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Abstract

Standard approaches to the computation of stereo corre-
spondence have difficulty when scene structure does not lie
in or near the frontal-parallel plane, in part because an ori-
entation disparity as well as a positional disparity is intro-
duced. We propose a correspondence algorithm based on
differential and projective geometry, and inspired by neu-
robiology, that takes explicit advantage of both disparities.
Based on curves, the algorithm relates the (2D Frenet) dif-
ferential structures (position, tangent, and curvature) in the
left and right images with the Frenet geometry of the (3D)
space curve. A compatibility function is defined via trans-
port of the Frenet descriptors, and they are matched by re-
laxing this compatibility function on overlapping neighbor-
hoods along the curve. False correspondences are concur-
rently eliminated by a model of ”near” and ”far” neurons
derived from neurobiology. Examples of our algorithm and
standard approaches are compared.

1. Introduction
A glance at Fig. 1 reveals many of the problems fac-
ing stereo correspondence algorithms [18]: structure is
not fronto-parallel, as in many man-made scenes; order-
ing constraints [16] are violated accordingly; uniqueness
constraints [12, 16, 23] are inconsistent with self-occlusion,
branching and discontinuities are inconsistent with smooth-
ness constraints [12, 13]; and feature density is not uniform.
Nevertheless, there is a structural relationship between fea-
tures in the (left, right) image pair and the 3D scene, and
our goal in this paper is to develop this relationship into a
new stereo-correspondence algorithm.

There are two sources of motivation for our algorithm.
The first is biological: tree-dwelling primates are readily
able to solve for correspondence in images such as Fig. 1
using binocularly-selective neurons that are also orienta-
tion selective. This suggests an approach based on differ-
ential geometry, with orientation identified with the tangent
to spatial structure. Our second motivation develops this
mathematical interpretation, and we use projective differen-
tial geometry to derive the underlying structural relationship

between image features and 3D spatial structure. But even
with the epipolar constraint there still exist ambiguities: dif-
ferent pairings of image features give rise to different 3D
structures, thereby creating multiple ghost matches as well
as correct ones. So finally we return to the biological moti-
vation, and introduce an extended model for binocular neu-
rons that implements their “near” and “far” tuning proper-
ties. The result is a relaxation network that eliminates ghost
matches and explains mechanistically the disparity gradient
limit [16].

Our geometric calculations follow the literature on curve
matching. Cipolla and Zisserman [3] determined image
tangent and geodesic curvature from a single view of a
space curve under perspective projection. Faugeras and
Robert [17, 6] used tangent and curvature constraints in a
trinocular system, and predicted the curvature at a point in
the third image based on measurements in the first two. As-
suming knowledge of the fundamental matrix, Schmid and
Zisserman [19] described how to compute the normal at one
3D space curve point, thus determining the osculating plane
at that point from corresponding tangents and curvatures at
two perspective image points. We extend this previous work
by showing how to compute both the normal and the curva-
ture at one 3D space curve point from the perspective pro-
jections of the space curve in two views.

These normals and curvatures provide the basis for our
algorithmic framework, which follows the relaxation or be-
lief propagation model. Compatibility fields are defined
from a local (Frenet) approximation to a space curve, and
these are used to determine how compatible two pairs of
candidate matches are. Shan and Zhang [20] used com-
bined binary measurements for line segments and curves
as the compatibility function. [1] approximated the curve
heuristically with a z-helix, and they used a disparity bias
(to the plane of fixation) to eliminate false matches. We
individually compute the space curve local approximation
for each candidate match pair using curvature, to eliminate
the need for heuristics. A minimum torsion approximation
guides the matching, and we integrate the near and far neu-
ron mechanism to address the remaining ambiguity. To our
knowledge this is the first time such mechanisms have been
used in stereo matching, and they eliminate the need for a



disparity bias.

