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Abstract

Automatic construction of Shape Models from examples has
been the focus of intense research during the last cou-
ple of years. These methods have proved to be useful for
shape segmentation, tracking and shape understanding. In
this paper novel theory to automate shape modelling is de-
scribed. The theory is intrinsically defined for curves al-
though curves are infinite dimensional objects. The the-
ory is independent of parameterisation and affine transfor-
mations. We suggest a method for implementing the ideas
and compare it to minimising the Description Length of the
model (MDL). It turns out that the accuracy of the two meth-
ods is comparable. Both the MDL and our approach can get
stuck at local minima. Our algorithm is less computational
expensive and relatively good solutions are obtained after a
few iterations. The MDL is, however, better suited at fine-
tuning the parameters given good initial estimates to the
problem. It is shown that a combination of the two methods
outperforms either on its own.

1. Introduction
Statistical models of shape [7, 10] have turned out to be a
very effective tool in image segmentation and image inter-
pretation. Such models are particularly effective in mod-
elling objects with limited variability, such as medical or-
gans .

The basic idea behind statistical models of shape is that
from a given training set of known shapes be able to de-
scribe new formerly unseen shapes, which still are represen-
tative. The shape is traditionally described using landmarks
on the shape boundary. A major drawback of this approach
is that during training a dense correspondence between the
boundaries of the shapes must be known. In practice this
has been done by hand. A process that commonly is both
time consuming and error prone.

The goal of this paper is to formulate a new model for
shape variation of parameterised curves that is invariant to
affine transformations, curve parameterisation and also in-
variant in the ordering of the curves. The model is a gen-
eralisation of earlier work on affine shape [17] and its ex-

tensions to curves [4]. The work is inspired by the work
on active shape [6] and work on 3D-reconstruction of a de-
formable object [1].

This paper is organised as follows. In Section 2 the nec-
essary background on affine shape and shape variation is
given. In Section 3, a new model for shape variation is pre-
sented and a novel algorithm for learning and using shape
variation are explained in Section 4. Experiments with this
new model are given in Section 5. The model is evaluated
and compared to models built using the minimum descrip-
tion length.

1.1. Previous Work
Consider � parameterised curves ����� � �	��
���� ���

.
The problem of finding a dense correspondence among
the shape boundaries is equivalent of reparameterising the
shape boundary curves (to obtain � ��� � ������� ), so that
� �����! is the point that corresponds to �#" ���! for all �%$ �'& ��	�)(*(+(*� �-, 
  and �/. � �	��
�

. Here ��� � � �0�)
��1��2� �	��
�
rep-

resents the reparameterisation of curve $ . The same formu-
lation can be used for, e.g. closed curves by changing the
interval

� �0�)
��
to the circle 354 .

There have been many suggestions on how to auto-
mate the process of building shape models or more pre-
cise finding a dense correspondence among a set of shapes
[2, 3, 13, 14, 20, 22]. Many approaches that correspond
to human intuition attempt to locate landmarks on curves
using shape features. [3, 13, 20]. The located features
have been used to establish point correspondences, using
equal distance interpolation in between. Local geometric
properties, such as geodesics, have been tested for surfaces
[22]. Different ways of parameterising the training shape
boundaries have been proposed [2, 14]. The above cited
are not clearly optimal in any sense. Many have stated
the correspondence problem as an optimisation problem
[5, 9, 12, 15, 16].

In [16] a measure is proposed and dynamic programming
is applied to find the reparameterisation functions. A prob-
lem with this method is that it can only handle contours, for
which the shape not changes too much, correctly.

In [8, 9, 15] the description length of the model is min-
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imised. A very successful algorithm but a problem with this
method is that the objective function is not stated explicitly.
Besides the optimisation process is often tedious and can
easily get stuck at a local minima.

2 Preliminaries

The standard shape model used in e.g. [6] describes the vari-
ation of a set of points as linear combinations of a set of
basis vectors

� � ������� (
The goal of this paper is to derive a shape theory that is
intrinsically defined for curves. Similar to the point theory
it is reasonable to use a linear model, i.e.

�5� � �! 1���	��
 4 ���! � ���� 4 �  �  � �! (
This implies that the curve � � is an affine projection of a� dimensional curve �  . Reconstructing � from its projec-
tions � � is identical to the curve reconstruction problem in
computer vision.

