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Abstract— Real world surfaces such as tree bark, moss, sponge,
and fur often have complicated geometry that leads to effects
such as self-shadowing, masking, specularity, and interreflection
as the lighting or viewpoint in a scene changes. We use image
based techniques to analyze and represent bidirectional texture
functions, or BTFs, with correct geometric and lighting effects.
A basis for the apparent BRDF of points on the surface is
determined and used to compress the texture datasets, as well
as provide a space for comparison of texture elements across
all lights and views. The compression method reduces the
approximately 10,000 images in each 6-D lighting, viewpoint,
and spatial variation texture dataset to under 2 MB.

I. INTRODUCTION

Recently, a reasonable amount of effort has been placed
on producing realistic 3-D textures1 such as flora, fabric,
bark, hair and fur, skin, etc. Although some advances have
been made, these textures have proven difficult to represent
compactly and render under variable viewpoint and lighting
conditions because they exhibit complex reflectance properties
and intricate small scale geometric structure. Consider the
images shown in Fig. 1, noting how differently the sponge
appears as the viewpoint (top row) and illumination direction
(bottom row) vary.

Fig. 1. Sample images of kitchen sponge texture with viewpoint variation,
top, and lighting direction variation, bottom. Each image has been rectified
to a frontal view.

In this paper, we present a set of methods that we believe
are a significant advance in the study of 3-D textures under

1In this work, we consider texture to be the mesostructure – the fine scale
yet still visible geometric structure – present on the surface of an object as
discussed in [6]. Examples of mesostructure include the ridges of bark on a
tree, the dimples on a golf ball, and the plant structure of moss.

lighting and viewpoint variation. Our main contributions are
as follows:

• Acquisition of densely sampled 6-D texture datasets –
with 2-D variation in lighting, 2-D in viewpoint, and
2-D in the spatial dimensions of the image – with
approximately 50 times the number of images captured
in previous work [2].

• Determination of a tailored basis for the apparent BRDF
of surface points on the texture that can be used to
compress the 2.5GB raw texture datasets to under 2 MB
- a compression ratio of more than 1000:1.

• Demonstration of the utility of coefficients on the ap-
parent BRDF basis as a criterion for matching texture
features, allowing for synthesis of textures that can be
rendered under any viewing and lighting condition, while
maintaining a consistent mesostructure as those condi-
tions change.

Our BTF compression and synthesis methods are designed
in keeping with the following two observations. First, real-
world textures (in particular natural textures) have a geometric
and reflectance complexity that is difficult to capture with a
small number of sample images or a simple parametric model,
and so require relatively fine sampling of their appearance to
capture the full variation with lighting and viewpoint. Second,
real-world textures often exhibit a randomness that is not well
modeled by a limited set of distinct texture elements.

An exhaustive list of related work is not possible in a
short paper such as this, so we will limit comments to only
the most relevant prior work. Dana et al. [2] introduced the
Bidirectional Texture Function (BTF) to account for complex
variation in both reflectance and geometry-induced effects
such as self-shadowing and masking. The BTF is analogous
to the more familiar Bidirectional Reflectance Distribution
Function (BRDF), [10], although it also includes spatial vari-
ation, making it a six dimensional function of viewpoint,
lighting, and texture image coordinates. In [2], a groundbreak-
ing database (CUReT) of 205 images of 61 materials was
reported, and these textures were directly mapped onto objects
by appropriate indexing into the BTF function. Our datasets
are captured in the same vein, but have much greater sampling
density.

Our analysis of the texture datasets makes no assumptions



about the underlying reflectance function of the surface, or
the geometric structure of the texture. This is in contrast to
polynomial texture maps [9], which assume that the surface
has smoothly varying reflectance in compactly representing
and rendering textures with lighting variation only. In [8], a
low order parametric model for reflectance (e.g., Phong [12])
is assumed in recovering the texture’s surface geometry for use
in rendering additional images in a 6-D dataset. This limits the
textures that can be represented to those with well-behaved
surface geometry and reflectance. In [14], 6-D textures are
discretized to a set of representative texture elements for
analysis, thus assuming that textures are made up of a limited
number of such elements. The complete BTF is needed for
synthesis in [14], whereas our method requires only a small
number of coefficient textures and basis vectors to render a
surface under any viewing conditions.