Figure 1:(top) Natural scenes are dense in physical structure with
depth discontinuities, occlusions, and junctions, thereby posing a
problem to traditional stereo algorithms. For the region around
the center of the left image, when compared to its corresponding
part in the right image, note that the ordering constraint fails be-
cause of the depth discontinuity. Partial occlusion at the junction
would cause a problem for the uniquess constraint. Our algorithm
is designed to function on image pairs such as this. (bottom) The
(left,right) tangent (edge) map pair for the (top) images. Such tan-
gent maps form the basis for our correspondence algorithm, and
suggest a curve-based approach.

2. Geometry of Space Curves
Let ���� be a regular curve parametrized by arc length
in ��. If the Frenet (tangent, normal, binormal) frame���	
�	�� �, the curvature�, and torsion�� are known
at ����, we can obtain a local Frenet approximation of the
curve by taking the third-order Taylor expansion of� at� � �

and keeping only the dominant terms:

����� � ���� � ��� � ��
� �
� � ��� ����� (1)

Figure 2:Frenet approximation of 3D curve around����.
The projection operator� maps this local frame to the

left and right image planes:

� � �� �� ���� �� ���� ������ ���� �� ���  !
�� �� ���� ���� ��� �� ���� ����

That is, the Frenet trihedron in�� projects to two Frenet
(tangent, normal)-dihedra, one in the left image and one
in the right image, each augmented by curvature. We re-
fer to the space�� � �� � � ���� � � ���� � ��� �
��� as thestereo tangent space; a point in this space is�"# 	$# 	"% 	$% 	&# 	&% 	# 	%�, where"' and$' are the image
projection coordinates of( ) ��, &' the orientation of pro-
jected tangent in the image planes, and' the image curva-
tures, with* � � +	, � representing left and right images.

2.1. 3D Space Curve Structure From Two
Views

In this section our technical goal is to determine the inverse
mapping�-., the space curve structure around the 3D point
( from its projection in the stereo tangent space. Unfortu-
nately, as we will show,�-. is not one-to-one: given a node
in the stereo tangent space* � �"# 	$# 	"% 	$% 	&# 	&% 	# 	%�,
we can only determine the position/, the Frenet frame��	
	� �, and the curvature at the space curve point
(. The torsion� can not be determined. To prove this we
assume the following image measurements are given: po-
sition, tangent, curvature, i.e.

�"	$	&	� at every image
curve point in both images. We further suppose (for space
reasons)that the 3D position/ and tangent

�
are computed

by standard methods [5] or [7]. We now describe how to
compute the normal and curvature at a 3D space curve point
from two views.

We begin with a standard construction [2]. Let� be a
smooth space curve with non-vanishing curvature. De-
note its position by the vector0��� in the world coordinate
system, and its spherical projection to the unit radius image
sphere with center1 by a vector2 in the camera coordinate
system (see Fig. 3). Assume the world and the camera co-
ordinate systems have the same orientation, that is, there is
only translation, no rotations between them. Then the space
curve can be described as:0��� � 1 � 3���2���, where
1 is the vector pointing to the camera center in the world
coordinate system,3 is the Euclidean distance of0��� to
the camera coordinate system origin, and2 is the vector
pointing to its spherical projection in the camera coordinate
system.

Previous work [3, 2] shows that the relationship of image
geodesic curvature and the 3D space curve geometry under
perspective projection is:

4 �
3�2 ��� 5

�6 7 �2 5����89 (2)



Figure 3:3D space curve, its spherical projection to unit sphere,
and its perspective projection to image plane.

where 4 is the image geodesic curvature at the image
spherical projection2 of the space point being studied,

�
and
 are the space tangent and normal at that point, is
the curvature at the space point0���. We now calculate the
relationship between 3D space curve properties and their
(measurable) persective projection image plane properties.

