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Abstract
Recent advances in multi-projector research have made
large-format tiled display walls feasible.  Resolution of the
tiled display is defined by the resolution of the component
projectors and the tiling. In domains where display surface
size is constrained or the number of pixels per unit area on
the display must be increased, traditional tiling may not be
feasible.  We propose a multi-projector method that exploits
overlapping regions to achieve increased resolution and
contrast on the display surface.

Given a set of overlapping projectors and a target image,
component images are derived and then rendered by each
projector resulting in an image on the display surface
exceeding the resolution limits of the individual projectors.
The relative viewing geometry between the projectors i s
taken into consideration while computing the component
images that should be projected. Sub-pixel shifts between
the displays are viewed as integer disparities in the high-
resolution target image. Results demonstrate that for a
variety of target images, there is perceptible resolution
improvement on the display surface. Super-resolution image
composites have a significantly higher sampling rate on a
display surface without a corresponding increase in display
area.

1. Introduction

This work introduces the Super-Resolution Composition
problem for multi-projector display and presents an initial
approach to achieving Traditional multi-projector high-
resolution is achieved by tiling component projectors
together, calibrating their relative geometry [4,8,19,21],
potentially their radiometric differences [15,24], and
rendering a coherent image across all projectors.  Due to
significant advances in automatic calibration, tiled display
is feasible, very large-format displays are fairly
straightforward to deploy in unconstrained environments,
and novel tiled configurations are being explored [25].    

This work focuses on the super-resolution composition
(SRC)  of multiple overlapping and calibrated projector
frustums. In traditional multi-projector displays,
accidental overlap occurs quite frequently and  SRC can be
used to increase resolution and display contrast in these
regions.  For displays that require high-resolution but

have insufficient surface area to support tiling, projectors
can be fully overlapped to exploit both the increased
resolution and contrast that SRC affords.  

Recent research advances in multi-projector displays both
from the computer vision and graphics communities
inspire this work [5,9,10,11,12,14,26]. Efforts have
focused on building large-scale displays from clusters of
projectors that automatically calibrate [4,12,20,22], and
correctly render a single, coherent tiled image
[5,10,12,14,19]. The work here is an alternate approach to
achieving higher resolution display from multi-projectors.

Multi-projector displays are loosely configured and may
have significant regions of overlap.  Several researchers
have addressed these overlapping regions to provide
intensity blending and color uniformity [15,19,24].
Recently, these regions have been exploited to actively
remove shadows and provide increased contrast ratio
[3,16].

Indeed, regions of the display surface illuminated by more
than one projector can be viewed as an Optical
Framebuffer in which operations may take place by
appropriately adjusting images in the different projectors.
This Framebuffer Optique, and its potential use for
intensity and contrast enhancement, as well as cooperative
rendering of linear computer graphics operations (e.g. light
source compositing) was first noted by [16].  This paper
demonstrates that the Framebuffer Optique can be
exploited to produce high-resolution images by
compositing low-resolution components.

Solution to the SRC problem has direct utility in multi-
projector display environments as is demonstrated here.
Images that exceed the resolution limits of a single
projector can be more accurately visualized using multiple
projectors and the SRC method without increasing display
size.  This dramatically increases the sampling rate of the
rendered images on the display surface to better
approximate the fidelity of the human eye.  High-
resolution insets in a projected display are also made
feasible through this technique.

The technique requires at least two overlapping projectors
whose view frustums illuminate a planar display surface.



During an initial calibration phase, a camera is used to
recover a homography between each projector and a base
projector frame.  A base projector frame is aligned with
the high-resolution space and only differs in its resolution.
Sub-pixel overlap defines pixels in the high-resolution
target frame.  Figure 1 depicts this situation.

Because each projector is related to the target frame via a
general homography, the relative two-dimensional shift
and sampling rate will change across the display. The
component homographies are approximated by a set of
two-dimensional sub-pixel shifts (referred to as the linear
shift matrix) that represents the sub-pixel disparity of one
projector with respect to the target image reference frame,
for a given image sub-region.

Component images are then estimated in the frequency
domain where the target image is sub-sampled and phase
shifted according to the sampling rate and shift matrix for
each component.  The resulting amplitudes and phase
values are then optimized according to a cost function that
measures the difference between the target image and the
image that results from adding the multiple sub-sampled,
shifted components together.

