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Abstract 
 

Central catadioptric cameras are imaging devices that 
use mirrors to enhance the field of view while preserving 
a single effective viewpoint. In this paper, we propose a 
novel method for the calibration of central catadioptric 
cameras using geometric invariants. Lines in space are 
projected into conics in the catadioptric image plane as 
well as spheres in space. We proved that the projection of 
a line can provide three invariants whereas the projection 
of a sphere can provide two. From these invariants, 
constraint equations for the intrinsic parameters of 
catadioptric camera are derived. Therefore, there are two 
variants of this novel method. The first one uses the 
projections of lines and the second one uses the 
projections of spheres. In general, the projections of two 
lines or three spheres are sufficient to achieve the 
catadioptric camera calibration. One important 
observation in this paper is that the method based on the 
projections of spheres is more robust and has higher 
accuracy than that using the projections of lines. The 
performances of our method are demonstrated by the 
results of simulations and experiments with real images. 
 
1. Introduction 
 

In many computer vision applications, including robot 
navigation, virtual reality, and image-based rendering, a 
camera with a quite large field of view is required. The 
conventional camera has a very limited field of view. One 
effective way to enhance the field of view of a camera is 
to combine the camera with mirrors. There are some 
representative implementations of catadioptric imaging 
systems described in [3] and [11~14]. Recently, Baker 
and Nayar [1] investigate these catadioptric systems with 
respect to a single viewpoint constraint. Catadioptric 
systems can be classified into two classes, central and 
noncentral, depending on whether they keep single 
viewpoint or not. This paper aims at the calibration of 
central catadioptric cameras. 

Here is a brief review of the methods used by other 
researchers for the central catadioptric camera calibration. 

1. Known world coordinates 
This kind of methods uses a calibration pattern with 

control points whose 3D world coordinates are known. 
These control points can be corners, dots, or any features 
that can be easily extracted from the images. Using 
iterative methods extrinsic parameters (position and 
orientation) and intrinsic parameters can be recovered [4]. 

2. Self-calibration 
This kind of calibration techniques uses only point 

correspondences in multiple views, without needing to 
know either the 3D location of the points or the camera 
locations. But it is well known that determining stereo 
correspondences is a difficult issue in computer vision. 
Kang [5] uses the consistency of pairwise tracked point 
features across a sequence to develop a reliable 
calibration method for a para-catadioptric camera.  

3. Projections of lines 
This kind of methods uses only the images of lines in 

the scene, without needing to know any metric 
information. Geyer and Daniilidis [7] use images of two 
sets of parallel lines to find the intrinsic parameters as 
well as the orientation of the plane containing the two 
parallel line sets. Barreto and Araújo [6] present a two-
step method: firstly, the principal point is determined 
using the intersections of three catadioptric line images. 
Secondly, the recovered principal point is used to 
determine the image of the absolute conic from these line 
images and the intrinsic parameters are recovered by 
means of Cholesky factorization. More recently, Geyer 
and Daniilidis [8] propose another calibration method for 
a para-catadioptric camera using the projective properties 
of the images of three lines. 

In this paper, we propose a novel calibration method 
based on the geometric invariants, which provides a 
unified framework for the calibration using either images 
of lines or images of spheres. The motivations for 
proposing this novel method are based on the following 
facts: 

1) Lines and spheres are all common geometric entities 
in real scenes, and they are often used for the 
conventional camera calibration. It is well known that, 
under central catadioptric cameras, a line in space is 
projected into a conic in the image plane [2][3]. We 
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further prove that the occluding contour of a sphere in 
space is also a conic in the catadioptric image plane. 
Based on this fact, we present a unified framework to 
cover both the projections of lines and those of spheres. 