Consider the 2D image plane curve formed by0���
through perspective projection, with� the vector pointing
to the projection in the image plane (2 � �����), and�
the vector pointing to the image center, both in the camera
coordinate system.� and� are the tangent and normal vec-
tors in the image coordinate system, respectively. Since we
choose the camera and image coordinate systems such that
they are aligned, we can add a third component zero to the
two dimensional vector� and� to express the tangent and
normal vectors in the camera coordinate system, which is
3D. Note that this construction will form the same spher-
ical projection as0���. Furthermore, although for a plane
curve the curvature is defined as the signed curvature�,
and the normal is defined by rotating tangent��� counter-
clockwise, the quantity�� is still the same if we study
this curve as a 3D curve, and that the binormal at any point
in this curve is� � � � � � 7� ��� �. The relationship
between the perspective projection image curvature and the
geodesic curvature is thus given by:

4 � ���� �2 ��� 5��6 7 �2 5 ����89
� ����2 5 �� ����6 7 �2 5 ����89

�
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�
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	 5 ����89 (3)

Using the geodesic curvature as the bridge, we can now

connect the above two equations to formulate the relation-
ship of the 3D space curve curvature and its perspective pro-
jection image curvature:

�	
	 �� ��� 5

�6 7 � 
	
	 5 ����89  � 7 �� ��6 7 � 
	
	 5 ����89 � (4)

Remark By assuming the osculating plane (spanned by
�

,
) at the space curve point coincides with the(� plane of
the world coordinate system (as in [22]), and using similar
techniques as [19], we could also derive the relationship of
the 3D space curvature and image curvatures in a projective
geometry framework. The world coordinate system and the
camera coordinate system could have different orientations,
with a homography used to relate the image plane and the
osculating plane. We omit the formulas due to space limita-
tion.

Now we can compute the normal
 and curvature
 at a 3D space curve point from image measure-
ments

�"# 	$# 	"% 	$% 	&# 	&% 	# 	%� of one corresponding
pair, where�' is obtained from calibration,�', �' can be
easily computed from the above image measurements, with
* � � +	, �.

Proposition: Given two perspective views of a 3D space
curve with full calibration, the normal
 and curvature
at a space curve point( are uniquely determined from the
positions, tangents, and curvatures of its projections in two
images. Thus the Frenet frame

��	
	� �and curvature
at the space curve point( can be uniquely determined.

Figure 4: The geometry for Proposition. Given
������� ��� � �� � �� ��� ����, we can compute normal�
and curvature� at the 3D space curve point. Thus we can
determine the position, the Frenet frame������ �, and the
curvature�. But the torsion� can not be determined.

Rewriting eq. (4) to keep the unknown normal
 and
curvatureon the left side, and using it for the left and right



images, the relationship of 3D position, tangent, normal,
and curvature at a space curve point and its image positions,
tangents, and curvatures under perspective projection is:

��# ��� 5
 � 7��#���#��6 7 � 
�	
�	 5 ����89
3# �6 7 � 
�	
�	 5 �#��� 89 �#

��% ��� 5
 � 7��%���%��6 7 � 
�	
�	 5 ����89
3% �6 7 � 
�	
�	 5 �%���89 �% (5)

� 5
 � �

where subscript
+

and, represent measurements from left
and right images, respectively. The last equation specifies
 has to be orthogonal to tangent

�
. This system can be

solved for
, from which we can compute the curvature
and normal
.

Figure 4 illustrates that from two views we can compute
the 3D space curve normal, thus determine the Frenet frame��	
	� � and curvature at a 3D space curve point, but
not the torsion� .

3. Stereo Correspondence Algorithm
In the previous section, we described how to compute the
space curve local approximation given image measurements
in two perspective views. Now we describe how this geo-
metric relationship can be used to solve the stereo corre-
spondence problem. The central idea is as follows.

At each point����� along the space curve, a Frenet ap-
proximation can be constructed to characterize the local
behaviour of the curvearound that point based solely on
the informationat that point. Since measured information
is also available for nearby points, this can be transported
along theapproximationto the neighborhood of����� and
then compared with the frame at�����. That transported
information which is ”close to” the measured information
is supported, and that which is ”far” is not supported. Both
position and orientation information are used in determin-
ing these distances.

