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Abstract

We offer an overview a novel, comprehensive approach to
the computational differential geometry of curves, with ap-
plications to shape analysis and discovery/recognition of
objects in images. The main idea is to specify a space of
curveswith constraintssuited to theapplication, and exploit
the differential geometry of this space to solve optimiza-
tion and inference problems. Applications of this approach
include the statistical analysis of planar shapes, curve in-
terpolations with elasticae, and the Bayesian discovery of
contours of objects in noisy images.

1 Int roduction

An important goal in imageunderstanding isto detect, track
and label objectsof interest present in observed images. Im-
aged objects can be characterized in many ways: according
to their colors, textures, shapes, movements, and locations.
The past decade has seen significant advances in the mod-
eling and analysis of pixel values or textures to character-
ize objects in images, albeit with limited success. On the
other hand, planar curves that represent contours of objects
havebeen studied independently for along time. An emerg-
ing opinion in the vision community is that global features
such asshapesof contoursshould also betaken into account
for the successful detection and recognition of objects. A
common approach to analyzing curves in images is to treat
them as level sets of functions, and algorithms involving
such active contours are governed usually by partial differ-
ential equations (PDEs) driven by appropriate data terms
and smoothness penalties (see for example [12]). Regular-
ized curveevolutionsand region-based activecontoursoffer
alternativesin similar frameworks. Thisremarkablebody of
work contains various studies of curve evolution, each with
relative strengths and drawbacks. Recent work of Charpiat
et al. [1] provides another viewpoint on shape analysis us-
ing adifferent formulation.

In thispaper, wepresent anovel framework for thealgo-

rithmic study of curves, their variations and statistics. In
this approach, a fundamental element is a space of con-
strained curves, called SCC henceforth, with constraintsap-
propriate to the application of interest. (As an example, we
may be interested in analyzing closed curves and this pro-
videsaconstraint.) Weexploit thegeometry of SCCsusing
elements such as tangents, normals, geodesics and gradient
flows, to solve optimization and statistical inference prob-
lems for a variety of cost functions and probability densi-
ties. This framework differs from those employed in pre-
vious works on “geometry-driven flows” [10] in the sense
that here both the geometry of the curves and the geometry
of SCCs are utilized. The dynamics of active contours is
described by vector fields on SCCs, thus reducing the evo-
lution of curvesto thestudy of ordinar y differential equa-
tions (ODEs) on SCCs. It is important to emphasize that
a SCC is usually a non-linear, infinite-dimensional mani-
fold, and its elements are the individual curves of interest.
Several interesting applicationscan beaddressed in thisfor-
mulation:

1. Efficient deformations between any two curves are
generated by geodesic paths connecting the elements
they represent in the SCC. Geodesic lengths also pro-
vide anatural metric for clustering curves (automated
learning) according to their shapes.

2. The discovery of planar shapes in given noisy images
can be treated as the problem of finding maximum a-
posteriori points in SCCs.

3. Given a set of curves (or shapes), one can define
the concepts of mean and covariance using geodesic
paths, and thus develop statistical frameworks for
studying shapes. Furthermore, one can define proba-
bilities on a SCC to perform curve (or shape) classifi-
cation viahypothesis testing.

4. Tracking time-varying curves or dynamic shapes can
bestudied asaproblem of Bayesian nonlinear filtering
on SCCs.



5. Completions of partially occluded contours using elas-
ticae (or local elasticae) can be accomplished via
gradient-based optimizations on a SCC.

Many of these problems have been studied in the past with
elegant solutions presented in the literature (examples in-
clude [11, 13, 8, 2, 6]), but using significantly different
ideas. We demonstrate the strength of the proposed frame-
work by addressing the above-mentioned applications in a
comprehensive and unified manner. This framework relates
closely to the ideas presented in [15].