BTF datasets with 6-D variation are inherently large and
require compression to make them tractable for distribution
and use. In [16], 3-D surface light field datasets that ex-
press surface variation across multiple viewpoint images were
compressed using modifications of both principal component
analysis (PCA) and vector quantization (VQ). Notable im-
provement in compressing the data was also achieved using
the BRDF reparameterization in [13]. Similar algorithms using
SVD and tensor product expansions were presented in [11]
and [5] respectively. Interactions between pixels were modeled
in [17] to capture changes in viewpoint. In the aforementioned
algorithms, only viewpoint is addressed while lighting is fixed.
PTMs [9] can be considered as compressing textures with
lighting variation for fixed viewpoint, with the compression
achieved largely by assuming smoothly varying reflectance at
each surface point. In [7], 3-D textons (i.e., feature vectors
computed for each pixel) were used to compress textures
when a limited number of representative texture elements are
sufficient to characterize the entire texture. A statistical repre-
sentation for BTF histograms is derived in [1] for compression
and recognition. However, this method does not maintain the
spatial element of the BTF and so is not useful for synthesis.

The remainder of this paper is organized as follows: Sec-
tion II describes our data acquisition method. Section III
outlines our apparent BRDF representation and associated
texture compression method, and provides analysis of the
compression results. Finally, Section IV describes an extension
to currently existing texture synthesis methods that uses our
BTF representation.

II. 3-D TEXTURE DATA ACQUISITION

Six dimensional BTF datasets were acquired with variation in
viewing and lighting angle, as well as spatial variation within
the image. This was done using the rig shown in Figure 2. An
Adept robot arm moved a white light emitting diode (LED)
over a hemisphere above the surface of the texture sample,
providing two degrees of freedom of lighting variation. The
texture sample was mounted on a pan/tilt head whose axes
intersect at the texture surface, providing two degrees of
freedom in viewpoint. The camera, a 3-chip digital video

camera (Canon XL-1) in our set-up, was fixed for all images
in the dataset. Differently colored squares surround the texture
sample and serve as fiducial points so that correspondence
between texture positions can be found.

Each texture dataset contains about 10,000 color, 480 × 360
images – about 50 times the number of images for a single
sample in the CUReT database [2], as mentioned previously.
This corresponds to a sampling of 20 degrees in both viewing
angles for 90 possible views, and 15 degrees in lighting for 120
possible light source angles. The lighting angle is relative to a
coordinate system attached to each sample. Due to obstructions
of the camera by the robot arm, small portions of the dataset
are unusable. The obstructed images were removed from the
datasets, and replaced with images linearly interpolated from
the closest available samples. Nine distinct samples were
captured - kitchen sponge, lichen, green moss, spanish moss,
velvet, gravel, carpet, faux fur and lego/plastic. Given the
significant effort to acquire these large datasets of images and
their potential usefulness, we are making the datasets freely
available to other researchers.2

Fig. 2. Images of each texture sample were acquired using a 3-chip digital
video camera while a white LED source was moved by an Adept robot arm,
left. The texture sample was mounted on a pan/tilt head that provided the
viewpoint variation. The texture samples were surrounded by a fiducial marker
for use in rectifying the dataset. Three sample images from a raw dataset are
shown.

III. TEXTURE COMPRESSION

To address the storage and distribution issues associated with
such dense BTF datasets, we present a method for texture
compression. Our compression method has the additional
benefit of representing the entire BTF in a low dimensional
space that lends itself easily to pixel by pixel comparisons of
texture elements across all captured conditions.

We first align all of the images in the dataset, establishing
correspondence between texture elements. Each texture image

2Upon publication of this paper, the datasets will be available via our web
site.



is rectified to the plane of a fronto-parallel texture using a
2-D homography. The homography is determined by marking
corresponding points on the fiducial marker surrounding the
texture sample in each image. The rectification makes all
images the same size with texture elements at the same pixel
locations. The rectification also crops the image to only the
texture sample area, and in so doing reduces the dataset from
the captured 2.5 GB to about 700 MB, a compression ratio of
3.5:1. This step is key, because it removes any gross geometric
differences between the images – leaving primarily effects due
to the mesostructure on the surface.

Now that the texture images are rectified, we can define the
“apparent BRDF”, b(i, j), at each pixel location (i, j) as the
value of that pixel across all lighting and viewing conditions
in the dataset. It is not the true BRDF, since it includes
shadows and interreflections caused by surface details, as
well as the cosine foreshortening term. Intuitively, one can
consider the apparent BRDF as the BRDF of the surface at
a given point modulated by a visibility function induced by
surrounding geometric structure. Since textures are repetitive
in nature, we believe that there exists a low dimensional basis
for these visibility functions, and in turn, for the apparent
BRDF. Since the textures are rectified, only a single basis
vector would be required for a planar Lambertian surface. For
textured surfaces, the basis need only account for variation
due to the nonplanarity of the surface (i.e., effects due to the
mesostructure and reflectance changes over the surface), and
so a significant compression is expected.

