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Abstract

Symmetry is an effective geometric cue to facilitate con-
ventional segmentation techniques on images of man-made
environment. Based on three fundamental principles that
summarize the relations between symmetry and perspective
imaging, namely, structure from symmetry, symmetry hy-
pothesis testing, and global symmetry testing, we develop
a prototype system which is able to automatically segment
symmetric objects in space from single 2-D perspective im-
ages. The result of such a segmentation is a hierarchy of
geometric primitives, called symmetry cells and complexes,
whose 3-D structure and pose are fully recovered. Such a
geometrically meaningful segmentation may greatly facili-
tate applications such as feature matching and robot navi-
gation.

1 Introduction

Let us first examine the images shown in Figure 1. For

Figure 1: Left and middle: In man-made environment, symmetric
patterns are abundant. Right: Ames room illusion.

the first two images, people have little difficulty finding the
most probable 3-D interpretation for each image. We can
easily describe the geometric relations among objects in the
images, especially for objects which appear to be “regular
enough.” Of course, our will and ability to perform such
tasks will fail if our underlying assumptions are not valid, as
indicated by the third image (the Ames room). So what kind
of assumptions make human beings so capable and willing
to derive 3-D information from single (perspective) images,
despite the potential for failure? In this paper, we summa-
rize some of the key assumptions into three principles which
essentially allow a computer to perform a similar task.

∗This work is supported by UIUC ECE startup fund. The authors would
like to thank anonymous reviewers for their valuable comments.

Structure from symmetry. One of the fundamental diffi-
culties for deriving 3-D information from a single 2-D im-
age is: Without knowing anything about 3-D geometry of
a scene, there are infinitely many structures in space that
may give rise to exactly the same image. To narrow down
the infinite possible solutions to a unique one, we must im-
pose extra assumptions. As one answer to this question,
we derive the principle of “structure from symmetry”: If
an object admits rich enough symmetry, no 3-D geometric
information (including structure and pose) is lost through
perspective imaging.
Symmetry hypothesis testing. However, this immediately
leads to another fundamental difficulty: Given a region of
interest, to what extent can we claim that it could be the im-
age of an object with a certain kind of symmetry? One an-
swer to this question requires us to understand how symme-
try is precisely encoded through perspective imaging so that
we can verify whether all geometric relations for a valid im-
age of a symmetric object are satisfied in the region. Hence
we deduce the principle of “symmetry hypothesis testing.”
Global symmetry testing. Nevertheless, a region that
passes certain types of symmetry testing does not automati-
cally imply that it must be the image of a symmetric object
in space. Although each individual tile in the first image of
Figure 1 passes any image based testing as a square, what
really makes the square interpretation “unquestionable” is
the fact that this interpretation is also overwhelmingly con-
sistent among all the tiles. This leads to the principle of
“global symmetry testing” that we rely on in order to ro-
bustly deduce 3-D structure from images. In fact, it is ex-
actly this third principle that makes the Ames room illusion
so compelling.

The goal of this paper is to study a computational means
for the implementation of the above principles and develop
a fully automatic system that is able to detect, extract and
segment symmetric objects in terms of both symmetry types
and geometric relations in space. Without loss of generality,
in this paper, we introduce our algorithms and system only
for planar symmetric objects. This simplification is based
on the observation that planar symmetric objects are ubiq-
uitous in man-made environment.
Relation to the literature. A lot of research has been done
to recognize geometric structures with or without symme-
try from images. The problem of local geometric cell ex-
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traction is typically separated into two steps: image primi-
tive detection and primitive parameter fitting. For the gen-
eral problem of image primitive detection, there are feature-
based methods, such as corner points [17] and lines [12],
and pixel-based methods , such as active contours [8, 10]
and region segmentation [16, 1, 20]. If the segments sought
can be parameterized, several techniques have been intro-
duced, such as the well-known Hough transform [3] or non-
linear parameter estimation [24].

