the min-
imum eigenvalue of the unpartitioned system, then v will
as well and our approximate solution is close to optimal.

Algorithm: This Icads us to an algorithm very similar in
spirit to spectral graph partitioning. In graph partitioning,
the eigenvector of the Laplacian with the smallest eigen-
value is clustered into k partitions. Similarly, the eigenvec-
tor of the Hessian corresponding to the smallest eigenvalue
can be clustered and used to determine how to assign pa-
rameters to partitions.

Instead of having just one eigenvector corresponding to a
zero eigenvalue of the Laplacian, there are & in the Hessian,
where k is the number of gauge freedoms. The eigenvectors
corresponding to the gauge freedoms of the Hessian induce
rigid transformations of the entire system, just as they cor-
respond to assigning all vertices to the same set with the
Laplacian.

The analogy continues with the Fiedler vector. The
eigenvector corresponding to the smallest non-zero eigen-
value represents the way to transform all of the cameras and
features with the minimum amount of error increase. Spec-
tral graph partitioning uses the continuous set assignments
of the Tiedler vector to approximate the optimal discrete set
assignment. Likewise, the eigenvector of the Hessian with
the smallest non-zero cigenvalue can be clustered to approx-
imate the optimal partition assignment.

This is the algorithm we propose, with two modifications.
First, we employ a standard photogrammetry technique for
factoring out the feature parameters and only cluster cam-
eras. Second, since there are entries in the eigenvector for
each parameter of a camera, this method could result in
camera parameters being split between two partitions. To
prevent this from happening, we treat the eigenvector of the
Hessian as a set of n, d dimensional feature vectors, where
d is the degrees of freedom in the camera parameterization.
Instead of clustering nd one dimensional vectors, we cluster
n vectors of dimension d.

The reason for factoring out the feature parameters is
twofold. The number of cameras is typically much smaller
than the number of features, so it is faster to partition only
the cameras. Also, outlying feature rejection is typically
done at all levels of the hierarchy while, the existence of a
camera is not affected by faulty correspondence. Given a
partitioning of the cameras, we assign features to partitions
only if all the cameras it projects into belong to the partition.

If the optimization parameters, 2, are sorted such that
the camera and structure parameters are grouped separately,
then the Hessian can be decomposed as

OETOE (U W 6
oz ax_(WTV>’ ©
where U and V are the block diagonal portions of the Hes-
sian corresponding to the cameras and features respectively.
W is the potentially full off-diagonal sub-block of the Hes-
sian [4].

Applying a Gaussian elimination iteration cancels out the
features from the top row.

—1y3/T
() o
This allows us to partition just the cameras while still taking
full advantage of the structure information.

The matrix A = U — WV W7 is a symmetric nd x nd
matrix, where n is the number of cameras and d is the di-
mension of the camera parameter vector (e.g., d = 11 for
projective reconstructions, d = 6 for metric). A d X d sub-
block of A, A;; contains nonzero entries only if camera ¢
and camera j have some of the same features projected in
them.

Here is a summary of the algorithm we have described:
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1. Form the matrix A = U — WV W7 from the Hes-
sian;

2. Find the smallest cigenvector, v, of A that docs not
correspond to a gauge freedom;

3. Treat v = (v, vd, ..., vl) as the matrix of n trans-
formation “features”, F' = (v1,v2,...,0p);

4. Use k-means clustering to form k clusters of F.

Implementation: The choice of parameterization for the
cameras is important.  Since the camera transformation
parameters are used as features in a distortion minimizing
clusterer, the goal is to have similar transformations be close
together in the feature space. Therefore, it is important to
use a parameterization that transforms world space. For
example, if the parameterization was a transformation of
camera space, then the exact same transformation in two
different cameras could yield completely different transfor-
mations of world space.

This cffectively means the choice of paramcterizations
for clustering and partitioned optimization should match.
With that in mind, we used the following parameterization:

Eij =m (BT(2:)X;) — 2ijs (8)

where F;; is the reprojection error of feature j in camera ¢,
7 is the projection function, P; is the camera matrix, X is
the point location, z;; is the image measurement and 7'(x;)
is the partition transformation. This is equivalent to putting
each camera in a single partition. Note that it is not neces-
sary to calculate the Hessian with any particular parameter-
ization. The eigenvectors of the Hessian can be transformed
from one parameterization to another by applying the chain
rule.

Also, as with optimizations, the parameterization should
be chosen so that there are no large scale mismatches be-
tween parameters. The derivative of the error with respect
to each parameter should be similar, otherwise certain vari-
ables of the transformation vector will dominate the feature
vector. The basic rule of thumb is to use transformations for
the cameras that match a well conditioned partition param-
eterization.