The situation is analagous to co-circularity [14] for im-
age curves. A unit speed planar curve

� ���, with posi-
tive curvature, has a unique osculating circle that approx-
imates

�
around�. This approximation is used to define

co-circularity constraints so that nearby (estimated) edge el-
ements can be transported along the curve locally using its
osculating circle, and a relaxation labeling network extrem-
izes a global functional of how well the transported edges
match. Compatibility functions encode these transport op-
erations.

Three distances are used in building compatibility func-
tions for co-circularity: the transport distance along the os-
culating circle, the distance from this point to the edge, and

the angular difference between the measured and the trans-
ported edges. We now seek to do this for space curves, but
the situation is a little more complicated.

3.1. The Minimal Torsion Constraint

To infer the 3D space curve, we first get its local approxima-
tion at each point, and then transport (estimated) tangents to
nearby positions. A relaxation labeling network will infer
the space curve geometry.

The heart of this process is cartooned in Fig. 5, where
two space tangents along the 3D Frenet approximation are
shown. Observe that each of the space tangents projects to a
pair of image tangents, so the nodes* and� in the relaxation
network consist inpairs of tangents, one in the left image
and one in the right, and compatibilities,'� are defined over
these pairs. Observe further that, while the expected posi-
tional disparity between these tangents is introduced, there
are also orientation disparities; such higher-order disparities
contribute to the matching process and also have biological
counterparts [8].

Figure 5: Cartoon of the stereo relaxation process. (top) shows
a pair of space tangents associated with the Frenet approximation
around the point�� . Each of these tangents projects to a (left,right)
image tangent pair; compatibility between the space tangents thus
corresponds to compabilitity over (left,right) image tangent pairs.
The projected tangents are shown as thick lines. One left image
tangent is redrawn in the right image (as thin lines) to illustrate
positional disparity (��) and orientation disparity (��).

A stereo tangent pair, or point in the stereo tangent space,
consists in the 8-tuple:

�"# 	$# 	"% 	$% 	&# 	&% 	# 	%�. The set
of all stereo tangent pairs� in the neighborhood of*, such
that * and� are compatible, is called thecompatibility field
around*.

To build the compatibility fields for stereo, recall that
torsion remains a free parameter. Varying this term yields a
family of local approximations; Fig. 6 .

The Frenet frame does specify the osculating plane in
��, however, so the transport distance that we use to define
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the compatibility field is piecewise co-circularity in the os-
culating plane at each point (see Fig. 7). Since the change
of the pose of the osculating plane in�� is related to the tor-
sion, the result amounts to a minimal torsion constraint.We
conjecture that� varies smoothly along the curve.

3.2. Stereo Relaxation Labeling

We now specify the stereo algorithm in more detail. The
task is to select pairs ofnodesin the stereo tangent space
that are most consistent with one another by stereo relax-
ation labeling using the discrete compatibility fields just
sketched. (They will be refined below.)

Relaxation labeling processes assign labels to nodes in
a graph based on the parallel use of local constraints. Sup-
pose a set of nodes are given, and a set of labels are defined
for each node.� ' �3� is the probability that label3 is correct
for node*, with ���' �3� � 6

for every node*. Labels are
selected at each node by an iterative gradient ascent that ex-
tremizes the functional���� � ��' �3�,'� �3	3���� �3�� in
parallel for all nodes* and labels3 in the network. The com-
patibilities ,'� �3	3�� specify the local constraint between
nodes* and�, with labels3 and3�

, respectively [9].
For the stereo correspondence problem, a simplified ver-

sion of the above algorithm is used. Let� be the set of
nodes* � �"# 	$# 	"% 	$% 	&# 	&% 	# 	%�. Each node is as-
signed two labels3 ) ����� 	� ���� �. Since there
are only two possible labels at each node and� ' �������
�' �� ����� � 6

, we only store� ' � �' ������.
(�' �� ����� � 6 7�'). The update rule is:

Figure 7:Illustration of transport distance. The nearby tangent at
�� is projected onto the Frenet approximation computed at�� . Ac-
cording to the minimum torsion constraint, this is approximated by
projection onto the osculating circle at�� , which lies in the oscu-
lating plane given by the��� ��� � frame. Thus three components
contribute to the compatibility: transport distance along the os-
culating circle; projection distance onto the osculating circle; and
angular rotation to tangency.

