
DeskAlign: Automaticlly Aligning a Tiled Windows Desktop

Grant Wallace, Han Chen and Kai Li
Department of Computer Science, Princeton University, Princeton, NJ 08544.

{gwallace,chenhan,li}@cs.princeton.edu

Abstract

Tiled projector arrays are effective at meeting the needs
for scalable, cost effective, higher resolution displays. In-
creases in PC performance have allowed small tiled dis-
plays to be driven from a single PC with multiple graphics
cards. In this paper we present a system for automatically
aligning the Windows Desktop of a tiled display. This sys-
tem consists of three primary procedures: detecting projec-
tor misalignment, calculating corrective transformations,
and real-time warping of the desktop. This allows users
to run any Windows 2D, 3D or video application without
modifications or special software support. Our experiments
indicate that the system is able to achieve real-time warping
with minimum system performance degradation.

1. Introduction
Large format collaborative displays are increasingly useful
in a variety of application environments including control
rooms, CAD design, education, and business. For collabo-
rative displays to be effective, it is important that they are
easy to use and provide enough resolution and size to read-
ily view the group’s work.

Figure 1: A DeskAlign installation in PPPL Control Room

One common way of building a high-resolution display
is to tile together a set of projectors. Tiled displays have typ-

ically been driven by specialized graphics pipelines such as
the SGI Onyx, or by a cluster of PCs each rendering a sin-
gle tile. These types of rendering systems have performance
advantages, but can be cumbersome for creating effective
collaborative environments. Graphics pipeline computers
are too expensive and specialized for general computing
needs, while a cluster of computers requires special tools
to use and manage. Ideally a collaborative display will be
driven by a system that people find easy to use and are fa-
miliar with. The increasing capabilities of commodity PCs
can make this possible. A single PC with multiple graph-
ics cards can potentially drive upwards of 16 displays with
4 to 8 displays being a more optimal setup. Luckily, Col-
laboration environments often require only small tiled ar-
rays. This makes building a tiled collaborative display from
a single PC an attractive choice because it can present an
intuitive user interface such as the Windows Desktop in an
economical fashion.

An important aspect when tiling together projectors is to
get precise geometric alignment. Even small amounts of
misalignment lead to gaps and double images which make
the display unacceptable. Manual alignment is possible but
tends to be time consuming and less accurate than auto-
mated approaches. Automated approaches are fast and ac-
curate, reducing the maintenance overhead, but must be ap-
plied in real-time to the displayed imageries. Applying the
alignment requires that a projective warp be applied to each
projector’s output. Warping the imagery is typically done
by modifying the rendering application. Unfortunately this
is not easily done with a Desktop environment where the
source code may not be available.

The remainder of this paper presents a system we de-
veloped called DeskAlign which automatically aligns and
warps the windows desktop of a tiled display driven by a
single PC. Some previous work will be discussed in Sec-
tion 2. Section 3 will talk about design choices in creating
such a system. Section 4 will describe our system’s imple-
mentation and section 5 will present some evaluations and
experiences with using DeskAlign. Section 6 will conclude.

1



2. Background
The goal of aligning a tiled desktop can draw on the experi-
ences of several categories of research, but is not completely
addressed by any of the current tiling systems. In this sec-
tion we will look at some previous work and compare some
existing systems.

2.1. Automatic Alignment
Automatic alignment of tiled displays is well documented
in the literature. There have been a variety of techniques
that have emerged for different display environments. Sin-
gle camera view alignment of a planar screen is covered by
PixelFlex [11]. Scalable alignment of a planar screen us-
ing multiple camera views is done by H. Chenet al [1], Y.
Chenet al [3]. Aligning displays on an arbitrary surface can
be found in Raskar et al [8]. These techniques all involve
detecting projector feature points with a camera. The rela-
tive position of the feature points with one another is then
used to extract a set of transformations that, when applied to
the displayed imagery, make the projectors appear aligned
from the cameras viewpoint. The techniques typically yield
sub-pixel accurate alignment in a matter of minutes.