2) Using the unified framework, we proved that, in 
general, the projection of a space line can provide three 
invariants whereas the projection of a space sphere can 
provide two, without needing to know the 3D locations of 
the line and the sphere. From these invariants, the 
constraint equations for the intrinsic parameters can be 
derived. Therefore, the projections of either two lines or 
three spheres are sufficient to achieve the catadioptric 
camera calibration (note that Geyer and Daniilidis [9] 
only discusse the number of constraints provided by a line 
image, but no actual constraint equations are given). 
Different from the methods proposed in [6] and [7] which 
must use the intersections of line images to determine the 
principle point at the first step, our method directly uses 
the constraint equations provided by single-line or single-
sphere image. One advantage of our method is that we 
can perform the calibration in the case where the 
minimum number of line or sphere images is available. 
Another advantage of our method is that in the case 
where the number of line or sphere images is not 
sufficient for full intrinsic parameter calibration (e.g., 
only one line image is available), the calibration can also 
be done partially using our method if we assume that 
some intrinsic parameters are known in advance. We 
further realize that the method proposed in [8] is a special 
case within our general treatment of the topic.  

3) One important contribution of this paper is to 
introduce spheres for the central catadioptric camera 
calibration. Although lines and spheres are all projected 
into conics in the image plane, it is more difficult to 
extract the projection of a line with high accuracy than 
that of a sphere. The main reason for this is, the 
projection of a line (usually a line segment in real scene) 
is only a portion of a conic (e.g. about one-third of an 
ellipse) but the projection of a sphere is usually a closed 
ellipse, and conic fitting using points lying on a portion of 
a conic is an error-prone process. As we know, the 
accuracy of the estimated intrinsic parameters highly 
depends on the accuracy of the extracted conics. 
Therefore, sphere images are preferred in the case where 
accurate calibration of central catadioptric cameras is 
needed. 
 
2. A generalized image formation model for 
central catadioptric cameras 
 

Baker and Nayar [1] show that the only useful 
physically realizable mirror surfaces of catadioptric 
cameras that produce a single viewpoint are planar, 
ellipsoidal, hyperboloidal, and paraboloidal. Recently, 

Geyer and Daniilidis [9] propose a generalized image 
formation model for these central catadioptric cameras. 
They prove that the central catadioptric image formation 
is equivalent to a two-step mapping via a sphere:  

Step 1: A point in the 3D space is projected to a unit 
sphere centered at the single effective viewpoint. 

The unit sphere is called the viewing sphere. 
Considering a general 3D space point, visible by a 
catadioptric camera, with Cartesian coordinates 

( )T
WWW zyxX =  in the world coordinate system whose 

origin is at the single viewpoint, the projection of X  on 
the viewing sphere is: 
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Step 2: The point SX on the viewing sphere is 
perspectively projected to m  on the image plane Π  from 
another point CO . The image plane Π  is perpendicular to 
the line determined by the single viewpoint O  and CO  
(see Figure 1). 

This step can be considered as taking image of the 
viewing sphere using a virtual camera whose optical 
center is located at CO  and whose optical axis coincides 
with the line determined by O  and CO . Once the intrinsic 
parameters of the virtual camera are estimated, the 
intrinsic parameters of the central catadioptric camera are 
known. In general, we distinguish 5 intrinsic parameters 
for the virtual camera: the principal point PO ( )00 , vu , the 
effective focal length PCe OOf = , the aspect ratio r  and 
the skew factor s . The intrinsic matrix is written as: 
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The distance, COOl = , can be regarded as another 
parameter of the catadioptric camera. Therefore, there are 
totally six parameters required to be calibrated. The 
projection of SX , i.e., ( )Tyxm 1=  on the catadioptric 
image plane Π , satisfies: 
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where λ  is an unknown scale factor. 
For the revolution conic section mirror, it satisfies: 

21
2

ε
ε

+
=l ,                                  ⑷ 

where ε  is the eccentricity of the conic. The relationship 
between eccentricity ε  and distance l  for different types 
of central catadioptric cameras is shown in Table 1.  
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 Ellipsoidal Paraboloidal Hyperboloidal Planar

ε  10 << ε  1=ε  1>ε  ∞→ε
l  10 << l  1=l  10 << l  0=l

 
Table 1: Eccentricity ε  and distance l  

 

 
3. Invariants of line and sphere images  
 

In this section, firstly the equations of line and sphere 
images under the metric catadioptric projection are 
derived. Secondly, the invariants are obtained from the 
projection equations derived before. Finally, the 
constraint equations for the intrinsic parameters are 
derived from these invariants.  
 