Different symmetry assumptions have also been studied
to recognize and recover structures under perspective, or-
thogonal or affine projections. This paper is not the first to
notice that symmetry, especially (bilateral) reflective sym-
metry, can be used to retrieve 3-D information. [13] first
studied how to reconstruct a 3-D object using mirror image
based planar symmetry, [2] provided a more complete study
of the reflective symmetry, [19] proved that for any reflec-
tive symmetric 3-D object one non-accidental 2-D model
view is sufficient for recognition, [23] used bilateral sym-
metry assumptions to improve 3-D reconstruction from im-
age sequences, and [22] provided a good survey on studies
of reflective symmetry and rotational symmetry in computer
vision. In 3-D object and pose recognition, [15] pointed
out that the assumption of reflective symmetry can also be
used in the construction of projective invariants and is able
to eliminate certain restriction on the corresponding points.
For symmetry detection, [11, 9, 14] presented efficient al-
gorithms to find axes of reflective symmetry in 2-D im-
ages, [18] discussed reflective symmetry detection in 3-D
space, and [22] introduced a so-called symmetry distance to
classify reflective and rotational symmetry in 2-D and 3-D
spaces (with some insightful comments given in [7]).
Contributions of this paper. Reflective, rotational, trans-
lational symmetries have been primarily studied indepen-
dently. However, this paper shows that the key to consistent
detection and segmentation of symmetric structures from
their 2-D perspective images is analysis of the relations
among all symmetries as an algebraic group. By introduc-
ing symmetry group as a geometric cue into conventional
image segmentation techniques, we are able to, for the first
time, segment an image based on the precise and consis-
tent 3-D geometry of the segmented regions. The output
of such a segmentation is a hierarchy of geometric primi-
tives (called symmetry cells and complexes) whose 3-D ge-
ometric information is fully recovered. These new types of
geometric primitives can be used to replace corner or edge
features and significantly simplify feature matching across
multiple images. We have developed a fully automatic pro-
totype system that is able to accomplish the above tasks.

2 Geometry for a single image of a
planar symmetric structure

Definition 1 (Symmetric structure and its group action)
A set of 3-D features (points or lines) S ⊂ R

3 is called a

symmetric structure if there exists a non-trivial subgroup G
of the Euclidean group E(3) that acts on it. That is, for any
element g ∈ G, g defines an isomorphism (i.e. a one-to-one
map) from S to itself: g ∈ G : S → S. In particular, we
have g(S) = g−1(S) = S for any g ∈ G.

[4] studied multiple-view geometry for general symmetric
structures. However, it treated the planar case as a special
case, and the results were not sufficient for our purposes
here. In this paper, we provide some new characterization of
the planar case that is more pertinent to symmetry detection
and segmentation.

When the structure S is in a plane P , the symmetry
group G is also a subgroup of the 2-D Euclidean group
E(2) (for the plane). With a choice of a coordinate frame1

(x, y, z) attached to the structure S, any element g = (R, T )
in G can be represented (in the homogeneous representa-
tion) as a 3 × 3 matrix of the form

g =
[

R T
0 1

]
∈ R

3×3, (1)

where R ∈ R
2×2 is an orthogonal matrix in O(2) (“R” for

rotation and reflection) and T ∈ R
2 is a vector (“T ” for

translation). For any symmetric structure, there is a natural
choice for the coordinate frame that makes this representa-
tion the simplest. Such a frame is called the object centered
canonical frame, or simply the object frame.
Example 1 (The symmetry group of a rectangle) The
symmetry group of a rectangle shown in Figure 2, the dihedral
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Figure 2: A rectangle whose symmetry includes reflections along
the x and y axes and a rotation about o by 180◦. These transfor-
mations forms a dihedral group of order 2, i.e. D2.

group D2 of order 2, can be represented with respect to the canon-
ical object frame (x, y, z) by the following four matrices: ge = I ,

gx =


−1 0 0

0 1 0
0 0 1


 , gy =


1 0 0

0 −1 0
0 0 1


 , gz =


−1 0 0

0 −1 0
0 0 1




where gx and gy denote the reflections along the x and y axes, re-
spectively, and gz the rotation about the z-axis by 180◦. Elements
in the group G = {I, gx, gy, gz} satisfy the group relations

g2
x = g2

y = g2
z = I, gxgy = gz,

gxgz = gzgx = gy, gygz = gzgy = gx.

Note that the symmetry of the rectangle has no translational part
(with respect to the object frame) and therefore in all g’s, T = 0.