In our implementation, we partitioned after upgrading the
reconstruction to metric. Therefore T'(x;) was a six degree
of freedom rotation and translation. We found that further
simplifying the transformation to just translation generally
worked as well as when rotations were included. This is
reasonable to expect as it is implying that there is a strong
correlation between the rigidity in rotation and translation
of a camera.

Just as in spectral graph partitioning, we also explored
the use of multiple eigenvectors. We found that using just

one could lead to cases where disjoint portions of the sys-
tem could be mistakenly clustered together because the par-
titioned system was able to mimic the deformations of the
eigenvector. We found that two eigenvectors, scaled by the
inverse of their eigenvalues were sufficient to resolve these
types of ambiguities. This resulted in a transformation fea-
ture vector of size 2d x n.

Another implementation detail is how to efficiently cal-
culate the smallest eigenvector of the Hessian that does not
correspond to a gauge freedom. One way would be to sim-
ply constrain the gauge freedoms of the Hessian. There are
a number of ways to do this that will reduce the number of
eigenvectors that need to be computed. A comparison of
some of them, such as adding small constants to the diag-
onal of the Hessian and including linear constraints on the
structure, are given in [7]. Additionally, efficient techniques
for solving for the smallest few eigenvectors can take seed
vectors that the eigenvectors should be orthogonal to. The
eigenvectors corresponding to the gauge freedoms could be
passed in as seeds, thereby speeding up the computation.

5. Results and Discussion

Spectral methods for partitioning sparse matrices can be
viewed as an impoverished version of our algorithm. They
only contain occupancy information, which does not allow
them to make use of the rigidity of the connections. For
instance, if the feature tracker outputs a covariance for the
measurements, the images that have significant motion blur
or are out of focus will not be as tightly coupled to the fea-
tures.

Just using occupancy does not use vantage point informa-
tion either. If two sets of cameras see all the same points but
from two different viewpoints, they cannot be differentiated
by just using occupancy information. The two sets of cam-
eras will tend to move as distinct rigid groups in the low er-
ror modes of the system, therefore partitioning based upon
the full Hessian can distinguish between them. To illustrate
this, we created a synthetic reconstruction containing two
“clumps” of cameras that all see every feature and clustered
them using both the Hessian and just the occupancy of the
Hessian. As can be seen in figure 2, the partitioning based
on occupancy is purely random, while the Hessian produces
tightly coupled groupings.

In general, though, the occupancy docs contain some in-
formation about the rigidity of the system. To demonstrate
this, we created a synthetic sequence where the camera trav-
els in a square path, as if circumnavigating an object. Again,
we partitioned it using both the Hessian and the sparsity pat-
tern of the Hessian, which is shown in figure 4. Figure 3
shows the results of the partitioning.

Sequences generated from video usually exhibit a com-
bination of these traits. Features are acquired, tracked for a
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Figure 2: Color coded 2-way and 4-way partitions of a synthetic sequence where all cameras see all points. The left two
were partitioned using the Hessian, while the right two were partitioned using only the occupancy of the Hessian. Using the
Hessian produces tightly coupled partitions, while using only occupancy produces random partitions.

Figure 3: Color coded 2-way and 4-way partitions of a synthetic sequence where the camera travels in a square path. The left
two were partitioned using the Hessian, while the right two were partitioned using only the occupancy of the Hessian. Since
each feature is not observed in many frames, the occupancy information is enough to generate tightly coupled partitions. As
the camera turns each corner, features are seen by more cameras. Therefore, the weakest points to cut at are in the middle of
each edge of the square. Note the 2-way partitions generated by the Hessian and the occupancy of the Hessian are equally

valid since the sequence is symmetric.

Figure 4: Sparsity pattern of the Hessian from the synthetic
square sequence used in Figure 3.

while and then lost. Adjacent images can all see the same
features but, over the length of the video, the sparsity can
become more informative. We acquired a pillar sequence
using a hand-held video camera and generated a reconstruc-
tion using techniques similar in spirit to [3], [S] and [9]. As
with the synthetic sequence, we created partitions based on
the Hessian and the sparsity of the Hessian, shown in figure
5. For clarity, we have also plotted partition assignments in
figure 6. The advantage the Hessian has over the occupancy
is not obvious for small numbers of partitions but as the
partitioning scale gets finer, the impoverished nature of the
occupancy begins to show. The boundaries of the partitions

are not distinct, with cameras randomly intermingling be-
tween partitions. Partitioning based upon the Hessian yields
sharp boundaries even at very fine levels, which is to be ex-
pected for video sequences where there is strong coupling
between adjacent images.