Given past achievements in PDE-based approaches to
curve evolution, what is the need for newer frameworks?
The study of the structure of SCCs provides new insights
and solutions to problems involving dynamic contours and
problems in quantitative shape analysis. Once the con-
straints are utilized in definitions of SCCs the resulting so-
lutions automatically satisfy these constraints. It also com-
plements existing methods of image processing and analy-
sis well by providing new computational efficiencies. The
main strength of this approach is its exploitation of the dif-
ferential geometry of SCCs. For instance, a geodesic or
gradient flowXt of an energy functionE (on a SCC) can
be generated as solution of an ODE of the type

dXt

dt
= Π(∇E(Xt)) , (1)

whereΠ denotes an appropriate projection onto the tangent
bundle of that SCC. This is in contrast with the nonlinear
PDE-based curve evolutions of past works. The geometry
of SCCs also enables us to derive statistical elements: prob-
ability measures, means and covariances on SCCs; these
quantities have rarely been treated in previous studies. In
shape extraction, the main focus in past works has been on
solving PDEs driven by image features under smoothness
constraints, and not on the statistical analysis of shapes of
curves. The use of geodesic paths, or piecewise geodesic
paths, has also seen limited use in the past.

We should also point out the main limitations of the pro-
posed framework. One drawback is that curve evolutions
can not handle certain changes in topology, which is one
of the key features of level-set methods; a SCC is purposely
setup to not allow curves to branch into several components.
Secondly, this idea does not extend easily to the analysis
of surfaces inR3. Despite these limitations, the proposed
methodology provides powerful algorithms for the analysis
of planar curves as demonstrated by the examples presented
later. Moreover, even in applications where branching ap-
pears to be essential, the proposed methods may be applica-
ble with additional developments.

This paper is laid out as follows: Section 2 studies ge-
ometric representations of constrained curves with two ex-
amples of SCCs. A brief geometric analysis of these spaces
is presented in Section 3. Section 4 provides an example of

statistical analysis on a SCC, while Section 5 presents two
applications of this framework: (i) completion of partially
occluded objects in images, and (ii) discovery of shapes in
noisy images using a Bayesian framework.

2 Geometric Representations of Con-
strained Curves

In this section we provide two examplesC1 and C2 of
SCCs on which optimization and inference problems will
be solved later in the paper. In this paper we restrict mostly
to curves inR2 although curves inR3 can be handled sim-
ilarly. Let α : R 7→ R

2 denote the coordinate func-
tion of a curve parameterized by arc-length, i.e., satisfying
‖α̇(s)‖ = 1, for everys. A direction functionθ(s) is a
function satisfyingα̇(s) = ej θ(s), wherej =

√−1. θ cap-
tures the angle made by the velocity vector with thex-axis,
and is defined up to the addition of integer multiples of2π.
The curvature functionκ(s) = θ̇(s) can also be used to
represent a curve.

The choice of representation of curves will depend on
the specific application. Furthermore, different constraints
imposed on curves lead to different SCCs. Two examples
suitable for the applications considered in this paper are dis-
cussed next.

1. A Space of Closed Curves with Fixed Length: Con-
sider the problem of studying shapes of contours or
silhouettes of imaged objects as closed, planar curves
in R

2, parameterized by arc length. Since shapes are
invariant to rigid motions (rotations and translations)
and uniform scaling, a shape representation should be
insensitive to these transformations. Scaling can be re-
solved by fixing the length ofα to be2π, and trans-
lations by representing curves via their direction func-
tions. Thus, we consider the spaceL

2 of all square
integrable functionsθ : [0, 2π] → R, with the usual
inner product〈f, g〉 =

∫ 2π

0
f(s)g(s) ds. To account

for rotations and ambiguities on the choice ofθ, we
restrict direction functions to those having a fixed av-
erage, say,π. Forα to be closed, it must satisfy theclo-
sure condition

∫ 2π

0
ejθ(s) ds = 0. Thus, we represent

curves by direction functions satisfying the average-
π and closure conditions; we call this space of direc-
tion functionsD1. Summarizing,D1 is the subspace
of L

2 consisting of all (direction) functions satisfying
the constraints

∫ 2π

0

θ(s) ds = π ;
∫ 2π

0

cos(θ(s)) ds = 0 ;
∫ 2π

0

sin(θ(s)) ds = 0 . (2)



It is still possible to have multiple elements ofD1 rep-
resenting the same shape. This variability is due to
the choice of the reference point(s = 0) along the
curve. Forx ∈ S

1 and θ ∈ D1, define(x · θ) as
a curve whose initial point (s = 0) is changed by
a distance ofx along the curve. We term this a re-
parametrization of the curve. To remove the variability
due to this re-parametrization group, define the quo-
tient spaceC1 ≡ D1/S

1 as the space of continuous,
planar shapes.