3.1. Equations of line and sphere images 
 
Definition 1. The metric catadioptric projection is a 
projection induced by a central catadioptric camera 
whose intrinsic parameters are as follows: 1r = , 0s = , 

0u0 = , and 0v0 = . Correspondingly, the projection 
induced by a central catadioptric camera whose intrinsic 
parameters are defined by ⑵  is called the generic 
catadioptric projection. 
 

For the case of the metric catadioptric projection, the 
camera intrinsic matrix can be rewritten as: 


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










=

1
e

e

M f
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Under the metric catadioptric projection, the origin of the 
image coordinate system is located at the principal point, 
and the geometric properties of the projections of lines 
and spheres can be easily discovered. These geometric 
properties will be described as invariants in Section 3.2. 

The generalized image formations of a line and a 
sphere in space are shown in Figure 1. It is well known 
that a line in space is projected to a great circle whereas 
the occluding contour of a sphere in space is a small 
circle on the viewing sphere. A great circle is a circle 
defined by the intersection of the sphere and a plane 
passing through the spherical center, and a small circle is 
a circle on the sphere which is not a great circle. Assume 
a small circle, the occluding contour of a sphere on the 
viewing sphere, lies on a plane ( )T

zyx dnnn 0 , where 

( )T
zyx nnn  is the unit normal vector for the plane, and 

0d  is the distance from the origin O  to the plane, then a 
point ( )T

SSS zyx  on the small circle satisfies: 
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Similarly, a great circle, the image of a line on the 
viewing sphere, lies on a plane ( )T

zyx nnn 0  passing 

through the origin O , then a point ( )T
SSS zyx  on the 

great circle satisfies: 


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=++
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.                         ⑺ 

Obviously, a great circle can be considered as a special 
case of a small circle where the distance from the origin 
to the plane is zero (i.e., setting 00 =d  in ⑹ , we can 
obtain ⑺). Therefore, there exists a unified framework to 
represent the projections of a line and a sphere on the 
viewing sphere. Consequently, the equations for a sphere 
derived from ⑹ can be changed into the equations for a 
line after setting 00 =d . Substituting ⑸ into ⑶, we get:  
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Eliminate SSS zyx ,,  and λ  from ⑹ and ⑻, and rewrite in 
matrix form, then we obtain:  
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So, the quadratic form for the projection of a space sphere 
is: 

SX  

Π

CZ  

WZWY  WX  
CX  

CY
CO

S  L  

SC  
LC  PO

O

m  

Figure 1: The generalized image formations of a point (as
illustrated in Section 2), a line, and a sphere (as illustrated in
Section 3) in space are shown respectively. A space point is
projected to point SX  on the viewing sphere, which then
projected to m  on the image plane Π  from CO . A sphere in
space is projected to a small circle S  on the viewing sphere,
which then projected to a conic section SC  on the image plane
from CO . A line in space is projected to a great circle L on 
the viewing sphere, which then projected to a conic section

LC  on the image plane. The equator is mapped to the dashed 
circle on the image plane. 
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By setting 00 =d  in ⑼, we obtain the quadratic form for 
the projection of a space line: 
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It is not difficult to prove that equation ⑽  is 
equivalent to the equation for a line image derived in [9], 
but our equation ⑽  has a more concise form. From 
equation ⑼ and ⑽, we notice that the metric catadioptric 
projections of a line and a sphere are both conics. 
 
3.2. Invariants of line and sphere images 
 

Under the metric catadioptric projection, if the 

projection of a sphere is 

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Invariant 1. ( ) ( ) 01 =−−−= cdbeeaebddS . 
Invariant 2. ( ) ( )( ) 0122