1We here choose the z-axis of the frame to be the normal to the plane
such that any point on the plane is determined by its (x, y) coordinates.
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2.1 Homography groups in an image

Now consider a perspective image of S that is taken by a
camera at a vantage point g0 ∈ SE(3). Typically, g0 is rep-
resented with respect to the object frame. Since S is planar,
it is known from multiple-view geometry that there exists a
homography H0 ∈ GL(3) depending on the vantage point
g0 which maps the plane P ⊇ S in space to the image plane.
Suppose that the vantage point g0 is (R0, T0) ∈ SE(3) and
the plane P is defined by the equation NT X = d for any
point X ∈ R

3 on P . N ∈ R
3 is the unit normal vector

of the plane and d ∈ R+ is its distance to the center of the
camera frame (e.g., see Figure 3). With a homography H0
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Figure 3: Equivalent images of a rectangle, before and after a
reflection gx. Left: frontal view; right: top view. Pr is the plane
of reflection and t is its (unit) normal vector.

given by

H0
.= R0 +

1
d
T0N

T ∈ R
3×3, (2)

the coordinates of a point X = [x, y, z]T on the plane are
given by g0(X) = H0X . In essence, H0 gives a matrix
representation for taking an image of S at g0.

Due to the symmetry of S, we have g(S) = S and there-
fore H0(g(S)) = H0(S). For a particular point X ∈ S, we
have

H0(g(X)) = H0gH−1
0 (H0(X)). (3)

The quantity on the left can be viewed as the image of S
taken at g0 after a symmetry transformation g has been ap-
plied to S. This is equivalent to that the image is taken at a
“new” vantage point g0gg−1

0 · g0 = g0g. One image of S
is then equivalent to |G| such “new” images. These images
will be referred to as equivalent images of the original one.

Between the structure S with a symmetry group G in
space and its image I(S) taken at g0, we can use the fol-
lowing commutative diagram to describe their relations

S
H0−−−−→ I(S)

g

�
�H0gH−1

0 .

S
H0−−−−→ I(S)

(4)

The group action of G on the plane P in space is then nat-
urally represented by its conjugate group G′ .= H0GH−1

0

acting on the image plane. We call it the homography group.
Any element g′ = H0gH−1

0 ∈ G′ represents the homog-
raphy transformation between two equivalent images, as
shown in Figure 3 for a reflective symmetry.

Computationally, with more than 4 corresponding points
between any pair of equivalent views, such as the 4 corner
features of the rectangle in Figure 3, the associated homog-
raphy matrix H ′ of g′ can be linearly recovered from the
following equation up to scale, where x′ is the image of its
symmetric point g(X)

x′ ∼ H ′x ⇔ x′ × (H ′x) = 0. (5)

Example 2 (The homography group of a rect-
angle) For the rectangle case studied in Example 1,
the homography group G′ = H0GH−1

0 is given by
{I, H0gxH−1

0 , H0gyH−1
0 , H0gzH

−1
0 } .

= {I, g′
x, g′

y, g′
z} and its

elements satisfy the same set of relations as G in Example 1, since
they are isomorphic:

(g′
x)2 = (g′

y)2 = (g′
z)

2 = I, g′
xg′

y = g′
z,

g′
xg′

z = g′
zg

′
x = g′

y, g′
yg′

z = g′
zg′

y = g′
x.

Although the above examples only show the reflective
symmetry of a rectangle, the framework encompasses all
three types of symmetry in a plane: reflection, rotation, and
translation.

2.2 Consistent 3-D recovery from symmetry

Once the homography matrix H ′ = H0gH−1
0 is obtained

from equivalent views, we can decompose it into

H ′ →
{

R′,
1
d
T ′, N

}

to obtain the relative pose (R′, T ′) between the equivalent
views. The 3-D structure of S can then be uniquely de-
termined by triangulation. Furthermore, since H ′ and g
are known, we may further use H ′ = H0gH−1

0 to re-
cover information about the homography matrix H0 =
R0 + 1

dT0N
T . H0 obviously satisfies the following Lya-

punov type linear equation

H ′H0 − H0g = 0, ∀g ∈ G (6)

with both H ′ and g now known. Once H0 is solved, we can
further decompose it into

H0 →
{
R0,

1
d
T0, N

}

to obtain the initial camera pose g0 = (R0, T0).
Hence, we may summarize the results so far as the fol-

lowing principle:
Principle 1 (Structure from symmetry) For any (planar)
symmetric object, its 3-D structure and pose are already

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set 
0-7695-1950-4/03 $17.00 © 2003 IEEE 



encoded in a single 2-D perspective image. No 3-D infor-
mation is lost through the perspective imaging, as long as
the symmetric assumption is correct.