2. Previous and Related Work

Super-resolution composition is directly related to a
significant research history on super-resolution
reconstruction from image sequences. Many of the
techniques described here are related to the super-
resolution reconstruction problem and are closely related
to the frequency domain approach [2,7,18,23]. For a
concise overview of the more common approaches to
super-resolution reconstruction, the reader is referred to
[2,6].

Although multi-projector display systems are the focus of
an active research community, there has been relatively
little work related to exploiting projector overlap.  Initial

research focused on computing overlap regions
automatically from camera-based calibration techniques
[4,12,19,22] and monitoring active displays for reactive
calibration [21].  Other methods seek to address overlap
regions through intensity blending [9,19], geometric
correction [4,12,14,19,22], and color balancing [15,24].
These techniques are important in that loosely configured,
automatically calibrated tiled displays are almost certain to
contain regions of projector overlap that must be
addressed.  In contrast to these efforts, we exploit the
utility of overlapping regions rather than seek to remove
or attenuate their effects.

Only recently, methods for exploiting projector overlap
have been introduced.  Detection of radiometric changes
on the display surface can be used to intensify or attenuate
different projectors to actively remove shadows on an
interactive display [3,13].   Welch. et. al. demonstrated
that the rendering problem can be decomposed into several
components and added together on the display surface to
support distributed computation of lighting and rendering
effects [16]. The Framebuffer Optique is described in the
same work as a virtual Framebuffer that can be accessed
via manipulation of the component images and added
together through image superposition. We demonstrate
how the Framebuffer Optique can be exploited to produce
high-resolution image overlay by solving the super-
resolution composition problem.

3. Image Decomposition and Compositing

There are three steps in deriving an appropriate set of
component images.  First, each projector must be
calibrated to the target reference frame, in order to
determine the relative sub-pixel shift between each
projector and that frame.  Once calibrated, an initial set of
component images is derived via the known shifts and
sub-sampling rates for each component.   This phase of
the algorithm can be performed in parallel for each
projector.  Given these initial estimates, a global
optimization step minimizes the difference between the
sum of the components and the target image.

3.1 Calibration

The goal of calibration is to derive an accurate mapping
from each projector’s framebuffer coordinates to the high-
resolution target frame.  This mapping must be accurate to
less than a pixel and presents a significant challenge in
practice.  In order to compute the sub-pixel disparity
between projectors and a target frame, pixel
correspondences between any two projectors must be
computed to far less than a pixel accuracy and nonlinear
effects due to both camera and projector optics must be
known and corrected.

The epipolar relationship between pairs of projectors and a
known surface model is sufficient to compute pixel
correspondences for every pixel in the Framebuffer.   In
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Figure 1: Multiple projectors illuminate a planar surface.
A single projector defines the Framebuffer Optique,
whose high-resolution pixels (shown in circle) are
defined by the overlapping sub-pixel shifted
components.



the results shown here, however, the display surface is
constrained to be planar and the full projective relationship
between any two devices, i and j can be modeled as a 3x3
homography matrix that maps pixels in projector j directly
to pixels in projector i, through the display plane.  The
homography can be automatically computed given a
sufficient set of matchpoints between the two projectors in
question.

Prior to estimating the calibration matrix, the radial
distortion coefficients, k1 and k2,  of the camera and all
projectors are independently estimated in an offline
process.  Prior to estimating the linear homography
between each camera and projector, points in each device
are unwarped using the recovered distortion coefficients to
compute point positions in an undistorted frame of
reference.  Recovered homographies, then, map points
from one undistorted frame to another.

Matchpoints are then computed between a camera that
observes the display surface, and each projector in the
display. For each projector, a set of Gaussian target
fiducials centered at randomly selected framebuffer pixels
are iteratively displayed.  The target is captured in the
camera and a match-point pair, using the undistorted
coordinates, is stored.  The sub-pixel location of the target
in the camera is computed through an optimization routine
that estimates seven parameters of a distorting
homography that is specific to each matchpoint pair. We
have shown that this technique can recover match-points at
close to 1/5th pixel accuracy and the reader is encouraged
to read [20] for more details and analysis of the subpixel
matchpoint finding algorithm.  