We have also partitioned the well-known model house
and corridor sequences. In the model house sequence, the
front of the house is visible through most of the sequence
and the side of the housc becomes visible in the last fow
images. This can clearly be visualized in the Hessian-
based partitioning (figure 7) where the first seven frames
are grouped in one partition and the last three are grouped
in the other. Similarly, in the corridor sequence, the camera
starts to turn down a hall at the end, causing the partitions
to consist of the first seven cameras and the last four. While
these are certainly not sequences that require partitioning to
optimize, the Hessian-based partitioning provides an inter-
esting method for visualizing the rigidity of the systems.

So far, our assessment of the partition quality has been
purely subjective. In order to provide an objective method
for evaluating the partitioning techniques, we revisit the pil-
lar sequence. The video was taken by walking in a loop
around the pillar. The ending frames are roughly in the same
position as the starting ones, and we were able to have our
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Figure 5: Color coded 2, 3 and 16-way (left middle, and right) partitions of the 1106 image pillar sequence. The top shows
the partitions generated using the Hessian, and the bottom shows the result of partitioning with the occupancy of the Hessian.
The occupancy contains enough information to group correctly at the gross level but resorts to more random assignments at
lower levels where cameras see the same points. The Hessian-based partitions maintain sharp boundaries throughout.

%)

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

2 partitions 4 partitions

0 200 400 600 800 1000 1200 0 200 400 GO0 800 1000 1200

8 partitions 16 partitions

Figure 6: Camera partition assignments for the pillar se-
quence using 2, 4, 8 and 16 partitions. The solid red
line represents the partition assignments generated using
the Hessian, and the dashed black line represents the as-
signments using only occupancy. The Hessian-based par-
titions vary smoothly while the occupancy-based partitions
are random at fine scales.

tracker reacquire features once an initial reconstruction had
been done. We partitioned the sequence using the Hessian

(a) (b)

Figure 7: Color coded partitions of the model house (top)
and corridor (bottom) sequences. (a) shows the two way
partitions generated using the Hessian, and (b) shows the
results of partitioning with the occupancy of the Hessian.
Since many of the features are visible throughout the se-
quence, the partitioning generated by occupancy only is
nearly random. The partitioning generated using the Hes-
sian is much movre reasonable.

and also the occupancy of the Hessian and optimized, in-
cluding the new tracks, using these partition assignments.
The residual error after optimizing the partitioned sequence
is our indicator of the partition quality. In figure 8, we have
plotted the residual after optimizing the sequence with the
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Figure 8: Residual error after partitioning 2,4,8,16,32 and
64 ways using Hessian-based and occupancy-based parti-
tioning (solid red and dotted black, respectively). The graph
is normalized by the Hessian-based 64 partition residual.

newly acquired loop closing features using a varicty of par-
tition sizes. The Hessian-based partitions yicld lower resid-
uals than the occupancy-bascd partitions in cach casc.
Also, note that the residuals from the Hessian-based
optimizations decrease smoothly, while the sparsity-based
residuals fluctuate. This is due to the sparsity-based parti-
tioning optimizing a metric that is not as correlated to the
residual as the minimum error modes of the Hessian.

6. Conclusions and Future Work

In the previous section, we compared our method to sim-
ple sparse matrix partitioning. In actuality, we can de-
fine a spectrum of Hessian-based partitioning algorithms,
from the full Hessian to just the occupancy of the Hes-
sian, by modifying the steps of our algorithm. For exam-
ple, in the first step, the A matrix computation can be re-
placed with a number of matrices. We will denote FCT'(A)
as factoring the structure out of A as described in Section
4, SP(A) as returning a matrix with ones where the sub-
blocks of A are non-zero and SBN(A) as returning a ma-
trix with the entries corresponding to the norm of the sub-
blocks of A. SP(A) and SBN(A) return a matrix smaller
than A by a factor of d, where d is the dimension of a
sub-block. The methods we compared are represented as

A =FOT (£ 9E) and A = 5P (FCT (£ 22)).

We could extend the comparison to include:

« A=FCT (SBN (3£79E))

e A=FCT (SP(28)" 5P (22))

x

e A=FCT (sP(3E"9E))

These matrices encode varying levels of information
from the Hessian, with the top one encoding more infor-
mation and the bottom one encoding less. Just as we found
that a translation only parameterization for the partitioning
worked well for typical sequences, we expect that some of
the simpler versions would yield reasonable quality parti-
tions.
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