To compute the apparent BRDF basis, we first form a
matrix M whose columns are apparent BRDF vectors. Due to
memory and computational constraints, only a limited number
of pixels from the original BTF are used. The pixels are chosen
from a contiguous region in the image, and due to the repetitive
nature of textured surfaces, should be representative of the
texture as a whole.

M = [b(0, 0) · · · b(m,n)] (1)

The singular value decomposition (SVD) of M is computed,
and those eigenvectors corresponding to the k largest eigen-
values are kept as the apparent BRDF basis. Next, all pixels
in the input BTF are projected onto the linear apparent BRDF
basis, resulting in a set of k coefficients for each color channel
at each pixel. Those k coefficients encapsulate all variation in
lighting and viewpoint for a particular pixel (or 3×k for RGB
images).

The coefficient textures can be scaled to the range [0,1]
and stored as JPEG images, and the basis vectors scaled and
stored as a single uncompressed image. This final step results
in a compressed texture dataset of size 1.57 MB for k = 150
and an image size of 128 by 128. The finished size represents
a compression of about 470:1 from the rectified dataset, and
more than 1000:1 from the raw captured dataset. Storage size
was determined to increase with O(k) at approximately 11 kB
for each additional vector. Figure 3 shows the percent error
between original and reconstructed images versus the number

of basis vectors used for a particular light and view angle.
Note that the percent error levels off for greater than 150-200
basis vectors in each case. Figure 4 shows several original and
reconstructed texture image pairs, along with the associated
storage space.

Fig. 3. Plot of percent error versus number of basis vectors used in
reconstruction. Percent error is computed as the sum of the differences
between original and reconstructed pixels divided by the sum of the original
pixels.

IV. TEXTURE SYNTHESIS AND RENDERING

Our compressed representation for the BTF (i.e., a set of ap-
parent BRDF basis vectors and associated coefficient textures)
can be used directly to synthesize novel textures. The represen-
tation can be used with any available synthesis algorithm that
explicitly compares image intensities from the input image
to generate synthesized pixels. Instead of comparing image
intensities as is done in the 2D algorithm, we simply compare
coefficients. We have chosen to demonstrate this by extending
the image quilting algorithm in [3], but could have easily
extended [4] or [15] among others in a similar way. Although
the current implementation is limited to square primitives (and
thus simple geometries), it demonstrates the effectiveness of
matching in the apparent BRDF coefficient space.

Synthesized images are generated by selecting patches
based on a best match in texture coefficient space, forming
a set of synthetic coefficient textures. The final image is then
rendered by determining the lighting and viewing angle of
the current surface point, [θv, φv, θl, φl], and computing the
intensity of that point, I(i, j) using Equation 2.

I(i, j) = U([θv, φv, θl, φl]) × c(i, j) (2)

Each row of U corresponds to a single light and view combi-
nation, the columns of U are basis vectors, and c is the stack of
k coefficient textures. Since every possible lighting condition
is not covered in the dataset, I(i, j) is actually computed for
the three closest sources and linearly interpolated. Synthesis
results for three of the textures on simple geometries are shown



in Figure 5. In each case, a point light source is positioned at
varying distances from the surface.

V. DISCUSSION

We have introduced a new method for effectively represent-
ing and synthesizing textures whose appearance varies with
lighting and viewpoint. Still, there are many directions to
pursue. Our representation was simply integrated into existing
intensity-based 2-D synthesis methods to produce the results
shown here. We are currently working on implementing a near
real-time algorithm that uses the apparent BRDF representa-
tion to synthesize BTFs on arbitrary surfaces. Texture mapping
in general is effective for the interior of an object’s projection,
but fails to capture appearance near the occluding contour,
especially when the texture has relief greater than a pixel.
We hope to overcome this using datasets of curved samples
along with “mixed pixel” representations. While our individual
textures are sampled more finely than those in CUReT [2],
there are fewer distinct textures in our database. With time
the database will be enlarged.
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Fig. 5. Synthesized texture (LegoTM, kitchen sponge, and lichen) rendered on the surface of simple geometries. In each example, a single point light source
is used. Note that although the lighting conditions change, the mesostructure on the surface of the cylinder examples remains consistent for both lighting
conditions.