Given a sufficient number of correspondences (25 for the
results shown here), a homography between each projector
p and the display camera c, Hp

c, is then computed using
linear least squares estimation.  These homographies
represent the mapping between each projector and the
camera used to calibrate the display.

Each projector to camera matrix is then converted into a
homography between each projector and the target image
reference frame.  An arbitrary projector Framebuffer is
selected as the base projector reference frame.  Although
the target frame and base projector Framebuffer are of
different resolutions (the target is significantly higher),
this projector defines the target space up to an unknown
scale by assuming that the base Framebuffer is axis-
aligned with, and shares the origin of the target image
space.  Therefore, the relationship between any projector
and this target image frame, Hb

i, can be written as a
composite homography from the projector (i) to the
camera (c), and then to the base projector frame (b):

† 

H i
b = Hb

c( )
-1

H i
c                     (1)

This situation is depicted in Figure 1.  Projectors overlap
on the display surface and are each shifted with respect to
the base frame.  Shifted overlapping pixels give rise to the
higher resolution space where sub-pixel shifts define

integer pixels in the high-resolution target frame. For
results shown here we assume the sub-pixel calibration
accuracy up to 1/4th of a pixel resulting in resolutions in
the target frame that are 4-times those of component
projectors. We assume a constant sampling rate from one
projector to the target frame.  Although general
configuration of projectors will lead to non-uniform
sampling rates (particularly in cases of extreme off-axis
projection and skew), a mean sampling rate is a good
approximation for common projector setups.

In order to demonstrate the calibration accuracy that can be
achieved under controlled conditions using accurate,
undistorted camera matchpoints, a homography was
derived between two overlapping frustums.  A high-
resolution image was then captured very close to the
display surface using a digital still camera. Figure 2
shows two 4x4 pixel grids drawn on the high-resolution
image corresponding to the two overlapping projectors.
The white grid, corresponding to projector 1 pixel
boundaries, was drawn by hand for demonstration
purposes while the black grid was defined by the
homography from projector two’s frame to the frame of
projector 1. The white circle on the image depicts the
center pixel p in the framebuffer of projector 2. This user
estimated center can then be compared to the sub-pixel
disparity predicted by the calibrated homography (centers
of the black squares).  In this case, calibration predicted a
subpixel shift of p with respect to q of (0.09,-.12) while
inspection reveals a shift of projector 2 with respect to
projector 1 of (0.13,.11).  

Figure 2: Calibration accuracy for overlapping projector
frustums.  White lines show pixel boundaries for base
projector. Circles correspond to pixel centers estimated by
human subject while center of actual grid predicted by
homography (shown as black lines) is approximately off by
1/5th of a pixel.

According to our formulation, the low-resolution
component images are modeled as sub-sampled versions
of the image target with a uniform two-dimensional shift
and sampling rate with respect to the target frame of
reference.  Clearly, the projective warp between two
projectors describes a more general displacement than
uniform shift.  In order to derive an appropriate
component image, without the undue computation that a
per-pixel solution would require, the homography can be
approximated by a set of two-dimensional shift vectors
between a projector and the target frame.



The homography between projector i and the base frame is
decomposed into a linear shift matrix that represents two-
dimensional offsets between the projector and the base
reference frame.   Each entry in the shift matrix
corresponds to a region in the target reference frame for
which the two-dimensional offset is assumed to be
constant.  Once computed, the shift matrix replaces the
more general homography and regions in the component
frame are related to the target frame through a constant,
two-dimensional offset. We present a method for
constructing a linear shift matrix Si

B from a given
homography Hi

B given target error tolerance e.

The two-dimensional disparity D , between a component
projector reference frame r and target frame b is written as
the difference between the locations of a pixel in frame r
the same pixel in frame b (given by the known
homography).

† 

D = p - Hr
b p                     (2)

The disparity in x and y directions (Dx,D y) is
independently given by:

† 

D x = px -
H1px

H3 px

D y = py -
H2 py

H3 py

                        (3)

where Hk is the vector formed by the kth row of the matrix
Hr

b.  If we assume that D x and D y are independent, the
disparity value is a linear function of the pixel position in
the component frame.

As x ranges from zero in the component projector to xmax,
the resolution of projector in the x direction, the disparity
values will vary in accordance with the line equation given
by Equation 3.  This line is divided into k equal regions
such that the disparity values in the region are all within
ex of one another.  Conceptually, these k regions are
columns in the component image that will use the same
approximate x-shift values, ~Dx, for the purposes of
deriving the component image corresponding to pixels
contained in that column.