Another desirable property of shape models is that they
should be invariant to the position and orientation of the
curve in the image.

In this Section it is assumed that � curves � �)������� 4� ��� are
given. Our goal here is to formulate a shape description,
which is defined for curves, is independent of parameterisa-
tion and ordering of the curves and also invariant to affine
transformations.

We want our curves to be linear combinations of some
basis � � �%$1� 
 �)(�(�(�� �  . This is the model � we are looking
for.

We start with a derivation of affine shape for points.
This is then generalised to curves. A new shape descrip-
tion model is defined using this theory and an algorithm for
reconstructing the model � from example curves � � � ����� 4� ���
are given.

2.1 Affine Shape of Point Configurations

In this Section affine shape for point configurations is de-
scribed. For more details see [4].

Let � �� be the set of ordered � -point configurations� � ��� 4 � � � ��(�()(�� � �  . � � �
in
� � , where � � . � � is the coordinate vector of point

number $ in
�

.
By an affine transformation, � � � � � � � , is meant a

map of the form, � � �  1��!"� � � � (1)

where ! is an �$#%� matrix and � and � are �&# 

matrices.� is called nonsingular if ')(+* ! ,� �

. In a natural way, �
can be extended to a transformation � �� � � �� , by letting it
act on all points of the configuration, i.e.� � � � � � �-� 4 � � � �)(�(�(�� � �  �� � ��� 4  � � ��� �  ��()(�(�� � �-� �  � ( (2)

Now let . be the group of nonsingular affine transfor-
mations � �� � � �� . By the . -orbit of

�
is meant the set�0/213/ � � � �  � � . .4� (

We write
�65 / , when

�
and / are in the same orbit. The

set of equivalence classes is denoted � ��87 . . Let9 ��� �� � � ��87 .
be the natural projection. Then, 9 � �  . � ��47 . is called the
affine shape of

� . � �� .
It can be shown, [18], that9 � �  1�;:=<?> >>>

@ � <)��� � � �0� @ � <�� � �	�� � �-� 4 � � � ��(�()(� � �  A � (3)

i.e. a linear subspace of
� � . In particular, this means that9 � �  � 9 � /  if and only if there exists � . . such that/ � � � �  . We will now extend shape to more general sets

than finite point configurations, as for example curves and
surfaces in

�CB
.

2.2 Extension of shape

Let
� � ��� 4 ��()(�(� � �  ED � � be an � -point configuration

in
� � . Let F � � 
 �HG��)(�()(� � � and�JI �KF � � �

be defined by ��I �%$! �L� � , $ . F . The definition (3) can
then be rewritten as,9 � �  1� :NM �OF � � >>>>

@?PRQKS M � �  T�JI � �  1� �	�@ PRQKS M � �  � � A (
An extension to more general sets is done by replacing

the sums with integrals.
When dealing with finite point configurations, as in Sec-

tion 2.1,
�

denotes an ordered set of points. The ordering
can be considered as a parameterisation of the set. To deal
with more general point configurations, it is convenient to
let

�
denote point sets, without ordering or parameterisa-

tion. This is done below.

Definition 2.1. Let
�VU � � . By a parameterisation of

�
is meant a surjective map�JI �WF � � �
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where F � � �	�)
��
if we consider open curves (and F � 3 4 for

closed curves). By the affine shape is meant the following
linear space of functions9 ���JI  1�;: M >>>>

� MN1 �	I���� �	��� MN1 
 �5� �	�M .�� � A (

Here we consider square integrable functions ( M ��� .�� � )
with the scalar product� MN1 � � � � S M � �  � � �  	�O� (

Often the subscript
�

of ��I is dropped, when it is clear
from the context which configuration is meant.

It is sometimes convenient to invoke the constant
function



in the parameterisation, writing � I �

� � 4 �)(�(�()� � � � � �R
 4  , with � ��
 4�
 

, instead of � I �

� � 4 �)(�(�()� � �  . This will be called extended coordinates.
Using terminology borrowed from the finite dimensional

case, cf. [19], we define the depth space.