���.' � ���' � �
�

,'���� �.� (6)

where� �.� denotes projecton onto [0,1].
The relaxation labeling graph is built from all possible

stereo corresponding pairs, as described below.

3.3. The Discrete Tangent Map

Edges are detected in each image to provide
�"	$	&	�,

with
�"	$� the position coordinates,& the orientation of the

(edge) tangent, and the curvature. Again following bi-
ology, the edge measurements are taken redundantly, one
at each orientation, so that multiple tangents can be repre-
sented at each image point. This is important for the prob-
lem of partial occlusion at junction points. To illustrate: at
the image junction in Fig. 1(left), the tangent map has two
different tangents, one for the branch in front and one for
the branch behind. These two tangents can match with the
tangents in the right image along the epipolar lines. As a
result, both the branch in front and the branch behind have
a valid correspondence pair at the junction point.

To get the discrete tangent map(Fig. 1), we use the log-
ical/linear operators [10] on the original images, followed
by a trace inference stage [14] and an interpolation func-
tion [4]. The initial edge detection is performed at 16 ori-
entations, and interpolated to!� quantized orientations and�6

discrete curvatures. The additional accuracy in orienta-
tion is required for the orientation disparity component of
the compatibility distance function.



3.4. Building Compatibility Fields with
Near/Far Inhibition

The (left,right) tangent maps provide the candidate
matches to build the relaxation network. For each item�"# 	$# 	&# 	 #� in the left tangent map, a search along
the epipolar line in the right tangent map reveals pairs
of possible correspondences. Each stereo tangent pair�"# 	$# 	"% 	$% 	&# 	&% 	# 	%� is then a node in the stereo re-
laxation labeling graph. The edge relationship in the graph
is given by spatial neighborhoods.

For each stereo tangent pair, we compute its local space
curve structure in the osculating plane, as described pre-
viously. Fig. 8 illustrates this idea for two corresponding
pairs.

Figure 8: Are two neighboring candidate correspondence pairs
compatible? The relationship has to be derived from the geometry
of space curve and its image projection curves. Shown are two
Frenet frames in�� at nearby points along a space curve, which
project to two frames in the (left,right) image pair.

Even with the local geometric relationship derived
above, however, there are still ambiguities along the epipo-
lar line. To illustrate, consider the highlighted upper right
region in Fig. 1. (Fig. 9) shows the reconstruction based
solely on the geometric relationships. In the front view of
the reconstruction (Fig. 9(c)), the left and right parts have
similar - correct - depth, while the middle parts are false
matches. This is even more clear in the rotated reconstruc-
tion view (Fig. 9(d)). where the correct matches correspond
to the middle two branches with similar depth, and the outer
two branches are the false matches. Without global con-
straint, such false matches will generically arise because
one point in the left image could possibly match to multiple
points in the right image.

This correspondence ambiguity is classical [12], but can-
not be dealt with uniformly by the standard heuristics that
have been introduced for physical surfaces. Since many

(a) (b)

(c) (d)

Figure 9: False matches from attempting correspondence on a
pair of twigs, because the geometric compatibilities can apply to
all possible matches. (E.g., the left branch in (a) can match both
the left and right brances in (b), and so on.) (a)(b) Left and right
tangent maps of the highlighted upper right region in Fig. 1. (c)
Front view of reconstruction showing false matches (the middle
two). (d) Rotated view showing false matches plus ghosts from
noise in the tangent map. Depth scale shown at right.

of these false matches tend to have large disparity gradi-
ents, theDisparity Gradient constraintfrom the PMF al-
gorithm [16] might be appropriate. Neurobiology suggests
another implementation of this, which is natural because it
fits directly into our compatibility functions.