Given the line equation for independent disparities in the y
direction (Equation 3), a similar process divides the
component frame into rows of uniform y-disparity with
error tolerance ey. These regions are combined to produce
regions in the component image containing approximate
values for two-dimensional shifts that are within

† 

e £ ex
2 + ey

2  of the values represented in the actual

homography. Therefore, for a given error tolerance e (fixed
to be .2 pixels for the results shown here), the
homography can be decomposed into areas of uniform
disparity.  These region-based two-dimensional
approximate shifts, (~Dx,~Dy), and the corresponding

offset of the region itself, (Ox,Oy), are used to derive the a
component image for a single projector.  It should be
noted, that, as error tolerance approaches zero, the region-
based two-dimensional shifts simple become the two
dimensional shifts given on a per-pixel basis by the
homography itself and no accuracy is lost.  We select an
error tolerance that reduces computation while still
retaining a perceptually good result.

Figure 3 shows ten regions corresponding to a 5x2 shift
matrix, computed from the homography between a
projector to the base frame for a two-projector setup.
Given a fixed error tolerance, the number of regions
computed by this process is related to the amount of
projective (off-axis) distortion induced by the viewing
geometry.

3.2 Component Image Estimation

Component image estimation is performed in the
frequency domain where initial images are first estimated
and then optimized.  We do not construct component
images in the spatial domain because overlapping pixel
intensities and the constraints they represent are difficult
to characterize.   We are strongly motivated to formalize
the problem in the frequency domain because, a
perceptually good image must take into account models of
the human visual system (HVS).  Successful perceptual
models, in particular those that assign importance to
particular aspects of an image, are defined as weighted
frequency filters.  Because the problem is ill-posed (i.e.
we can only approximate a target image with a given
projector setup), these perceptual models must be
incorporated into an objective function during the
optimization phase of reconstruction.  Although, we do
not yet incorporate an HVS model, we expect that
improved results will require an appropriate model of
perception.

A given target image is first converted to the resolution of
the Framebuffer Optique, defined by the sub-pixel shift
pattern recovered in the calibration phase. This target
image I(x,y), is converted to a corresponding discrete
Fourier transform (DFT) FT(u,v).

A component image for a particular projector is estimated
in two phases.  First, sub-components for the n regions of
uniform disparity are derived.  Following that, sub-
components are combined to form a single component
image for the projector.



Figure 3: Automatic decomposition of a homography into
regions of uniform two-dimensional disparity.  White lines
denote boundaries of uniform 2D displacement.

The target image DFT is sub-sampled at a rate of Rx and
Ry based on mean sampling-rate derived from the
calibration phase for a particular component projector with
respect to the target frame. The DFT of the target image
FT(u,v), and the sampled component image, Fs(u,v), are
related via aliasing:

† 

FS[u,v] = a FT
k

MRx

+ pfsx,
l

NRy

+ qfsy

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ 

q= 0

M -1

Â
p= 0

N-1

Â
(4)

where fsx=1/Rx and fsy=1/Ry are the two-dimensional
sampling rates in x and y directions.  Again, non-uniform
sampling rates can be supported by this framework and
can be estimated on a per-region basis in a manner similar
to that used to estimate two-dimensional disparity.
Future work will address this issue.

The sub-sampled DFT signal is shifted, for each region r,
by the corresponding entry in the Linear Shift Matrix,
(~Dx

r,~Dy
r), plus the offset (Ox

r,Oy
r) for that region. The

shifting property of the Fourier transform relates spatial
domain translations to a phase shift in the frequency
domain as:

† 

FD r[u,v] = e j2p ((~D x
r +Ox

r )u+(~D y
r +Oy

r )v)FS (u,v)
(5)

Equation 5 holds only for a stationary signal and shifting
the signal for a finite region of the target image may result
in invalid frequency coefficients due to boundary
problems.  In practice, a region of size w x h is extended
by the magnitude of the phase shift to include neighboring
pixels.  For regions on the image edge, the edge values of
the image are copied into a border whose size is defined
by the magnitude of the phase shift.  The resulting Fourier
series 