As we know from the previous section, the homography
matrices associated to different symmetry elements in G
must preserve the same group relations. Furthermore, each
homography should leads to the same 3-D reconstruction of
the structure S. This is a very important condition and it
leads to the following principle:
Principle 2 (Symmetry hypothesis testing) To verify if
(part of) an image can be interpreted as that of an object
with a symmetry group G, we need to verify for all the el-
ements in the group G whether the resulting homography
matrices preserve the same group structure and all lead to
a consistent 3-D structure and pose (in particular, surface
normal) recovery for the object.
Example 3 (Symmetry of a tiled floor) In practice, an ob-
ject often admits all three types of symmetry, such as a tiled floor
shown in Figure 4 left. In the figure, the three regions with corners
marked are obviously translational copies of one another. Each re-
gion itself is a square whose symmetry group is the dihedral group
of order 4, i.e. D4, which contains a rotation subgroup (the cyclic
group C4). The inter-relations between the homography are in-

Figure 4: Left: An image of a tiled floor with all types of planar
symmetry encoded. Right: Three regions on the floor recovered
from the homography group among themselves.

duced from all three elements of the symmetry group, which allow
a unique recovery of not only the 3-D structure and pose of each
region but the relative 3-D positions between the three different
regions, as the reconstruction result shows in Figure 4 right.

Lastly, we need to point out that there are several degen-
erated cased that only partial 3-D information of their struc-
tures can be retrieved from their images, and the interested
reader is referred to [4].

3 Symmetry-based hierarchical im-
age segmentation

Equipped with basic knowledge about symmetry and per-
spective imaging and two geometric principles, we are now
ready to show how to segment a 2-D image of a scene in
terms of 3-D geometric information encoded in it. Our goal
is to segment the image into regions, identify the regions
which potentially have a consistent interpretation as sym-

metric objects in space, and recover relative 3-D geometric
relations between these identified regions (e.g., as congru-
ent tiles on the same 3-D plane etc.). Our remarkable ability
to perceive such information from a single painting or pho-
tograph suggests that this is a viable task, at least for scenes
consisting overwhelmingly of objects with “regular struc-
tures.”

Figure 5 outlines the architecture of a prototype system
that we have developed to achieve these tasks. The hier-
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Figure 5: The system diagram of the symmetry based geometric
segmentation algorithm.

archical architecture consists of three main levels. In this
paper, we show how to realize the low-level symmetry cell
extraction and middle-level symmetry hierarchy construc-
tion on images of quadrilateral structures. But again the
given system also works on general symmetric polygons.
The output of the system provides “geometric primitives”
which encodes much richer 3-D geometric information than
corner or edge features and facilitates high-level tasks such
as matching features in different images. In Section 4, we
will show one such example with details given in [5].

3.1 Low-level symmetry cell extraction

In order to “recognize” symmetry in an image, we first se-
lect some candidate sets of image regions which we call
cells and determine whether each cell passes the testing of
certain types of local symmetry criteria. For instance, we
can choose any set of four connected line segments that en-
close a homogeneous region in the image as a cell. It may
correspond to a 3-D quadrilateral that falls into the follow-
ing cases: 1. one reflection symmetry (G = Z2); 2. a
rectangle (G = D2); 3. a square (G = D4). Using the
algorithm provided in the previous section, we can test the
cell against all three hypotheses and determine which type
of symmetry this cell admits. If it falls into the first cate-
gory, we can simply discard it. A cell that belongs to any of
the other categories is called a symmetry cell, with the type
of symmetry labeled on it.

To make our explanation intuitive, we will use the image
shown in Figure 6 to demonstrate the process of the overall
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system. In Section 4, other examples will be given for more

Figure 6: An image of a cube and a checkerboard.

generic scenes.
Image segmentation. We first use the color based mean
shift algorithm [1] to obtain candidate regions for symme-
try cells from the image.2 Second, for every region that is
larger than a minimal size, we compute the convex hull of
the region in order to guarantee its external contour to be
convex and reduce the noise on its boundary.
Polygon fitting and extraction. Next, we fit the extracted
convex hulls from image segmentation with a polygon.
Since the contour of a polygon consists of piecewise line
segments as special curves with zero constant curvature and
corners with local curvature peaks, we developed a polygon
fitting technique based on the constant curvature criterion
proposed by [21]. From the constant curvature criterion,
we directly know how many edges each convex region con-
tains. In this paper, our system extracts only quadrilaterals.