We remarked earlier that binocular neurons were orien-
tation selective, and exploited that property. We now expoit
the fact that they can be classified into three groups that re-
late to disparity offsets in receptive field structure [15]. (1)
Tuned excitatory neuronsform a group that are disparity se-
lective over a limited (and often narrow) range. (2)Far neu-
ronsexhibit a selectivity for uncrossed disparities; and (3)
Near neuronsare selective for crossed disparities. Far and
near neurons are complementary: One set gives excitatory
responses to objects farther than the point of fixation and in-
hibitory responses to nearer objects; while other set has the
opposite behavior, excitation for nearer objects and inhibi-
tion for farther ones [11]. It is precisely this property that
we include in our compatibility functions, with inhibition
for each possible match in proportion to the probability of
match (� '); see Fig. 10. The result successfully eliminates
the great majority of false matches, as we now show.

4. Results and Conclusion
Fig. 11 shows the 3D reconstruction of image pair (Fig. 1)
by our algorithm, together with an enlargement of the prob-
lem area discussed previously. The color depth map indi-
cates both the front and the back branches are correctly re-
constructed. Furthermore, note how the false matches were



Figure 10: Near and Far neuron tuning function. In biological
terms depth can be encoded by neurons tuned to specific dispari-
ties; this is cartooned here as an excitatory neuron tuned to 0 dis-
parity. Also shown are tuning curves for near and far neurons,
which are excited (resp. inhibited) by stimuli closer (resp. fur-
ther) than the point of fixation. Our compatibility functions are
the product of these tuning curves with the geometric ones (Fig.
5, bottom). Thus potential matches are supported by geometric
consistency but inhibited by better matches in the neighborhood.

removed by the near/far inhibition from the upper-right por-
tion (compare Fig. 9). The relaxation process converged af-
ter 5 iterations in 60 sec. on a Pentium III PC.

Lacking ground truth on the twig example, we assessed
the accuracy of our algorithm with synthetic images. Ten
algebraic space curves were generated with parameters cho-
sen randomly. The curves were all started at distance
of 1800mm, and ranged in depth from about 1640mm to
1960mm. These were then projected through the camera
model to create an image pair, and our algorithm was run
on this pair. The results were then compared with ground
truth. In Fig. 12(LEFT) we show one example (an ellipse)
in which the actual and reconstructed depth are plotted as
a function of arc length. The standard deviation is about
1.665mm from the true value, and the maximal difference
is 8.04 mm. The quantization in the system is such that one
pixel corresponds to about 9.33 mm (at 1.8m), which shows
that our edge detection and interpolation are functioning to
sub-pixel accuracy.

Finally, to provide a comparison with other algorithms,
in Fig. 13 we show our reconstruction for another, more
complex twig scene with disparity maps from traditional
algorithms. Neither the refined correlation method [21]
(Fig. 13(f)) nor the cooperative algorithm [23](Fig. 13(g))
could be made to perform adequately by varying their in-
ternal parameters, although the cooperative algorithm per-
forms much better than the correlation method.

By relating the differential structures at image points
(position, tangent, and curvature) in the left and right im-
ages with the geometry of the space curve point (position,
Frenet frame, and curvature), we show how nearby image
correspondence pairs should be consistent with the Frenet
approximation of the space curve, and how this compati-

Figure 11:3D reconstruction of the opening Fig. 1: (TOP) Front
view. Note how the false matches were removed by the near/far
inhibition (compare Fig. 9). (BOTTOM) A detailed view of the re-
construction of the problem region in which both the ordering con-
straint and the uniqueness constraint break down. Colored depth
scale is shown at right (units: meters).

bility relation can be put into a stereo relaxation labeling
network where positional disparity and orientation disparity
are combined naturally. Examples demonstrate how our al-
gorithm outperform traditional stereo algorithms, especially
at places where heuristic constraints break down.
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Figure 13:3D Reconstruction: (a)(b) Image pair. (c)(d) Discrete
tangent maps. (e) Front view of recontruction, colored depth scale
shown at right. (f)(g) Disparity maps of traditional algorithms [21,
23].