2 =−−−−= ldebfefaebdbS e . 
Under the metric catadioptric projection, if the 

projection of a line is 

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
=

fed
ecb
dba

CL , there exist three 

invariants: 
Invariant 3. ( ) ( ) 01 =−−−= cdbeeaebddL . 
Invariant 4. 0)1( 2

2 =−+= ldebfL . 
Invariant 5. ( ) ( ) 02

3 =−+−= debfffaebddL e . 
From 1222 =++ zyx nnn and formula ⑼ and formula ⑽, 

we can easily verify that Invariants 1~5 are true. The 
derivations of these invariants are given in [17]. The 
geometric interpretations of Invariant 1 and Invariant 3 
are that one of major axes of the image conic passes 
through the origin of the image plane. This property had 
been discovered by many researchers [9] [10]. Invariant 5 
can be derived from Invariant 4 and Invariant 2. 
Obviously, Invariants 1~5 do not contain variables xn , 

yn , zn  and 0d . That means these invariants do not 
change no matter where lines and spheres are located in 
the 3D space. The proof of the independency of Invariant 
1 and 2 is omitted here, as well as that of Invariant 3, 4 
and 5. These invariants will be used to derive the 
constraint equations for the intrinsic parameters in 
Section 3.4. 

From above, we notice that, in general, a line image 
can provide three invariants (constraints), and a sphere 

image can provide two. The reason is that, a general conic 
can provide five constraints, the orientation of the plane 
containing the great circle corresponding to the space line 
has two unknowns ( ,,, zyx nnn with 1222 =++ zyx nnn ), and 
the plane containing the small circle corresponding to the 
space sphere has three unknowns ( 0d and ,,, zyx nnn  with 

1222 =++ zyx nnn ). In the next section, we will discuss the 
invariants provided by the projections of lines and 
spheres in the degenerated cases. 
 
3.3. Singularities of invariants 
 

We describe here the singularities of invariants from 
the projections of lines and spheres. Due to lack of space, 
we are only able to give a sketch of the derivations. A 
first remark is that if and only if the metric catadioptric 
image conics of lines and spheres degenerate into lines or 
circles, there exist singularities. A second observation is 
that for these singular cases there exist necessary and 
sufficient conditions (see Proposition 1 and Proposition 
2). 
 
Proposition 1. The metric catadioptric projection of a 
line (or a sphere) in space is a circle, if and only if 1l =  
or 1nz = . 
Proposition 2. The metric catadioptric projection of a 
line (or a sphere) in space is a line, if and only if the 
plane containing the corresponding great circle (or the 
corresponding small circle) passes through the optical 
center of the virtual camera. 
 

The proofs of Proposition 1 and Proposition 2 are 
omitted due to limited space. All singular cases derived 
from Proposition 1 and Proposition 2 are listed in Table 2. 
Note that the method in [8] deals with the para-
catadioptric camera calibration using projections of lines 
in space is the singularity Case 1. In this case, one line 
image gives rise to three invariants, the two of them are: 

0== bca .                                 ⑾ 
Substituting 0=b  and 1=l  into Invariant 5, we obtain 
the third one:  

a
ffe −=2 .                                   ⑿ 

From formula ⑿ , we can derive Proposition 1 in [8] 
which is the key proposition in that paper. The derivation 
is given in [17]. 

For Case 3 and 4, the centers of these image circles are 
all located at the origin of the image plane, then: 

00
0

==
==

ed
bca .                                  ⒀ 

For Case 3, we can get another invariant: 
022 =+ flafe .                                 ⒁ 
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The case where 0=l  and the projections of space 
spheres are used for calibration, is not a singular one 
since the projection of a sphere is a general conic in this 
case. A method for the conventional camera calibration 
using sphere images, proposed in [10], is a special case of 
our method, since it is well known that the catadioptric 
camera with a planar mirror is equivalent to a 
conventional camera. If we substitute 0=l  into Invariant 
2, we obtain: 

( )
( )bdaeb

debfef e −
−= .                             ⒂ 

It is not difficult to verify that formula ⒂ is equivalent to 
the formula of the effective focal length derived in [10]. 
 