2.2. Projector-Camera User Interfaces
Several systems have effectively used projector-camera in-
teractions to create enhanced user interfaces. Smart Projec-
tors [10] uses a camera to correct for projector keystoning,
create a laser-pointer user interface and do shadow elimi-
nation. Also the Everywhere Display [7] uses dual headed
graphics cards to do two pass rendering resulting in one dis-
play output that is automatically keystone corrected on any
surface it projects to. This also has the facility for tracked
user interaction.

2.3. Display Tiling Systems
There are several systems that have been developed to help
bring desktop environments to tiled displays. Most of them
involve running a client-server architecture. Usually one

Display

Display

Display

Virtual Screen

Snooper

Distributor

Primitives

Prim
iti

ves

Figure 2: Virtual Display Driver for Tiled Display

Client

X Proxy

Display

Display

Display

Client

Client

Primitives Prim
itiv

es

Figure 3: Distributed Multiheaded X

computer will act as a proxy. This proxy looks like a sin-
gle display to the applications, but it then divides the dis-
play content and redistributes it to the tile nodes. A win-
dows implementation of such a system is the Virtual Dis-
play Driver (VDD) [4]. VDD creates a virtual Windows
Desktop of arbitrary resolution. When applications running
on that computer make GDI drawing calls, the calls are in-
tercepted, scaled and sent to the appropriate nodes of the
tiled display as shown in Figure 2. Distributed Multiheaded
X (DMX) [6] is a similar proxy for X Windows environ-
ments. A Xserver runs on one PC and accepts display com-
mands. It then redistributes these X rendering commands
to the cluster nodes (see Figure 3). Both VDD and DMX
operate with 2D drawing primitives in order to reduce the
network bandwidth which would be required when sending
pixel information. Another solution is an adaptation of Vir-
tual Network Computing (VNC) [9]. VNC allows a user
to connect to a remote computer and view/interact with the
desktop. It requires the remote computer to run VNC Server
which compresses and ships pixel information to the client
computer. This application was modified in a release called
VNCWall. The VNC Server was modified allowing it to
handle requests for multiple rectangular subsections of the
display. This allows each node in the display to connect to
the server and ask for a different subsection thus creating a
tiled desktop.

One common aspect of the above systems is they are de-
signed to run on a display cluster. The goal of our system
is to run from a single PC. The proxy based systems can
be used in loopback mode where the client and server both
reside on the same PC. This is one potential solution to cre-

L RVNC Server

VNC Client

Host Graphics Card
1) Rendering Primitives

2) Local loopback

3) Warp and Render

Snooper

Figure 4: VNC loopback mode on a single PC

2



ating a single PC tiled desktop. However, in tests we’ve
done on these types of systems, several limitations exist.
One limitation is the performance overhead incurred by the
extra loopback copying. For a VNC system in loopback
mode (Figure 4), we found there was about a one second
delay for window refresh and dragging. Also mouse cur-
sor movement is jerky and delayed. Another problem is
that these systems typically snoop on the 2D rendering calls
made in order to track updates. Applications that render
directly to the graphics card such as 2D and 3D apps us-
ing DirectX will not be properly rendered. One method to
get around some of these limitations is to do post-rendering
alignment transformations. We will look at some of these
options further in section 3.

3. Design Choices

When creating an automatically aligned tiled desktop, there
are several design choices that need to be made including:
the projector alignment algorithm; method of applying the
transformations; and how to distribute the desktop content
to the tiles.

As mentioned in section 2 there are several existing tech-
niques for determining projector misalignment. Choosing
one appropriate for the screen configuration should yield
good results. The method of detecting misalignment is in-
dependent of the other design choices and can easily be
switched.

The second two processes, applying the transformations
and tiling the Desktop, are somewhat coupled. If the system
responsible for tiling the desktop has information about the
positions of the projectors, then it can adjust the amount of
content it ships for each projector. For instance, if a projec-
tor covering a small area of screen is surrounded by projec-
tors covering larger areas, then the tiler can send a smaller
section of the desktop to the one, while sending more to the
others. This allows the physical positioning of the projec-
tors to be very coarse and still produce a good final result.
If the tiling system has no knowledge of the projector posi-
tions (other than which grid area it occupies) then it sends
the same resolution to each display and the post rendering
transformations must make the size of the projectors’ out-
put match that of the smallest. This has the disadvantage
of wasting projector resolution or requiring a more precise
physical placement of the projectors.