† 

FD r[u,v] is the frequency space representation of

the sub-sampled, shifted image for a specific region in the
component image. Each of the n regions is then composed
into a single Fourier Series using the distributive property
of the Fourier transform over addition. This results in a
single Fourier series for a component projector, p:

† 

FD
p[u,v] = FD r[u,v]

r= 0

N

Â                   (6)

3.3 Global Optimization

Once an initial set of component images have been
estimated, they must be adjusted to more closely
approximate the contents of the target image. There are a
number of ways to formulate the problem of determining

the component image contents given their relative position
to the target reference frame and a target image.  Figure 4
depicts the theoretical problem to be solved.  Pixel values
for projector 1, shown in black, must be determined with
respect to the constraint that the total energy supplied by
all projectors sums to the expected value for the high
resolution pixel under consideration, shown as k1 in the
image. We are exploring several different approaches
including linear programming and direct optimization of
the free parameters (see Conclusions).  Here we present a
heuristic-based iterative relaxation method used for the
results here.

Figure 4: Ideal two-projector composite case.  Pixel values a1

and b1 must be determined so that k1=a1+b1.  Because the
value of b1 also influences the value of k2, k3, and k4, the pixel
values for a single component are not independent.

Component images, computed for each overlapping
projector, are derived independently.  These initial
components do not take the additive nature of the
superposition process into account and must be adjusted
in a global optimization phase to achieve increased
contrast.  In order to do so, the intensity values contained
in the target image at each pixel are multiplied by the
number of projectors that overlap that pixel.  This defines
a new target of increased contrast that is approximated by
the projector components during the optimization phase.

Each derived component image for each of the k
projectors, 

† 

FD
p , is treated as the initial estimate for an

iterative algorithm that seeks to minimize the difference
between the sum of the different components and the
image target. We model the superposition process on the
display surface as additive and minimize:

† 

FT [u,v]- FD
i [u,v]

i= 0

k

Â
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

2

               (7)

In future work, Equation 7 will be biased by a perceptual
model that assigns importance to particular frequency
events in the reconstructed image.  The unbiased error
metric, must be augmented by additional constraints if we
are to converge to component images at are reasonable.
Several constraints are available and we are still exploring



how the choice of constraints at this phase of the
algorithm influences composite image quality.  Currently,
the outermost projector boundary pixels are fixed to be
exactly x/k of the intensity of the high-resolution pixel it
overlaps (For example, pixel a1 in Figure 4) where x is the
target value and k the number of projectors that overlap the
super-resolution pixel.  This defines a set of pixel values
that can no longer be adjusted.  

The remaining component image pixels, p, are then
visited in random order in each image, the largest
difference between the high-resolution target values
contained within component pixel p and their current
values (defined by the sum of the component pixel and its
overlaps) is corrected.  

Correction can either involve directly adjusting the low-
resolution component pixel to match the target pixel value
of the largest error exactly or may involve a weighted
adjustment of the component pixel intensity.  The pixel
value is adjusted to exactly match the desired value for the
target pixel if, in doing so, the maximum error of the
other high-resolution pixels contained within p do not
exceed the previously measured maximum error.  

If direct correct if pixel p yields an error that is greater
than the maximum error contained at p prior to
adjustment, the intensity of the component pixel in
question is adjusted according to, DI = lDt – (1- l)Dt+1.
Where, lambda is scalar weight that can dampen local
changes in component images and will ultimately control
the amount of variation in the component images from the
initial estimates.  Dt and Dt+1 are the maximum pixel
differences between the intensity of the component pixel
and any high-resolution pixel it overlaps both before the
value is adjusted and after.

Starting from the periphery, pixels are iteratively adjusted
according to the algorithm in all component images that
can influence the value of a high-resolution target.  This
algorithm is applied iteratively to all images until either
until it converges and no pixel values are adjusted in a
single pass over each image component or the global error
function is smaller than a predefined threshold.
Determining this threshold for a given calibration accuracy
and target image is a matter of current work and in
practice, the global error measure is observed by a human
operator who determines when to terminate the algorithm
when it appears to be no longer improving.

4. Results

The technique was evaluated for two and three projector
scenarios where the projectors were configured to have
significant overlap and each projector’s optic axis was
oriented to be within approximately 15-degrees
perpendicular to the display plane.  Distance from the
projectors varied for different test cases but ranged from 6
feet to 12 feet from the display.  The technique was tested
for 1024x768, 800x600, and 640x480 component
projector resolutions.

