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Abstract— This paper presents a novel fast model-based algo-
rithm for realistic multispectral BTF texture modelling poten-
tially capable of direct implementation inside the graphical card
processing unit. The algorithm starts with range map estimation
of the BTF texture followed by the spectral and spatial factori-
sation of an input multispectral texture image. Single orthogonal
monospectral band-limited factors are independently modelled by
their dedicated Gaussian Markov random field models (GMRF).
We estimate an optimal contextual neighbourhood and param-
eters for each GMRF. Finally single synthesised band-limited
factors are collapsed into the fine resolution monospectral images
and using the inverse Karhunen-Loeve transformation we obtain
the smooth multispectral texture. Both multispectral and range
information is combined in a bump mapping or alternatively
a displacement mapping filter of the rendering hardware. The
presented model offers huge BTF texture compression ration
which cannot be achieved by any other sampling-based BTF
texture synthesis method.

I. I NTRODUCTION

Photo realism in virtual or mixed reality scenes cannot
be accomplished without nature-like colour textures covering
visualised scene objects. These textures can be either smooth
or rough (also referred as the bidirectional texture function -
BTF). The rough textures which have rugged surfaces do not
obey Lambertian law and their reflectance is illumination and
view angle dependent as it is illustrated in Fig.1. Textures can
be either digitised natural textures or textures synthesised from
an appropriate mathematical model. The former simplistic op-
tion suffers among others with extreme memory requirements
for storage of a large number of digitised cross-sectioned slices
through different material samples. Sampling solution become
unmanageable for rough textures which require to store thou-
sands of different illumination and view angle samples for
every texture.

Several intelligent sampling methods [1], [2], [3], [4], [5],
[6], were proposed with the aim to diminish these huge mem-
ory requirements. The method [1] constructs texture in coarse-
to-fine fashion, preserving conditional distribution of filter
outputs over multiple scales, while another multiscale method
[4] uses histograms of filter responses. The quilting method [3]
is based on the overlapping tiling and subsequent minimum
error boundary cut. Similarly the algorithm [5] uses regular
tiling combined with a deterministic chaos transformation. All
these methods are based on some sort of original small texture
sampling and the best of them produce very realistic synthetic
textures. However these methods require to store thousands
images for every combination of viewing and illumination
angle of the original target texture sample, they often produce

visible seams, some of them are computationally demanding
and they cannot generate textures unseen (unstored) by the
algorithm.

Fig. 1. Relationship between illumination and viewing angles within
texture coordinate system.

Synthetic textures are far more flexible, extremely com-
pressed (few parameters have to be stored only), they may be
evaluated directly in procedural form and can be designed to
meet certain constraints or properties, so that they can be used
to fill an infinite texture space without visible discontinuities.

Several monospectral smooth texture modelling approaches
were published, e.g., [7], [8],[9], [10], [11], among them also
few colour models, e.g., [12], [13], [14], [15], [16] and some
survey articles are available [17], [18] as well. Previous colour
texture modelling methods either mapped colour to gray tones
[19] sacrificing considerable amount of image information
or used 3D models [13],[14] with corresponding problems
of robust nonlinear estimation of large amount of model
parameters.

Modelling multispectral images requires three dimensional
models however if we are willing to sacrifice some information
a 3D model can be approximated with a set of much simpler
2D models without compromising its visual realism. Among
such possible models the Gaussian Markov random fields are
appropriate for texture modelling not only because they do
not suffer with some problems of alternative options (see
[20], [17], [18], [15] for details) but they are also easy to
synthesise and still flexible enough to imitate a large set of
natural and artificial textures. While the random field based
models quite successfully represent high frequencies present
in natural textures low frequencies are much more difficult for
them. One possibility how to overcome this drawback is to use
a multiscale random field model.