2. Space of Curves with Specified Boundary Con-
ditions: As another example, we consider curves
α : I → R

2 satisfying given boundary conditions to
first order, whereI = [0, 1]. Given pointsp0, p1 ∈ R

2

with ‖p1 − p0‖ < 1 and anglesθ0, θ1 ∈ R, we are
interested in curvesα that admit angle functionsθ sat-
isfying α(i) = pi andθ(i) = θi, for i = 0, 1.

Curves withα(0) = p0 are determined by their di-
rection functions via the expressionα(s) = p0 +∫ s

0
ejθ(u) du. For these curves, the conditions above

can be rephrased as

θ(0) = θ0, θ(1) = θ1, and
∫ 1

0

ejθ(s) ds = d,

whered = p1 − p0 is the total displacement ofα. This
last condition ensures that the end point of the curveα
isp1. We consider the vector spaceH

1 of all absolutely
continuous functionsθ : I → R with square integrable
derivative, equipped with the inner product〈f, g〉 =
f(0)g(0) +

∫ 1

0
ḟ(s)ġ(s) ds. Here, we use the space

H
1 instead ofL2 because we wish to be able to control

the values ofθ at the end points. The spaceC2 consists
of all functions inH

1 satisfying the three conditions
above.

3 Geometries of SCCs

The main idea in the proposed framework is to use the geo-
metric structure of SCCs to solve optimization and statis-
tical inference problems on these spaces. This approach
often leads to simple formulations of these problems and
to more efficient vision algorithms. Thus, we must study
issues related to the differential geometry and topology of
those SCCs. In this paper we restrict to the tangent and nor-
mal bundles, and geodesic flows on these spaces.

3.1 Tangents and Normals to SCCs

There are two main reasons for studying the tangential and
normal structures: (i) to compute the gradient of the restric-
tion of a functional onL2 (H1, resp.) to a SCC, we can first

compute the gradient on the linear spaceL
2 (H1, resp.) in

which the SCC is contained (usually, a simpler task), and
thensubtract the normal componentsto obtain the compo-
nent that is tangent to the SCC; (ii) we wish to employ iter-
ative numerical methods in the simulation of geodesic and
gradient flows; at each step in the iteration, we first flow
in the linear spaceL2 (H1, resp.) using standard methods,
and then project the new point back onto the SCC using our
knowledge of the normal structure, as discussed in Section
3.2. The tangent spaces on these two SCCs are described
next.

1. Case 1: For technical reasons, it is convenient to re-
duce optimization and inference problems onC1 to
problems on the manifoldD1, so we study the latter. It
is difficult to specify the tangent spaces toD1 directly,
because they are infinite-dimensional. When working
with finitely many constraints, as is the case here, it is
easier to describe the space of normals toD1 in L

2 in-
stead. It can be shown that a vectorf ∈ L

2 is tangent
toD1 atθ if and only if f is orthogonal to the subspace
spanned by{1, sin θ, cos θ}. Hence, these three func-
tions span the normal space toD1 at θ. Implicitly, the
tangent space is given as:

Tθ(D1) = {f ∈ L
2|f ⊥ span{1, cos θ, sin θ}} .

Thus, the projectionΠ in Eqn. 1 can be specified by
subtracting from a function (inL2) its projection onto
the space spanned by these three elements.