Projectors were calibrated using 25 matchpoints per
projector and the projector to target image homography
was recovered in each test case.  Shift matrices, and the
corresponding image regions were derived from the
component homographies to within 0.25 pixel error
(estimated using a technique similar to the one discussed
in Section 3.1).

For each projector, an initial component image was
derived using the techniques described in Section 3.2.
Each of these images (still in the frequency domain) was
then provided to a single machine for global optimization
(see Section 3.3).  The resulting Fourier series for each
projector was then converted to a spatial signal by each of
the k different machines to produce a component image
that was loaded into the Framebuffer for display.

The time required to derive initial component images is
negligible compared to the time spent during the global
optimization phase. Optimization time is directly related
to the number of parameters being optimized (defined by
the number and resolution of the components) as well as
the complexity of the search space defined by the target
image.  Current times preclude using the SRC technique
for video-rate imagery on a multi-projector display.  We
expect that a closed-form approach to determining the
optimal components given the setup is feasible and is the
subject of future work.

Since the resulting image is only present on the display
surface and is not represented digitally, quantitative
comparison of the SRC result against the target image is
not possible.  Instead we present several examples of
reconstructed images by capturing a high-resolution image
of the display surface (sometimes at very close range) to
demonstrate the perceptual result of the technique.

Figure 5 depicts a close-up image of the “pinky finger”
taken from the Human Body Dataset.  A 2048x2048
resolution still image of a human torso (shown fully in
Figure 3).  The SRC image shown in Figure5b contains
greater contrast, less aliasing at boundaries, while
enhancing high-frequency features such as the point tip on
the fingernail.

  
(a)                                          (b)

Figure 5: Close-up of pinky finger from 2048x2048
resolution image (see entire image in Figure 3).  (a) Single
projector at 1024x768 resolution.  (b) Two composite images
computed using SRC method. Note that the surface pattern i s
more visible in image (b) due to increased contrast and
resolution.  The sharp tip structure on the fingernail i s
present in (b) and not in (a).



Composite results are perhaps best observed at the pixel
level resulting images on the display surface.  Figure 6
shows an extreme close-up of a curve from the Visible
Human dataset.  The image corresponds to a vein from an
image that is 2148x968 pixels in resolution.

A computer desktop containing text and images at a
resolution of 1280x1024, was rendered using a single
projector at 1024x768 and reconstructed using the SRC
method.  Results are shown in Figure 7.

A close-up view of a section taken from a 2048x2048
resolution aerial image dataset shows the improved image
quality that SRC affords.  Figure 8 shows a close-up of a
curving sidewalk region and several pedestrians taken from
the “Aerial” dataset experiment.    Previously unseen
structure (such as the white shirt) is visible in the SRC
image.

5. Conclusion

We have introduced the Super-Resolution Composition
reconstruction problem and demonstrated how an accurate
decomposition of a high-resolution target image into its
overlapping, sub-pixel, shifted components can be used to
improve the resolution of a projected display.  Results
show perceptible improvement for two and three-projector
overlapping displays given a variety of target images.

In the near future, we expect to implement the SRC
solution in hardware (particularly the Fourier transforms),
and devise a more efficient optimization method using
better initial estimates. We are also exploring direct
methods to recover composite images.  Under certain
constrained configurations, the constraints on component
images can lead to a large and sparse system of linear
equations that can be solved faster than the iterative
method described here.  In this way, video and interactive
applications can be supported on a super-resolution
display.  In addition, we are working on faster sub-pixel
calibration techniques that allow users to “steer” projectors
to regions of imagery where high-resolution insets are
desired.

In longer-term research, we are exploring other operations
that may be able to decompose the target into a set of
component images that are ultimately overlaid in the
Framebuffer Optique.  Examples include distributed
rendering and blending of color and intensity.
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(a)                                                                                 (b)

Figure 8:  Result of super-resolution composition on the aerial image dataset.  Close-up view of pedestrians on a sidewalk. (a)
Single projector at 800x600 resolution. Note aliasing problems on sidewalk in (a) and pedestrian’s torso at left is not fully
resolved in the imagery due to insufficient sampling. (b) Two-projector superposition result. Compare with results in (a).