Definition 2.2. Let � I � � � 4 ��()(�()� �	� � �	��
 4  , with� �R
 4 
 

, be a parameterisation of

� U � � in extended
coordinates. Then by the depth space of � I is meant the
linear subspace of � � ,

� � �JI  1���������������� � � � � ��
 44 � (
An important property of these spaces are given by the

following theorem

Theorem 2.1 (Affine shape theorem). Let� I �JF � � U � � and ��� I�� � F � � U � � be parame-
terisations as in Definition 2.1. If � � � � � � � is an affine
transformation, then� � �JI � � � I ����� 9 � �JI  U 9 � � � I �  � �� � � I  "!#� � � � I �  (
Corollary 2.1. Under the assumptions of Theorem 2.1,� � � I � � � I � �

with � nonsingular affine transformation� �9 � �JI  1� 9 � � � I �  (
Proof. Apply Theorem 2.1 (i) to � and � � 4 .

For the finite dimensional versions of these, see [19].

3 Formulating Affine Invariant Ac-
tive Shape

3.1 Extensions to shape variation

For the moment assume that the curves are in fact affine
projections of a higher dimensional model curve

�
and that

point correspondences are known. Denote the parameteri-
sations by � � F � �

and �5� � F � / � , so that for some
affine projection �	�

�5� � �  1� ��� � �#� �  � $5� �0�)
 �)(�()( � � , 


holds for all � . F . Then, by Theorem 2.19 � �  U 9 � �5�  � $5� �	��
 �)(�(�(�� � , 
 (

Together this implies

9 � �  U � � 4$ � 9 � � �  (
Given enough different projections there is in general an
equality in the above equation.

Let %'& , % � , ()& and ( � be the orthogonal projections
from � � � F  onto 9 � �  , 9 � �5�  , � � �  and � � �5�  , respectively.

These projection operators can be explicitly written us-
ing orthonormal bases. For example, using extended coor-
dinates, � � � � 4 ��(+(*(+� � �  , where � � 
 


, let ��*� 4 ��(+(*(+� *� � �
be an orthonormal basis for �������������%� � 4

��(+(+(*� � �  . Then

(+& � M  � ���� 4-, *�  1 M/. *�  �
and

%'& � M  � � F , ()&  �� M  1� M , ���� 40, *�  1 M . *�  (
The operator ( � is the orthogonal projection on the

depth space � � � �  , which is contained in the depth space� � �  . The operator % & annihilates every function in � � �  
and thus also every function in � � � �  . Thus the operator% & ( � is the zero operator for every $ .

For real data, these equalities will never hold exactly, due
to noise and other errors. It is of interest to introduce an
error criteria to minimise.

Any criterion that is based on the projection operator
above is invariant to the choice of affine coordinate system
in the images. Any such criterion also has the property that
all images are treated in a symmetrical fashion and works
for an arbitrary number of images. Such an invariant crite-
rion, is called a proximity measure.
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There are several possibilities. Using the fact that%'&�( � � �
for all $ , one proximity measure is

� � ��� 4�
� ��� � %'& ( � � � ��� (

Here ��� stands for the Hilbert-Schmidt norm, see [11], de-
fined by � . � � ��� � �  � .	�  � � �
where �
� � ��� 4 is an orthonormal basis for � � � F  . For finite
dimensional spaces it is the same as the Frobenius norm.
The ��� -norm is independent of the choice of orthonormal
basis. By choosing it so that the first three basis vectors�
� 4 � � � � � B � span � � �5�  (and consequently % & ( ��  � �

for
all ����� ), it is seen that

� % & ( � � � ��� � B��� 4 � % & �  � � (
Thus, if � *����� 4 � *�5��� � � *�5��� B � is an orthonormal basis of � � � �  ,
$#� �0��()(�(� � , 


, it follows that

� � � � 4�
� � � B��� 4 � %'& *�5���  � � (

Other proximity measures are derived in [4].

4 Algorithm for non-closed curves

In the following, let F � � �0�)
�
and ��/ � � � � 4� be a sequence

of curves. We wish to find an n-dimensional curve
�

that
represents the shape and shape variations of these curves.
Furthermore, let all the parameterisations � �=F � �

and
� � �JF � / � , $ � �0��(�()(� �-, 


, be expressed in extended
coordinates.

We propose the following algorithm, which is based on
repeatedly finding 9 � �  and the parameterisations �1� . It is
assumed that the curve

�
has two distinct end points, which

can be identified in each image curve /1� , $#� �	�)(�()(� � , 

.