In order for the tiling system to be aware of the projec-
tor alignment, either the desktop system must be able to
handle this information or a proxy system must be used.
Current desktops do not have the capability to handle de-
tailed projector position information. This type of inte-
gration would require the use of a proxy such as VDD,
VNCWall, DMX, or possibly future versions of Windows

GPU

Main

Memory

Primary Surface

Texture Surface

Memory

Controller

Host Graphics Card

1) R
ender to Texture

2) W
arp

Figure 5: Rendering architecture of NVKeystone

Terminal Services1. Proxies can add considerable overhead
as data must be shipped to the proxy and then redistributed
to the display nodes. Even if everything is on a single PC
it still requires copying the data around as opposed to just
sending drawing calls to the graphics card.

If the tiling system is unaware of projector alignment,
as is the case with normal Windows Desktop multi-monitor
support, then we must apply alignment transformations af-
ter the content has been rendered on the graphics card.
These transformations can be done in one of three places:
the graphics card, the projector, or between the graphics
card and projector. There are some projectors on the market
which can apply arbitrary projective transformations, but
currently they are quite expensive. There are also compa-
nies that make video switches that can perform transforma-
tion of the video coming from the graphics card. Again
these tend to be expensive. So currently the most cost ef-
fective place to perform the transformations is on the video
card.

It would be best if the graphics card natively supplied an
API to allow for post-rendering transformations. We ini-
tially thought the NVIDIA NVKeystone extension would
provide exactly this API. NVKeystone allows one display to
be projectively warped to correct for any off-axis projection
(Figure 5). However, after some experimentation, we found
two major flaws with the NVKeystone extension. First, it
only allows the warping of one monitor per computer. Since
our goal is to run a tiled display from a single computer
this effectively eliminates the utility of NVKeystone. The
second limitation is the lack of a programmable interface
to NVKeystone. It only presents a GUI which allows you
to drag the corners of the display. Ideally we would like
to pass in some transformation information calculated from
our alignment algorithm.

In the absence of graphic card support for post rendering
transformations, we decided to do a two pass rendering ap-
proach. We want to keep all of the rendering on the graphics

1Current versions of Windows Terminal Server only allow one client
connection at a time and have no subregion support.

3



card so we don’t hinder performance. In order to do this it
is necessary to double buffer and have control of the buffer
swapping. Since the Windows Desktop is doing the render-
ing, we don’t have this type of control. As an alternative,
we decided to use another graphics pipeline on the same
card for the second pass rendering, such as the approach in
[7]. Dual or quad headed graphics cards have 2 or 4 graph-
ics pipelines, one per head. To perform two pass rendering
we pair pipelines together and don’t use the display from
the first pass pipeline. Thus we turn two graphics pipelines
into one. This reduces the number of potential displays, but
allows for the on-board performance that our system needs.

4. DeskAlign System
We have implemented a system called DeskAlign which
uses a camera to collect geometry information from the pro-
jectors, calculates the appropriate transformations for each
projector and then aligns the Desktop running on a single
PC. The system is comprised of three software components.
1) A Windows application which collects configuration in-
formation from the user and takes pictures of feature points
on the display. 2) A Matlab program which processes the
feature point images and determines the transformations
which should be applied to each projector. 3) A DirectX
application that performs the second pass rendering on the
graphics card as well as optionally drawing feature points
on the projectors or presenting a GUI with draggable projec-
tor corners for manual alignment adjustment. Components
1 and 2 are based on the Camera Homography Tree (CHT)
alignment algorithm [1]. Component 3 is a modification of
the Princeton Image Viewer [2].

4.1. Detecting Projector Positions
The first part of our system is ‘DeskDetect’. This is an ap-
plication that gathers the projector feature point informa-
tion. It has three main functional components: configura-
tion settings, camera control and DeskAlign communica-
tion.