The output from these two steps is the image coordinates
of line segments of polygonal regions. The result for Figure
6 is shown in Figure 7. Compared to the original image,

Figure 7: Left: The output of polygon extraction. Right: Details.

some of the “cells” are missing due to noise.
Local symmetry testing. For each quadrilateral extracted
from above, using the symmetry hypothesis testing princi-
ple given in the previous section, we can test whether it sat-
isfies the symmetry of a rectangle or a square. However,
in real images, the boundaries obtained from segmentation
can be extremely noisy sometimes, as examples in Section
4 show. As a more practical testing criterion, say for a rect-
angle, we may compute the three non-identity homography
matrices H ′

x, H ′
y, H ′

z and if the reconstructed plane normals

max{cos−1(NT
x Ny), cos−1(NT

x Nz), cos−1(NT
y Nz)} ≤ τ

2The two primary parameters for the mean shift algorithm are set to be
σS = 7, σR = 9.

for some small threshold τ (in our experiments τ = 15◦),
we claim that the polygon passes the test for symmetry as
a rectangle. Otherwise, we discard this polygon as non-
symmetric.

If the cell size is small (as in this example, each cell is
only about 1/20 the size of the image), due to a low SNR,
some of the cells will fail the above symmetry test. To
improve accuracy, we may use nonlinear programming to
optimize the homography matrices subject to all the group
relations that they are supposed to satisfy. The result of
the symmetry test for the extracted polygons of Figure 7 is
shown below in Figure 9 left.

3.2 Middle-level symmetry hierarchy: geo-
metric segmentation

A cell that passes the symmetry test of a rectangle or a
square does not necessarily corresponds to the image of a
rectangle or square in space. We should further verify its
validity in the context of the whole scene. For this purpose,
we propose:
Principle 3 (Global symmetry testing) Symmetry cells
which have consistent 3-D geometric properties (e.g., ori-
entations) with other cells more likely correspond to sym-
metric 3-D structures in space.

For example, if a number of neighboring symmetry cells
have mutually consistent normals, then it is likely that these
cells come from the same 3-D plane. Furthermore, a set of
cells together may correspond to a 3-D structure which ad-
mits a new symmetry on a larger scale. For example, two
neighboring cells can be translational copies of one another
in space, which is often the case for window patterns on
the side of a building. This leads to the notion of a symme-
try complex: a group of (preferably neighboring) cells with
consistent 3-D geometric properties. Different geometric
properties may lead to different types of symmetry complex
segmentation. In this paper, we consider three properties as
examples: orientation, topology (connectivity), and copla-
narity.
Orientation clustering. To identify the orientations of the
obtained planar symmetry cells, we can classify the spher-
ical coordinates of their normal vectors using any standard
clustering algorithm. In our current implementation, we use
the ISODATA algorithm [6], known for its simplicity and
efficiency3. For the above image, the clustering result of
the space angles (θ, φ) of the normal vectors of all sym-
metry cells is shown in Figure 8. The two primary groups
correspond to symmetric cells of the two main orientations
in space. The remaining cells are outliers due to noise and
polygon fitting errors.
Topology. With the orientations classified, symmetry cells
can be further related or separated by their neighborhood
relations (within each orientation group). For example, for
two cells in the same orientation group, if their edges or cor-
ners are adjacent to each other (say ≤ 50 pixels), they can be

3The inter-cluster angle distance is chosen to be π/12.
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Figure 8: Clusters of normals of symmetry cells.

considered as “connected.” This will segment the symmetry
cells into different groups in terms of their connectivity.

Coplanarity. For a set of neighboring cells of the same
orientation, we can further verify if they are also copla-
nar by considering the translational symmetry among them.
From Principle 2 and Example 4 in the previous section, if
two cells are coplanar, the plane normal recovered from the
translational homography between the cells needs to be the
same as the normal of the cells. This allows us to test if a
set of cells of the same orientation are coplanar. Obviously,
there are two planes in Figure 6 where cells have the same
orientation but are not coplanar. The final segmentation re-
sult for the cells in this image is shown in Figure 9 right.

Figure 9: Left: Cells that pass the local symmetry test are marked
with their 3-D object frame (x, y, z)-axes drawn in red, green and
blue arrows, respectively. Right: The final output of the symmetry-
based geometric segmentation. The normal vectors are drawn in
different colors based on their grouping. Connectivity and copla-
narity are illustrated as connected green lines between cells.