Multiple resolution decomposition (MRD) such as Gaus-
sian/Laplacian pyramids, wavelet pyramids or subband pyra-



mids [21] present efficient method for the spatial information
compressing. The hierarchy of different resolutions of an
image provides a transition between pixel-level features and
region or global features and hence such a representation
simplify modelling a large variety of possible textures. Un-
fortunately Markov random fields in general, and Gaussian
Markov random fields in particular are not invariant to multiple
resolution decomposition (MRD) even for simple MRD like
subsampling and the lower-resolution images generally lose
their Markovianity. Fortunately we can avoid computationally
demanding approximations [22] of a non-Markov multigrid
random field by Markov random fields because there is no
need to transfer information between single spatial factors
hence it is sufficient to analyse and synthesise each resolution
component independently.

We propose a novel algorithm for efficient rough texture
modelling which combines an estimated range map with syn-
thetic multiscale Markov random field based generated smooth
texture. The texture visual appearance during changes of
viewing and illumination conditions simulated using the bump
/ displacement mapping technique. The obvious advantage of
this solution is the possibility to use hardware support of bump
/ displacement map techniques in contemporary visualisation
hardware.

The rest of the paper is organised as follows. After a
description of range map estimation technique, we discuss
the underlaying multiscale Markovian smooth texture model
together with its parameter estimation and synthesis solutions.
Results are reported in Section 3, followed by a conclusion
and discussion about future work in Section 4.

II. RANGE MAP ESTIMATION

There are several methods for determining a surface range
map. The most accurate range map can be estimated by direct
measurement of the observed surface using corresponding
range cameras (e.g. laser or structured light based). How-
ever this method requires special hardware and measurement
methodology. Hence several alternative approaches for range
map estimation from surface images were developed. One of
them is aPhotometric Stereowhich estimates surface range
map from at least three images obtained for different position
of illumination source while the camera position is fixed. Its
obvious disadvantage is the requirement to obtain at least three
mutually registered images. An alternative option is to use a
method from theShape from Shadinggroup.

The range map estimation of texture images within this pa-
per was performed by shape from shading algorithm published
by Frankot & Chellappa [23]. This method exploits the fact
that image intensityYr of each pixel observed in texture image
is given according to Lambertian (in our implementation)
reflectance mapR :

Yr = R(zr1 , zr2 ,L,C, ρ) (1)
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where zr1 and zr2 are surface slopes in directionsr1 and
r2, L is vector from surface to illumination source,C is
vector from surface to the camera andρ is albedo of observed
material. The algorithm ignores multiple reflections, assumes
known vectors C,L and spatially invariant reflectance map.
The advantage of this method is fast range map estimation
from single surface image illuminated by single light source
from known position. In comparison with other methods, as for
example Horn & Brooks [24], this algorithm includes constrain
which enforces integrability of surface slopes (2). These slopes
are then updated in each iteration step.
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where Zr is the unknown surface height in the location
r = (r1, r2). This integrability condition is performed in the
Fourier coefficient representation as follows:
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Based on these assumptions the reconstruction of surface
height is performed in the Fourier space with coefficients
obtained by the above equation. Frankot & Chellappa proved
[23] that the algorithm maps closed convex sets into closed
convex sets in each iteration step and thus the estimated sur-
face slopes are integrable. Finally the inverse transformation
leads to a surface range map. The Lambertian reflectance
assumption may deteriorate the range map estimation for
some non-Lambertian texture surfaces, although results in [23]
demonstrate still acceptable estimates even in these cases.

III. SMOOTH TEXTURE MODEL

Modelling general multispectral (e.g., colour) texture im-
ages requires three dimensional models. If a 3D data space
can be factorised then these data can be modelled using a
set of less-dimensional 2D random field models, otherwise it
is necessary to use some 3D random field model. Although
full 3D models allows unrestricted spatial-spectral correlation
modelling its main drawback is large amount of parameters to
be estimated and in the case of Markov models (MRF) also
the necessity to estimate all these parameters simultaneously
[13]. The factorisation alternative is attractive because it allows
using simpler 2D data models with less parameters (one third
in the three-spectral case of colour textures).