2. Case 2: Similar to Case 1, one can specify the four-
dimensional space of normals toC2 insideH

1 as the
space spanned by{1, s, ε1, ε2}, whereε1, ε2 : I → R

are characterized bÿε1 = cos θ, ε1(0) = ε̇1(0) = 0,
andε̈2 = sin θ, ε2(0) = ε̇2(0) = 0 [7]. Thus,

Tθ(C2) = {f ∈ L
2|f ⊥ span{1, s, ε1, ε2}} .

3.2 Geodesics Connecting Closed Curves

We first describe the computation of geodesics (or, one-
parameter flows) inD1 with prescribed initial conditions.
The intricate geometry ofD1 disallows explicit analytic ex-
pressions. Therefore, we adopt an iterative strategy, where
in each step, we first flow infinitesimally in the prescribed
tangent direction in the spaceL2, and then project the end
point of the path toD1. Next, we parallel transport the
velocity vector to the new point by projecting the previ-
ous velocity orthogonally onto the tanget space ofD1 at
the new point. Again, this is done by subtracting normal
components. The simplest implementation is to use Euler’s
method inL

2, i.e., to move in each step along short straight
line segments inL2 in the prescribed direction, and then



project the path back ontoD1. Details of this numerical
construction of geodesics are provided in [5].

A one-parameter flow can be specified by an initial con-
dition θ ∈ D1 and a directionf ∈ Tθ(D1), the space of all
tangent directions atθ. We will denote the corresponding
flow by Ψ(θ, t, f), wheret is the time parameter. The tech-
nique just described allows us to computeΨ numerically.

Next, we focus on the problem of finding a geodesic
path between any two given shapesθ1, θ2 ∈ D1. The
only remaining issue is to find that appropriate direction
f ∈ Tθ1(D1) such that a geodesic fromθ1 in that direction
passes throughθ2 at timet = 1. In other words, the problem
is to solve for anf ∈ Tθ1(D1) such thatΨ(θ1, 0, f) = θ1

andΨ(θ1, 1, f) = θ2. One can treat the search for this di-
rection as an optimization problem over the tangent space
Tθ1(D1). The cost to be minimized is given by the func-
tional H[f ] = ‖Ψ(θ1, 1, f) − θ2‖2, and we are looking
for that f ∈ Tθ1(C1) for which: (i) H[f ] is zero, and
(ii) ‖f‖ is minimum among all such tangents. Since the
spaceTθ1(D1) is infinite dimensional, this optimization is
not straightforward. However, sincef ∈ L

2, it has a Fourier
decomposition, and we can solve the optimization problem
over a finite number of Fourier coefficients. For any two
shapesθ1, θ2 ∈ D1, we have used a shooting method to find
the optimalf [5]. The basic idea is to choose an initial di-
rectionf specified by its Fourier coefficients and then use a
gradient search to minimizeH as a function of the Fourier
coefficients.

Finally, to find the shortest path between two shapes in
C1, we compute the shortest geodesic connecting represen-
tatives of the given shapes inD1. This is a simple numer-
ical problem, becauseC1 is the quotient ofD1 by the 1-
dimensional re-parametrization groupS

1.
Shown in Figure 1 are two examples of geodesic paths in

C1 connecting given shapes. Drawn in between are shapes
corresponding to equally spaced points along the geodesic
paths. Similar ideas can be used to find geodesics on the
spaceC2.

4 Statistical Models on SCCs

Using the case ofC1, we illustrate statistical modeling of the
constrained curves. Algorithms for finding geodesic paths
on SCCs allow us to compute means and covariances in
these spaces. We adopt a notion of mean known as thein-
trinsic meanor theKarcher mean([4]) that is quite natural
in our geometric framework. Letd( , ) be the shortest-
path metric onC1. To calculate the Karcher mean of shapes
{θ1, . . . , θn} in C1, define a functionV : C1 → R by
V (θ) =

∑n
i=1 d(θ, θi)2. Then, define theKarcher mean

of the given shapes to be any pointµ ∈ C1 for which V (µ)
is a local minimum. In the case of Euclidean spaces this
definition agrees with the usual definitionµ = 1

n

∑n
i=1 pi.