The user typically begins by entering some configuration
settings. These settings can be saved in a config file and
later reloaded for convenience. The type of configuration
information needed is

1. DeskAlign hostname,

2. Projector rows, columns and resolution,

3. Camera coverage and resolution,

4. Feature point patterns,

5. Image file path and prefix.

Figure 6: DeskDetect GUI for collecting projector configu-
ration information.

The user then selects the video source to use. DeskDe-
tect can use any video source that supplies a WDM video
driver. Camera control, including shutter speed, aperture,
gain, focus, zoom, pan and tilt, is available for certain cam-
eras. Once the camera is configured correctly the system is
ready to acquire feature point images.

To begin acquiring feature points we need to commu-
nicate with the DeskAlign display system. DeskAlign
and DeskDetect can run on the same or different PCs.
DeskAlign controls the output to the projectors and will be
responsible for drawing the feature points needed for image
collection. DeskDetect communicates with DeskAlign to
toggle the warping on or off, and send drawing commands.
The first step is to toggle off DeskAlign warping. This stops
the display of desktop content and puts DeskAlign in draw-
ing mode. Now we can send 2D drawing commands to the
displays. Once in drawing mode, we typically want to first
check the rough alignment of the projectors. DeskDetect
sends drawing commands to highlight the edges of the pro-
jectors. It is important that the projectors have some overlap
so that the result can be seamless. Next we can acquire fea-
ture point images. DeskDetect sends drawing commands to
DeskAlign and then takes pictures of the screen. We use
the CHT method of feature point detection which uses hor-
izontal and vertical lines as its primary features. Once all
the feature point images have been acquired, we are ready
to process the images and determine appropriate projective
transformations to apply to each projector.

4.2 Determining Projector Homograhpies

The projector transformations are determined by a set of
Matlab routines based on the CHT algorithm. These rou-
tines do image processing to extract the feature line infor-

4



mation. Feature points are then found from the intersection
of horizontal and vertical lines. The feature points allow us
to find a homography from camera space to projector space.
Once the projector corners positions are known in camera
space we can begin determining an optimal transformation
to apply to each projector. There are two criteria we must
keep in mind. First, we want the entire desktop contents
shown, it is not advisable to clip part of the desktop if it
doesn’t quite fit. Second, since we are performing these
warping transformations after the rendering stage, it is not
possible (or at least very slow) to ship pixels back and forth
between displays. So we want each display to show all of
its content and only its content. This means we want to dis-
play in the largest bounding rectangle contained within the
intersection of the displays (uneven edges will show black).
And we may have to reduce the final display size even more
to match the smallest zoomed projector. Also we will need
the overlaps of successive rows and columns to line up suf-
ficiently in order for a continuous seam to be drawn. If the
overlaps aren’t sufficiently large or aligned we may not be
able to show all portions of the desktop. The final results of
the optimization are the pixel positions within each display
at which the content is to be shown. This information is then
sent to DeskAlign so that it can apply these transformations.

4.3. Applying Alignment Transformations
DeskAlign is a Windows application that performs the sec-
ond pass rendering transformations according to the align-
ment information created in the previous step. DeskAlign
performs the following tasks. First it determines the num-
ber of monitors and their resolutions. Based on the monitor
information it creates two sets of monitors, A and B. Set
A will be the monitors containing the unmodified Windows
Desktop Content. Nothing needs to be done to A monitors,
Windows already handles this. Set B monitors will show the
warped Desktop content. To accomplish this, DeskAlign
opens a full-screen mode window on each monitor in Set B.
Then a periodic timer is set (currently every 1/30 sec) and
at each timer event DeskAlign copies the pixels from the
frame buffers of Set A monitors to texture memory. Then
the content is warped from texture memory to the Set B
frame buffers using texture mapping hardware. The end
result is the contents are copied from Set A monitors and
warped to Set B. Only Set B outputs are attached to projec-
tors. So the number of display outputs is reduced in half in
order to perform the alignment warping.