Spectral factorisation using the Karhunen-Loeve expansion
transforms the original centred data spaceỸ defined on the
rectangularM × N finite toroidal latticeI into a new data
space with K-L coordinate axes̄Y . These new basis vectors
are the eigenvectors of thed × d second-order statistical
moments matrix Φ = E{Ỹr,•Ỹ

T
r,•} where the multiindex

r has two componentsr = [r1, r2], the first component is
row and and the second one column index, respectively. The
projection of random vector Ỹr,• (the notation• has the



meaning of all possible values of the corresponding index)
onto the K-L coordinate system uses the transformation matrix
T = [uT

1 , . . . , uT
d ]T which has single rowsuj that are

eigenvectors of the matrixΦ.

Ȳr,• = T Ỹr,• (3)

Components of the transformed vectorȲr,• (3) are mutually
uncorrelated and if Ȳr,• are Gaussian they are also inde-
pendent hence each transformed monospectral factor can be
modelled independently of remaining spectral factors. Texture
modelling does not require computationally demanding MRD
approximations (e.g. [22]) because it does not need to propa-
gate information between different data resolution levels. It is
sufficient to analyse and subsequently generate single spatial
frequency bands without assuming a knowledge of some MRF-
type global multi-grid model. Input multispectral image is
factorised using (3) intod monospectral imagesȲ•,i for
i = 1, . . . , d. These components are further decomposed into
a multi-resolution grid and each resolution data are indepen-
dently modelled by their dedicated GMRF. Each one generates
a single spatial frequency band of the texture. An analysed
texture is decomposed into multiple resolutions factors using
Laplacian pyramid and the intermediary Gaussian pyramid
Ÿ

(k)
•,i which is a sequence of images in which each one

is a low-pass down-sampled version of its predecessor. The
Gaussian pyramid for a reduction factorn is

Ÿ
(k)
r,i =↓nr (Ÿ (k−1)

•,i ⊗ w) k = 1, 2, . . . , (4)

where
Ÿ

(0)
•,i = Ȳ•,i ,

↓n denotes down-sampling with reduction factorn and⊗ is the
convolution operation. The Laplacian pyramidẎ (k)

r,i contains
band-pass components and provides a good approximation to
the Laplacian of the Gaussian kernel. It can be constructed by
differencing single Gaussian pyramid layers:

Ẏ
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n
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where↑n is the up-sampling with an expanding factorn.
Single orthogonal monospectral components are thus de-

composed into a multi-resolution grid and each resolution
data are independently modelled by their dedicated Gaussian
Markov random field model (GMRF) as follows. The Markov
random field (MRF) is a family of random variables with a
joint probability density on the set of all possible realisations
Y of the latticeI, subject to following conditions:

p(Y•,i) > 0, ∀Y , (6)

and

p(Yr,i |Ys,i∀s ∈ I \ {r}) = p(Yr,i |Ys,i∀s ∈ Ir,i) , (7)

and Ir,i is a contextual support set of thei-th monospectral
field.

If the local conditional density of the MRF model (8) is
Gaussian, we obtain the continuous Gaussian Markov random
field model (GMRF):

p(Yr, |Ys,i∀s ∈ Ir,i) =

(2πσ2
i )−

1
2 exp{−1

2
σ−2

i (Yr,i − µ̃r,i)2} , (8)

where the mean value is

E{Yr,i |Ys,i∀s ∈ I \ {r}} = µ̃r,i =

µr,i +
∑

s∈Ir,i

as,i(Yr−s,i − µr−s,i) (9)

andσi, as,i ∀s ∈ Ir,i are unknown parameters. The 2D MRF
model can be expressed as a stationary non-causal correlated
noise driven 2D autoregressive process:

Ỹr,i =
∑

s∈Ir,i

as,iỸr−s,i + eri,i (10)

where the noiseer,i is random variable with zero mean. The
er,i noise variables are mutually correlated

Rei
= E{er,ier−s,i}

=

{
σ2

i if s = (0, 0),
−σ2

i as,i if s ∈ Ir,i,
0 otherwise.

(11)

Correlation functions have the symmetry property
E{er,ier+s,i} = E{er,i er−s,i} hence the neighbourhood
support set and their associated coefficients have to be
symmetric, i.e. s ∈ Ir,i ⇒ −s ∈ Ir,i andas,i = a−s,i .