Case Conditions Image Invariants
1 PLS ⑾, ⑿ 
2 1=l  PSS ⑾ 
3 PLS ⒀, ⒁ 
4 

1=zn  
PSS 

Circle 

⒀ 
5 0=l  PLS - 
6 0=zn  PLS - 
7 0dnl z =⋅  PSS 

Line 

- 
 
 
 
 
 
 
 
3.4. Constraints on the intrinsic parameters 
 

In order to derive the constraint equations for the 
intrinsic parameters from the invariants derived before, 
we decompose the intrinsic matrix K  defined in ⑵ into 
the product of two matrices: 

MA KKK = ,                                ⒃ 
where 
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and efss =′ . The matrix MK  is defined in ⑸. 
Under the metric catadioptric projection, i.e., where 

the intrinsic matrix is equal to MK , the equation of an 
image conic (a projection of a line or a sphere) derived in 
Section 3.1 can be rewritten as: 
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For the case of the generic catadioptric projection, i.e., the 

intrinsic matrix K  defined by ⑵ , the equation of an 
image conic (a projection of a line or a sphere) is 
represented as: 

0=′′′ mAm T , 
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m′  are the pixel coordinates in the image coordinate 
system. The image conic can be extracted from the actual 
catadioptric image using some conic fitting method, so 
the entries of matrix A′  can be known prior to estimating 
the intrinsic parameters whereas the entries of matrix A  
still keep unknown. From the definitions of m  and m′ , 
we get: 

mKm A=′ . 
So, 
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Expand the right side of ⒄, we can obtain: 
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From the discussions in Section 3.2, we know that, in 
the nonsingular cases, the entries of matrix A  must 
satisfy the invariants though these entries are yet 
unknown. Substituting ⒅  into Invariant 1 and 2, we 
obtain two constraint equations for the intrinsic 
parameters from an image conic of a space sphere. 
Similarly, substituting ⒅ into Invariant 3, 4 and 5, we 
obtain three constraint equations from an image conic of a 
space line. There are totally 6 unknown parameters to be 
calibrated: 5 intrinsic parameters and one parameter l . It 
is sufficient to estimate these parameters if there are 6 
independent equations available. The six equations can be 
provided by either two line images or three sphere images. 

For the singular cases presented in Section 3.3, we 
substitute ⒅ into the invariants provided by those image 
conics (see Table 2), then we can obtain the constraint 
equations for the intrinsic parameters in these cases. Here 
we only discuss how to obtain the constraint equations in 
the singular Case 1. Substituting ⒅ into ⑾, we obtain: 





=′+′′
′+′′+′′=′

0
222

brasr
cbsasar . 

Table 2: Singularities of invariants from the projections of
lines and spheres. Note that if the image conics degenerate
into lines, the corresponding constraints (invariants) will 
vanish. “PLS” is the abbreviation for “Projection of Line in
Space”, and “PSS” for “Projection of Sphere in Space”. 
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Solving for sr ′, , we have: 










′
′

−=′

′
′

+
′
′

−=

a
bs

a
c

a
br 2

2

. 

Substituting ⒅ into ⑿, we have: 

0222 00
2

000
2

0
2

2

=′+′+′+′+′+′+






 ′+
′

′
− fveudvcvubuafc

a
b

e . 

Since a line image can provide two constraint equations 
for sr ′,  and one constraint equation for efvu ,, 00 , at least 
three line images can perform calibration in Case 1. 

Table 3 shows that the minimum number of line or 
sphere images should be used to achieve the calibration 
for different types of central catadioptric cameras. We 
assume these space lines and spheres are all in general 
position. Note that the minimum number of space lines 
for calibration have been discussed in [9] when the aspect 
ratio and the skew factor of the catadioptric camera are 
known in advance. 
 

 
Planar 

0=l  
Hyperboloidal (Ellipsoidal) 

 10 << l  
Paraboloidal

1=l  
PLS - 2 3 
PSS 3 3 * 

 
 
 
 
 
 
 
4. Calibration algorithm 
 

In order to efficiently solve the nonlinear constraint 
equations of the intrinsic parameters, we present a two-
stage calibration technique for the case where the number 
of line or sphere images is greater than or equal to four in 
the nonsingular cases.  
 
4.1. Two-stage calibration technique 
 

The theoretical basis of this technique is the following 
two observations.  

Observation 1: The 6 constraint equations for the 
intrinsic parameters provided by two line images or three 
sphere images are non-linear. Generally speaking, it is 
quite hard to solve systems of non-linear equations. 

Observation 2: The constraint equations for the 
intrinsic parameters derived from Invariant 1 or 3 are only 
for the parameters 0,, usr ′  and 0v , but not for l  and ef . If 
there are four or more sphere or line images, we have four 
or more constraint equations derived from Invariant 1 or 3. 