DeskAlign is currently implemented as a DirectX appli-
cation. DirectX will only perform an on-card pixel copy
to memory locations within the same address space. If the
copy appears to cross address space boundaries, DirectX
first copies the pixels to main memory and then back again.
For performance reasons it is important that paired monitors
have single address space memory. This is true in NVIDIA’s

L R

L R

Memory

Controller
GPU

Main

Memory

Primary Surface

Texture Surface

Host Graphics Card

1) Render

3) W
arp2) C

apture

S
et A

S
et B

Figure 7: DeskAlign Diagram

“Span” mode. In span mode you can span two monitors
together so they look like one monitor to Windows. This
insures a continuous address space shared between the two
monitors.

5. Evaluation and Experiences
5.1. System Evaluation
We evaluate several aspects of our system including, the set
up time, the alignment accuracy, and the usability.

We set up our system using a PC with a 866 MHz Pen-
tium III processor and 256 MB memory, a PNY NVIDIA
Quadro4 400 NVS graphics card and two Compaq MP1800
projectors. The system requires a relatively short set up time
of about 10–15 minutes. This has the advantage of making
it portable. Once all hardware and software have been in-
stalled in the PC, the setup basically involves hooking up the
projectors and a camera, capturing some alignment images,
running the alignment algorithm to generate the projector
transformations and then sending this new configuration to
DeskAlign. The alignment steps take under five minutes,
and most of the setup time is in hooking up the projectors,
booting the computer and configuring the NVIDIA driver.
A final manual adjustment in software can also be made to
get the resulting display as large and square to the screen as
possible. This is done by dragging the corners of the dis-
play to the appropriate positions similar to a technique used
in [10]. The resulting display is aligned to within one pixel
when using an inexpensive webcam.

One way to consider the usability of this system is to
consider if a user can perform the same tasks as with a
normal desktop and with the same performance. In other
words, does tiling add resolution without removing other
capabilities. With regards to the first question, our system
is able to run and view all application output except for pixel
data rendered with a hardware overlay. Some video applica-
tions use a hardware overlay, but generally this can be dis-
abled. Also the mouse is typically rendered with an overlay
but this can be disabled in the “Display Properties” settings

5



of Windows. The DeskAlign system uses about 10% of the
CPU, most of which is due to hardware contention. We will
look further into some of these issues in the next section.

5.2. System Experiences
In this section we will detail some of the experiences and
lessons learned while setting up and using the DeskAlign
system.

The NVIDIA driver was somewhat tricky to configure
correctly. We require each pair of displays to be in “Span”
mode so that DirectX will see them as sharing memory.
This can be accomplished after turning off “treat all dis-
plays as separate devices”. This must be done for each dis-
play pair and so two reboots are required for a quad card.
After rebooting, “Span” mode is only enabled if monitors
are detected on each of the VGA outputs. This requires an
AB monitor switch to send the appropriate signal when no
monitor is present.

We initially found that DeskAlign was using a lot of CPU
time, sometimes up to 90% when running PowerPoint. Af-
ter some investigation it turned out that most of this per-
formance hit was contention for writing with the blitter. In
particular we found that when “Clippit”, the Office Assis-
tant, was running on the warped output screens there was
the greatest contention. Moving “Clippit” off the output
screens and onto the desktop screens reduced the contention
in half. We further reduced the contention by running blt
commands with the DONOTWAIT flag, and by putting a 10
ms delay between blitter calls. This reduced our contention
down to below 10% on average. “Clippit” can still increase
this amount to 20% if moved onto our render screens. Con-
tention also increases linearly with the refresh rate with
about 10% contention at 30Hz refresh. If we comment out
the blitter commands in our code, DeskAlign CPU usage is
essentially 0%.

We also found that the mouse was not initially visible in
our warped output. This turned out to be due to hardware
acceleration which uses an overlay for the mouse pointer.
We lowered the hardware acceleration by one notch in
the display-properties/advanced/troubleshooting dialog box
and this returned the mouse to normal rendering mode with-
out any appreciable decrease in performance. Similarly, for
video applications, overlay mode must be turned off in or-
der to render to the frame buffer. This is typically an appli-
cation setting, or automatically adjusted when the window
spans multiple screens.