A. Parameter Estimation

The selection of an appropriate GMRF model support is
important to obtain good results in modelling of a given
random field. If the contextual neighbourhood is too small it
can not capture all details of the random field. Inclusion of the
unnecessary neighbours on the other hand add to the computa-
tional burden and can potentially degrade the performance of
the model as an additional source of noise. We use hierarchical
neighbourhood systemIr,i, e.g., the first-order neighbourhood
is Ir,i = {r − (0, 1), r + (0, 1), r − (1, 0), r + (1, 0)}, etc.
An optimal neighbourhood is detected using the correlation
method [25] favouring neighbours locations corresponding to
large correlations over those with small correlations.

Parameter estimation of a MRF model is complicated by
the difficulty associated with computing the normalisation
constant. Fortunately the GMRF model is an exception where
the normalisation constant is easy obtainable however either
Bayesian or ML estimate requires iterative minimisation of
a nonlinear function. Therefore we use the pseudo-likelihood
estimator which is computationally simple although not effi-
cient. The pseudo-likelihood estimate foras parameters has
the form
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B. Model Synthesis

Several possibilities exist [17] for a finite lattice GMRF syn-
thesis. The most effective synthesis method uses the discrete
fast Fourier transformation. GMRF can be generated [9] from
Y•,i = F−1{Ŷ•,i} + Ui, where Ui the mean vector of the
whole filed and Ŷ•,i is generated from the Gaussian gen-
eratorN (0, NMSY (r, i)) . SY (r, i) is the associated power
spectrum [20] andN ×M is the underlying generated lattice
size. Single GMRF models synthesise spatial frequency bands
of the texture. Each monospectral fine-resolution component is
obtained from the pyramid collapse procedure (inversion pro-
cess to (4),(5)). Finally the resulting synthesised multispectral
texture is obtained from the set of synthesised monospectral
images using the inverse K-L transformation:

Ỹr,• = T−1Ȳr,• (14)

IV. RESULTS

We have tested the algorithm on BTF colour textures from
the CUReT [26] database, several our and the University of
Bonn (Fig.2) BTF measurements. Figs.2,4 show corduroy, up-
holstery and knitwear textures synthesised using the presented
method for three illumination angles. For comparison, the
included corresponding smooth texture synthesis results using
the same sets of models demonstrate clear improvement of
the presented approach. All these figures demonstrate also
the colour quality of the model. The Fig.3 demonstrates
the improvement achieved using the displacement mapping
technique (the leftmost three examples) and the comparison
between measured and estimated range map results. Our syn-
thesised images manifest comparable colour quality with the
much more complex 3D models [14]. The multi-scale models
demonstrate [12] their clear superiority over their single-
scale counterparts while the colour quality is comparable
between single-scale and multi-scale alternative models. The
synthesised smooth intensity image is identical for all viewing
angles but differs for illumination angle changes.

V. SUMMARY AND CONCLUSIONS

Our testing results of the algorithm on all available BTF
data are encouraging. Some synthetic textures reproduce given
measured texture images so that both natural and synthetic
texture are almost visually indiscernible. Even the not so
successful results can be used for the preattentive BTF textures
applications. The overwhelming amount of original colour
tones were reproduced realistically in spite of restricted spec-
tral modelling power of the model. The multi-scale approach

is more robust and allows far better results than the single-
scale one if the synthesis model is inadequate (lower order
model, non stationary texture, etc.). The proposed method
allows huge compression ratio (unattainable by alternative
intelligent sampling approaches) for transmission or storing
texture information while it has still moderate computation
complexity. The method does not need any time-consuming
numerical optimisation like for example the usually employed
Markov chain Monte Carlo methods. The replacement of the
bump filter technique with the novel graphics cards feature -
the displacement mapping is expected to further significantly
improve the visual quality of our algorithm results.

The presented method is based on the estimated model in
contrast to prevailing intelligent sampling type of methods,
and as such it can only approximate realism of the original
measurement. However it offers unbeatable data compression
ratio (tens of parameters per texture only), easy simulation of
even non existing (previously not measured) BTF textures and
fast seamless synthesis of any texture size.
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