Through the above segmentation process, every image
gives rise to a hierarchy of symmetry cells and complexes
that resembles a tree-like structure, as shown in Figure 10.
Cells are the leaves of the tree. At each level of the hier-
archy, cells and complexes are ordered by their sizes, dis-
tances, or neighboring topology and labeled with their sym-
metry types. One can view such a tree-like hierarchy of
symmetry cells and complexes as a “(2 1

2 )-D” representation
of the image: Although the hierarchy is not yet a full recon-
struction of the entire scene, 3-D geometric information on
regions of the scene is already available and relations be-
tween these regions are also encoded within the hierarchy.

A 2-D image
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Figure 10: A hierarchical segmentation of a 2-D image by 3-D
geometric properties.

4 Experiments and applications

In this section, we demonstrate the performance of the pro-
totype system by applying it to a variety of images, shown
in Figure 11. For all the experiments, there is no manual
interference at all. The system uses the same set of parame-
ters for mean shift segmentation, polygon fitting, and sym-
metry testing. All images are 1280× 960 pixels RBG color
images. The speed for low-level cell extraction is within
one minute on a 1.4GHz PC in Matlab, which includes the
mean shift segmentation and polygon fitting. The computa-
tion of symmetry hierarchy without nonlinear optimization
takes less than five seconds, but the optimization version
usually need several minutes depending on how many cells
are extracted from the image.

In Figure 11, the first image is the side of a corridor in
a library. Despite the noisy background, the side of the cu-
bicle passes the symmetry test and eventually becomes the
only cell extracted. The second and third images both return
multiple cells and complexes which are obviously the most
salient rectangular objects in the scene. Notice that rect-
angles with inhomogeneous internal color pattern are also
correctly extracted. On the other hand, in the second im-
age next to the TV stand, an illusory rectangle is extracted
– which is created by occluded edges from surround objects
– one of many manifestations associated with a single view.
The last image is the most challenging one: cell boundaries
are not so well-defined and 3-D geometric relations among
cells are not precise. The system still does a decent job of
extracting and segmenting most cells.

Applications in matching. If multiple images of one scene
are given, it is much easier to establish correspondence be-
tween cells and complexes than using only pure point or line
features. This is because the matching now can use both
the 3-D geometric information and texture of the cells (or
complexes). There is no need for any iterative robust statis-
tic methods (such as RANSAC for point features) and the
allowable motion between images can be very large. Once
two cells in two different images are matched, the relative 3-
D camera pose is automatically recovered. Figure 12 shows
one such example. For details on matching, see [5].
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5 Conclusions

This paper demonstrates that it is computationally feasible
to segment and represent an image of a man-made environ-
ment based on accurate 3-D geometric information encoded
in the image itself. The key to this is that symmetry groups
admitted by (planar) symmetric objects in space are pre-
cisely encoded in the image through the so-called homogra-
phy groups. This stipulates that no 3-D information is lost
through perspective projection for symmetric objects. The
result of such geometry-based segmentation is a hierarchi-
cal representation of (symmetric) objects in terms of their
spatial geometric properties and relations.

Correspondingly, the architecture of our system is also
hierarchical. This allows the development of algorithms for
each layer to be relatively independent and easily replace-
able. Computationally, a strong coupling (or feedback) is
introduced between different layers through multiple hy-
pothesis testings. Although this mechanism will probably
rejects some valid cells due to noise, it does significantly
reduce the number of false positives in symmetry cell ex-
traction, which is important for high-level applications such
as matching. Tested on a variety of images, the system is
robust and accurate.

In the future, we will try to extend our system to work
under varying lighting conditions, camera calibration, oc-
clusion, and non-planar symmetric objects. Such a system
will have a wide range of applications in image matching,
object recognition, and robot navigation.
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Figure 11: Experiments. Left: original images; Middle left: geometric cell extraction (1 minute) and local symmetry testing without
nonlinear optimization (< 5 seconds), cells without frame attached fail the test; Middle right: local symmetry testing with nonlinear
optimization. Right: grouped symmetry cells, each with its object frame pose recovered and marked. Different groups of symmetry cells
are identified by bold arrows with different colors for the normals.

Figure 12: A unique matching and reconstruction of cells across images: from the raw images to symmetry cell extraction, matching,
and 3-D cell structure and camera pose recovery, the whole process is fully automatic. Notice that conventional feature point matching or
tracking techniques will fail with these images because the relative rotation is large but baseline is almost zero and symmetries in the scene
would induce many ambiguous matches and generate outliers for the RANSAC type techniques.
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