The system is easily used while only viewing the projec-
tion screen, there is no need for a monitor. Two refinements
are needed to the typical usage pattern, both have to do with
application resizing and positioning. The first usage modi-
fication is that applications must be resized to cover the full
screen rather than automatically maximizing with the “full
screen” button. The full screen button on a multi-monitor

system typically only covers one monitor. The second us-
age modification is keeping application windows within the
boundaries of the display. Since the bottom of the desktop
becomes the top of the warped output, it is necessary to re-
size objects so that they don’t extend down further than the
resolution of the visible desktop.

6. Conclusion
Collaborative environments can often benefit from large
shared displays. Tiled arrays of projectors are one of the
most cost effective means of achieving this. The DeskAlign
system presented in this paper provides a method for au-
tomatically aligning the Windows Desktop on a small tiled
display driven by a single PC. Running from a single PC
has the advantage of eliminating clustering tools and en-
vironments and allowing users to interact directly with a
desktop. The system incorporates the detection of projec-
tor misalignment, calculation of a corrective transforma-
tions, and real-time desktop warping. The result from using
DeskAlign is a high resolution desktop system that is quick
to set up and easy to use.

Acknowledgments

The Princeton Scalable Display Wall project is supported in
part by Department of Energy grant DE-FC02-01ER25456,
by NSF Infastructure Grant EIA-0101247, by NCSA Grant
ACI-9619019 (through NSF), by Intel Research Council,
and by Intel Technology 2000 equipment grant. Han Chen
is supported in part by a Gordon Wu Fellowship.

References

[1] H. Chen, R. Sukthankar, G. Wallace, and K. Li. Scal-
able alignment of large-format multi-projector dis-
plays using camera homography trees. InProceedings
of IEEE Visualization, 2002.

[2] Y. Chen, H. Chen, D Clark, Z. Liu, G. Wallace, and
K. Li. Software Environments for Cluster-based Dis-
play Systems (2001)

[3] Y. Chen, D. Clark, A. Finkelstein, T. Housel, and
K. Li. Automatic alignment of high-resolution multi-
projector display using an uncalibrated camera. In
Proceedings of IEEE Visualization, 2000.

[4] K. Li, et al. Early Experiences and Challenges in
Building and Using A Scalable Display Wall System.
IEEE Computer Graphics and Applications, vol 20(4),
pp 671-680, 2000.

6



[5] T. Funkhouser and K. Li. Large format displays.IEEE
Computer Graphics and Applications, 20(4), 2000.
Guest editor introduction to special issue.

[6] K. Martin, D. Dawes, and R. Faith. Distributed Multi-
head X design. http://dmx.sourceforge.net/dmx.html

[7] G. Pingali, C. Pinhanez, A. Levas, R. Kjeldsen,
M. Podlaseck, H. Chen, and N. Sukaviriya Steer-
able Interfaces for Pervasive Computing Spaces. In
IEEE International Conference on Pervasive Comput-
ing and Communications - PerCom’03. 2003

[8] R. Raskar, M. Brown, R. Yang, W. Chen, G. Welch,
H. Towles, B. Seales, and H. Fuchs. Multi-projector
displays using camera-based registration. InProceed-
ings of IEEE Visualization, 1999.

[9] T. Richardson, Q. Stafford-Fraser, K. Wood and
A. Hopper. Virtual Network Computing. InIEEE In-
ternet Computing, Vol.2 No.1, Jan/Feb 1998 pp33-38.

[10] R. Sukthankar, R. Stockton, M. Mullin. Smarter
Presentations: Exploiting Homography in Camera-
Projector Systems. InProceedings of International
Conference on Computer Vision, 2001.

[11] R. Yang, D. Gotz, J. Hensley, H. Towles, and
M. Brown. Pixelflex: A reconfigurable multi-projector
display system. InProceedings of IEEE Visualization,
2001.

7