Therefore we can use a non-linear least squares method to 
solve 0,, usr ′  and 0v  provided good initial values of these 
parameters are available. Without loss of generality, we 
only describe here the two-stage algorithm based on 
sphere images, the two-stage algorithm using line images 
can be constructed in a similar way. The complete 
algorithm consists of the following stages: 

Stage 1: Compute 0,, usr ′  and 0v .  
Given four or more sphere images, derive the 

constraint equations from Invariant 1, and subsequently 
use Levenberg-Marquardt algorithm to recover 0,, usr ′  
and 0v  from these constraint equations. The initial 
estimations will be discussed in the next section. 

Stage 2: Compute  l  and ef . 
Substituting the results 0,, usr ′  and 0v  obtained in the 

first stage into ⒄, and then substituting the entries of 
matrix A  obtained from ⒄  into Invariant 2, we get a 
quadric equation for the parameters l  and ef . Therefore, 
in this stage, two sphere images are sufficient to solve l  
and ef  using the intersections of the two quadric curves. 
For a catadioptric camera, the parameter l  usually keeps 
constant. If l  is known in advance, one sphere image is 
sufficient to solve the parameter ef . 

Since the initial guesses of parameters l  and ef  are 
not necessary, we only need to find the initial values of 

0,, usr ′  and 0v  as shown in the next section. 
 
4.2. Initial estimations 
 

Similar to [5], the method for finding initial values is 
to identify the bounding ellipse of the catadioptric image. 
This can be done by using a predefined threshold, finding 
the boundary, and fitting an ellipse to the resulting 
boundary. Note that the boundary is the projection of the 
mirror boundary which is a circle. The plane containing 
the circle is perpendicular to the optical axis of the 
camera and the optical axis goes through the center of the 
circle. It is not difficult to prove that this case is 
equivalent to the singular Case 4. From Table 2, we know 
that the image of the boundary can provide four 
constraints as shown in ⒀. Substituting ⒅ into ⒀, and 
after some manipulation, the initial values of 0,, usr ′  and 

0v  can be obtained: 

















′−′′
′′−′′

=

′−′′
′′−′′

=
′
′

−=′

′
′

+
′
′

−=

20

20

2

2

bca
eadbv

bca
dcebu

a
bs

a
c

a
br

, 

Table 3: The minimum number of lines or spheres for the 
calibration of different types of central catadioptric
cameras. The meanings of PLS and PSS are the same as
those in Table 2.  
* In this case, we can only recover part of the intrinsic
parameters (i.e., r  and s′ ). 
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where the initial values of ),( 00 vu  is the center of the 
bounding ellipse. 
 
5. Experiments 
 

We have performed a number of experiments with 
simulated and real data, in order to assess the 
performances of our calibration algorithm. We use a 
perspective camera with a hyperbolic mirror, designed by 
the Center for Machine Perception, Czech Technical 
University, its field of view is about 210 degree, and the 
eccentricity of the hyperbolic mirror is 3017.1=ε . From 
formula ⑷, we get 9662.0=l . In these experiments, we 
assume that the parameter l  is known in advance. 
 
5.1. Simulations 
 

The simulated camera has the following parameters: 
1=r , 0=s , 7500 =u , 6000 =v  and 400=ef . The 

resolution of the image is 12001500 × . We generate two 
different images: the first one contains the projections of 
5 space lines and the second one contains the projections 
of 5 space spheres. The variables xn , yn , zn  and 0d  
which are used to represent the 3D locations of these lines 
and spheres are uniformly distributed within their valid 
ranges. The projection of the mirror boundary is also 
generated in each image. Since it is difficult to select a 
good fixed threshold due to lighting changing and 
nonuniformity of directional lighting, we only select 
about one-third of the entire ellipse of the boundary to 
simulate the actual conditions. On each projection curve 
we choose about 50 points. Gaussian noise with zero-
mean and σ  standard deviation is added to these image 
points. We vary the noise level σ  from 0.1 to 2.0 pixels. 
The simulated images are shown in Figure 2. The conic 
fitting algorithms used here are those presented in [15] 
and [16]. For each noise level, we perform 100 
independent trials, and the mean values of these 
recovered parameters are computed as the estimations 
over each run. The calibration results for 5 sphere and 5 
line images using our two-stage method are shown in 
Table 4a and Table 4b, respectively. The calibration 
results using the method presented in [6] are shown in 
Table 4c for comparison purposes. In Table 4, the skew 
factor s  is replaced by θ  which is the angle between the 
two image coordinate axes. The relative error of the 
aspect ratio is rrr *−  where r  is the ground truth and 