To obtain an n-dimensional reconstruction, that is finding
an n-dimensional shape model, the problem is to find the
parameterisations � �

I Initialisation: Choose one parameterisation �1� in each
image curve, for example by using the image based
arc-length. Set � � � �  � �������������%� � �  , $�� �	��()(�(� � , 
 .

II Update � � �  : Keeping � � � �' fixed for all $ , find % &
that minimises � .

III Update parameterisation: Keeping � � �  and � � � �  
fixed, find a continuous bijection �	� ��F � F , such
that � � �5� � � �  minimises � . Set � � �5�  � � � � �5� � � �  ,
$#� �	��()(�(� � , 


and go to II

It is difficult to minimise � with respect to all parameters
simultaneously. It is, however, reasonably fast to solve steps
II and III approximately, as will be demonstrated. Since the
procedure is iterated, we do not have to be very precise in
each step. Below, we use the proximity measure � . Notice
however that each step lowers the same error criteria � .

4.0.1 Step I. Initialisation

Let each image curve

�5� ���! 1� � �5� 4 ���! 
� �5� � � �! � ��� B ���! � 

be parameterised using scaled image arc-length � . F ,
so that �5� � �  and �5� � 
  are the endpoints, and such that
� � �� 4  � � � � �� �  � , $�� �	�)(�(�(�� � , 


, is constant. Initially, let� � �5�  � ��� ��� ��� �%� �5��� 4 � �5��� � � ����� B  .
4.0.2 Step II. Computation of � � �  given � � �1�  
Let � �5��� 4 � �5��� � � �5��� B � be an orthonormal basis for the 3-
dimensional linear space � � � �  . The n-dimensional linear
space � � �  , corresponding to the n-dimensional-curve to be
reconstructed, is then the linear span of all basis functions
�5���  � $#� �	�)(�(�(�� � , 
 � � � 
 ��G�� � , i.e.� � �  �������������� � �5���  � $#� �	�)(�()(� � , 
 � � � 
 �HG�� �O� (
An estimate of � � �  is obtained by solving

� � ���� ����� & � � � � � � � ��!� ����� & � � � � � 4�
� � � B��� 4 � %'& �5���  � � ( (4)

This optimisation problem can be solved using singular
value decomposition. Form the symmetric matrix

! 4 �

"#######
$

� � � � 4 1 � � � 4 � (�()( � � � � 4 1 � � � 4 � B �� � � � � 1 � � � 4 � (�()( � � � � � 1 � � � 4 � B �� � � � B 1 � � � 4 � (�()( � � � � B 1 � � � 4 � B �� � 4 � 4 1 � � � 4 � (�()( � � 4 � 4 1 � � � 4 � B �...
. . .

...� � � � 4 � B 1 � � � 4 � (�()( � � � � 4 � B 1 � � � 4 � B �

%'&&&&&&&
(
(

Compute a singular value decomposition ! 4 �*) �,+.- ,
where ) and + are orthogonal matrices and � is a non-
negative diagonal matrix. In the case of exact data, the ma-
trix ! 4 has rank � . In the case of measured data, the matrix
which is closest in Frobenius norm to a matrix of rank � , is/! �0) � � +�- , where � � is obtained by setting all but the
n largest diagonal elements in � to zero. An orthonormal
basis for � � �  can be shown to be�  � 
1 �  �  � + 4 �  � � � 4 �2+ � �  � � � � �2+ B �  � � � B �

�3+54 �  � 4 � 4 � (�(�( �6+ B � �  � � � 4 � B  � � � 
 �)(*(+(*� � (
This � � �  solves the optimisation problem (4).
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4.0.3 Step III. Reparameterisation of the image curves

Let � �5� 4 � �5� � � ��� B � be an orthonormal basis for � � � �  ,
and let � � 4 ��(+(*(+� �	� � be an orthonormal basis for the n-
dimensional linear space � � �  , corresponding to the curve
to be reconstructed. We want to find a reparameterisation �0�
in each image $5� �0��(�()(� � , 


, such thatB��� 4 � % & � � �  ���  � �
is minimised over some set of reparameterisations. Again,
we drop the index $ for convenience.