*r  is the mean, and the relative errors of other parameters 
are defined in the same way. The results show that, the 
method using sphere images is more robust and more 
accurate than the method based on line images. The main 
reason for this may be attributed to the fitting accuracy of 

sphere images higher than that of line images (see Figure 
2).  
 

5.2. Real data 
 

The test spheres for the real image experiments are 
billiard balls. These balls are placed in front of a white 
screen in order to create high contrast lighting 
environments. We take images of these balls using the 
catadioptric camera described before. Image conic 
extracting is accomplished by a software package 
developed by our group. One of the experimental images 
is shown in Figure 3. The calibration results with real data 

Figure 2: (a) and (c) are simulated images containing the 
projections of five lines and five spheres, respectively. (b) 
and (d) are the images after conic fitting from (a) and (c) 
when Gaussian noise of standard deviation 2.0 pixels is 
added. For the convenience of visualization, only two fitted 
conics are shown in (b). The ground truths of the projections 
are shown by the thin solid line, and the fitted conics are 
shown by the thick solid line. More explicitly, the fitting 
results of sphere images are better than those of line images.

(a) (b) 

(c) (d) 

Figure 3: A real image in our experiments. The resolution
of the image is 15362048 × . The conic fitting results are
shown in this image. 
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are listed in Table 5.  
 
 

(a): Using our method from sphere images  
Noise 
level r  (%) θ  (%) 0u  (%) 0v  (%) ef  (%)

0.4 0.022 0.001 0.369 0.239 0.173 
0.8 0.028 0.002 0.431 0.252 0.386 
1.2 0.033 0.006 0.404 0.314 0.940 
1.6 0.032 0.010 0.907 0.363 1.814 
2.0 0.040 0.013 1.069 0.476 2.648 

 

(b): Using our method from line images 
Noise 
level r  (%) θ  (%) 0u  (%) 0v  (%) ef  (%)

0.4 0.115 0.021 4.990 2.468 4.579
0.8 0.846 0.026 8.503 2.539 9.837
1.2 1.505 0.032 11.875 4.465 14.439
1.6 2.571 0.031 13.217 8.522 18.863
2.0 2.543 0.034 14.004 9.122 20.169

 

(c): Using the method in [6] from line images 
Noise 
level r  (%) θ  (%) 0u  (%) 0v  (%) ef  (%)

0.4 0.902 0.162 1.192 0.499 1.966
0.8 0.396 0.379 4.635 1.395 7.552
1.2 0.791 0.549 9.212 2.875 15.798
1.6 1.249 0.845 15.097 6.871 29.162
2.0 1.674 1.309 22.346 6.957 49.188

 
 
 

 Initial estimations Final results 
r  0017.1     0.00060035.1 ±  
s′  0137.0   -5-4 105.410-5.87 ×±×  

0u  1.997  4.32.993 ±  

0v  3.784   7.28.787 ±  

ef  -  9.48.503 ±  
 

Table 5: Calibration results with real data 
 
6. Conclusion 
 

In this paper, we present a unified framework for the 
calibration of central catadioptric cameras based on 
images of lines or spheres in space. The constraint 
equations for the intrinsic parameters given by the 
projection of a space line as well as by the projection of a 
space sphere are derived. The minimum number of line or 
sphere images for the calibration of different types of 
central catadioptric cameras is clarified in this paper. In 
order to efficiently solve the non-linear equations of the 
intrinsic parameters, we present a two-stage calibration 
technique which divides the intrinsic parameters into two 
groups and uses the Levenberg-Marquardt algorithm to 
perform the minimization to estimate the intrinsic 
parameters. The experimental results show that the 

calibration method based on sphere images is more robust 
and has higher accuracy than that using line images. 
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