Parameterise � by using a finite basis
� " , according toF # � ��� ��� � �  � �#� � � �  � � � �
" � " � " � �! � (5)

where the basis function fulfill
� " � �  �� �

and
� " � 
  �� �

.� " can for example be a translated and dilated Gaussian
function multiplied by � ��� � G�� �  in order to fulfill

� " � �  �� " � 
  � �
. The function ����� � �  is monotonic for small � ,

that is � �� � �

 � �

" � " � �" ���! � �	� ��. F �
if 1 � 1 is sufficiently small. This is guaranteed by1 � 1 ��� � ���� QKS 
@ " 1 � " � �! 1 � ( (6)

Now study the linearisation of 	  � �  � %'& � �  ���#� �   
around � � �

, i.e.

	  � �  �
 	  � �  �� P
	  � �  T� �

where �
P

is the gradient operator in the � -variables. The
derivatives are given by

�  � " � � 	 
� � " >>>> P ��� � % & � � � � "  (

The Gauss-Newton iteration for the minimisation problem

� � �  1� � ���P B� � 4 � 	  � �  � � �
is obtained from the normal equations

, . � ��� � (7)

where

. �
B� � 4

"#
$
� �  � 4 1 �  � 4 � (�(�( � �  � 4 1 �  � � �

...
. . .

...� �  � � 1 �  � 4 � (�(�( � �  � � 1 �  � � �
%'&
(

and

� �
B��� 4

"#
$
� �  � 4 1 	  �

...� �  � � 1 	  �
%'&
( (

If the solution of (7) gives an � not fulfilling (6), or if
� � �  

is larger than
� � �  due to the non-linearities of the function�

, since . is positive definite and therefore � is a descent
direction, it is always possible to decrease the error function
by restricting the step length.

After having solved (7) for � , (5) defines a reparameter-
isation of the basis for � � � �' , and we set� � �5�  ��������������� � �5� 4 ��� � � �  � �5� � ��� � � �  � �5� B ��� � � �  � (
Observe that in this step we differentiate � � " in order to use
the Gauss-Newton iteration. We therefore have to assume
that also � �� " .�� � � F  .
5 Experimental Validation

In the experimental validation we validate our algorithm on
three data sets. One data set of 17 curves of the letter g,
one data set of 23 contours of a hand and one data set of 32
contours of femurs. The curves of the letter g are data sam-
pled by a device for handwriting recognition. The hand out-
lines were segmented out semi-automatically from a video
stream of one hand. The hand were filmed on a dark back-
ground; making it easy to segment out using Dijkstras algo-
rithm. The femurs are taken from X-rays in the supine pro-
jection. The validation will be to show the effectiveness of
the proposed algorithm in locating a dense correspondence
among a set of contours. We use the algorithm in automatic
model building and compare it to using the MDL-approach
[9]. We have been using Thodberg’s efficient implementa-
tion of MDL [21]. MATLAB source code and test data are
available from hht@imm.dtu.dk.

First an experiment on the hand contours. We sample
500 landmarks on each hand contour and build an Active
Shape Model of the (by the proposed algorithm) reparam-
eterised curves. The results are compared to a hand-built
model and a model built from 500 equally spaced land-
marks. On the hand built model 11 landmarks were placed
by hand and in between further points were equally spaced
- making a total of 500 landmarks.

To measure the quality of the model, the compactness
and the ability of the model to generalise is measured. For a
model to be compact the total variation + - and the variance
of each mode of variation should be low, see Table 1.

In Figure 2 we plot the results of running leave-one-out
reconstructions on each model of the hand outlines. The
model is built with all but one example and then fitted to the
unseen example. The plot shows the mean squared approxi-
mation error against number of modes used. This measures
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Model
Modes AIAS Hand Built Arc-length

1 0.40 0.67 2.03
2 0.17 0.35 0.65
3 0.09 0.21 0.31
4 0.04 0.07 0.22
5 0.04 0.06 0.10
6 0.02 0.02 0.08
7 0.01 0.01 0.05+ - 0.79 1.43 3.59

Table 1: Table of the total variation and variation of each
mode of the different models.

the ability of the model to represent unseen shape instances
of the object. From Table 1 we see that the AS-model built
from the AIAS-model is the most compact and out of Figure
2 we get that it also generalises the best.

−3 std + 3 std

mode 1

mode 2

mode 3

−3 std + 3 std

mode 1

mode 2

mode 3

Figure 1: To the left the � � std of the three first modes
of variation of the arc-length parameterised Active Shape
model and to the right the three first modes of variation of
the AIAS based Active Shape model.

Our next experiment is to compare the results of building
shape models automatically using the proposed algorithm
versus the MDL-approach. For the hand contours we now
use 128 landmarks for both methods. For the MDL-method
nine nodes, for reparameterising the curves, are set on each
contour. In Figure 5 it can be seen that the proposed algo-
rithm decreases the description length (DL) very fast. In
MATLAB on a 1.4 GHz computer we run 72 iterations on
both methods. This takes 34 seconds for our method and
100 seconds for the MDL-method. Our method is less com-
putational expensive and relatively good solutions are ob-
tained after just a few iterations. In the first iteration the
DL goes down from 80 to 64 for the hand and from 58.4 to
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Figure 2: A plot of how the mean square error depends on
number of modes.
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Figure 3: The parameterisations of the letter g. Running the
MDL alone the reparameterisations tend to collapse into a
few points (above). The DL goes down to 45.7 compared to
51.0 for the combined approach. The combined approach
(below) does, however, not collapse.

47.8 for the femurs. It takes 5 and 8 iterations respectively
before the MDL-approach has passed this value.

One must also keep in mind that our method minimises
the proximity measure and not the DL. The description
length of the model is just evaluated after each iteration of
our algorithm for comparison.

In Figure 6 we compare the results of running leave-one-
out reconstructions on both the MDL method and the pro-
posed method. Approximately equally good models; our
method in one third of the time.

Both the MDL and our approach can get stuck at local
minima. Our algorithm is less computational expensive and
relatively good solutions are obtained after a few iterations.
The MDL is, however, better suited at fine-tuning the pa-
rameters given good initial estimates to the problem. The
MDL method tends sometimes to collapse the shapes into
one point (since the DL then will be zero). Given good ini-
tial parameterisations this can be prevented, see Figure 3.
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Figure 4: All 32 examples of the femurs after the combined
search.
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Figure 5: Comparison of how the DL decreases running
the proposed algorithm for 34 seconds or the MDL for 100
seconds.
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Figure 6: A comparison of how the mean square error de-
pends on the number of modes after the proposed algorithm
has been run for 34 seconds or the MDL for 100 seconds on
the hand contours.
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Figure 7: Comparison of how the DL decreases running the
combined algorithm for 208 seconds or the MDL for 250
seconds. Using only MDL the DL goes down to 41.2 after
250 seconds. The combined passes this already after 15
seconds.
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Figure 8: A comparison of how the mean square error de-
pends on the number of modes after the combined have been
run 208 seconds and the MDL for 250 seconds.

Combining the two algorithms give a more robust algo-
rithm. First the proposed algorithm is run on the set of fe-
murs for 4 seconds (11 iterations) and then the MDL is run
for 204 seconds. In Figure 7 the DL is plotted for the pro-
posed optimisation scheme and compared to only running
MDL for 250 seconds on the femurs. In Figure 8 the MSE
is plotted of the two femur models.

6. Summary and Conclusions
In this paper a novel method to model shape variation is
proposed. Affine Shape was formerly a theory developed to
construct 3D models of curves and surfaces. Here we ex-
tend the theory of Affine Shape. Combining the main ideas
of Affine Shape and Active Shape a new approach, called
Affine Invariant Active Shape is obtained. It is invariant
of affine transformation, invariant to curve parameterisation
and ordering of the curves, and also locates a dense corre-
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spondence between the curves.
It also turns out that there is a relation between construct-

ing 3D models and models of shape variation.
The objective function to be optimised is differentiable

and can be written explicitly. This means that each step the
objective function is decreased. In just a few iterations it
converges and the algorithm is quite fast.

The idea of using proximity measures that are invariant
under choice of coordinate systems is very appealing.

The main contributions of this paper are: 1 novel theory
to explain shape variation, 2 show a connection between
3D-reconstruction and shape modelling, 3 algorithm that in
just a few iterations locates a parameterisation, 4 compared
to MDL our approach can faster reach the same results as
MDL.

In our next study we will extend our work to closed
curves, we will test our theory on surfaces and we will try
to improve our models by using algorithms that have been
successful in 3D-reconstruction.
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