SinceC1 is complete, the intrinsic mean as defined above
always exists. However, there may be collections of shapes
for whichµ is not unique.

We now review an iterative algorithm given in [6] for
finding a Karcher mean of given shapes.

Algorithm 1 Setk = 0. Choose some time incrementε ≤
1
n . Choose a pointµ0 ∈ C1 as an initial guess of the mean.
(For example, one could just takeµ0 = θ1.)

1. For eachi = 1, . . . , n choose the tangent vectorfi ∈
Tµk

(C1) which is tangent to the shortest geodesic from
µk to θi, and whose norm is equal to the length of this
shortest geodesic. The vectorg =

∑n
i=1 fi is equal to

(−2) times the gradient atµk of the functionV : C1 →
R which we defined above.

2. Flow for timeε along the geodesic which starts atµk

and has velocity vectorg. Call the point where you end
upµk+1, i.e. µk+1 = Ψ(µk, ε, g).

3. If not converged, setk = k + 1, and go to Step 1.

A similar algorithm and convergence results for a (finite-
dimensional) landmark-based representation of shapes are
described in [6].

For the meanµ, let Tµ(C1) ⊂ L
2 be the space of all

tangents to the shape space atµ. Let a tangent elementf ∈
Tµ(C1) be represented by its Fourier expansion:

f(s) ≈
m∑

k=1

(ak cos(ks) + bk sin(ks))

for a large positive integerm. Using the identification
f ≈ a = {ak, bk} ∈ R

2m−1, one can define a probability
distribution on the tangent vectors in an approximate fash-
ion. We will modela as multivariate normal with mean
0 and covarianceK ∈ R

(2m−1)×(2m−1). We will term
σ2

0 = trace(K) the dispersionof a shape model. Estima-
tion of K from observed shapes follows the standard proce-
dure. One can easily sample tangent vectors from this multi-
variate normal, and use the geodesic calculation to generate
sample shapes. Shown in Figure 2 is an illustration of this
idea. The left nine panels show the actual observed shapes
from which the mean and covariance are calculated. The
mean is shown in the middle image and the nine random
shapes generated under the Gaussian model are shown in
the right panels.

5 Applications

In this section, we describe some applications that involve
the solution of optimization or inference problems on SCCs
with geometric tools.
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Figure 1: Examples of evolving one shape into another via a geodesic path. Leftmost shape isθ1, rightmost curves areθ2,
and intermediate shapes are equispaced points along the geodesic.
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Figure 2: Learning shape models: For the nine observed shark shapes shown in left, the middle panel shows the mean shapes,
and the right panels show nine random samples the Gaussian model.

5.1 Completion of Curves Using Constrained
Elastic Curves

In the problem of recognizing objects in given images, the
extraction and use of edges present in the images play an
important role. If the objects of interest are partially ob-
scured by other objects, an important task is to interpolate
between the observed edges to complete contours. The ge-
ometry near the end points of the observed edges provide
the boundary pointsp0, p1, and the boundary anglesθ0, θ1.
We complete the missing edge using anelasticasatisfying
these boundary conditions. This problem has been studied
by several other researchers as well; see for example [13, 8].
For simplicity, we only consider the case of interpolations
with elasticae with a given fixed length, normalized to be 1.

1. Elasticae for Curve Completion: In our notation, the
elastic energyE of θ : I → R can be expressed as

E(θ) =
1
2

∫ 1

0

θ̇(s)2 ds. (3)

We are interested in finding the critical points ofE re-
stricted toC2 using a gradient search method. Curves
represented by these critical points are known aselasti-
cae. Letθ∗(s) = θ(s)−θ0, andf : I → R be the func-
tion obtained by projectingθ∗ onto the tangent space
of C2 at θ. Then,∇C2E = f , i.e.,f is the gradient of
E : C2 → R at θ. The flow lines of the negative gra-
dient field−∇C2E on C2 approach elasticae asymp-
totically. Flows of this type that seek to minimize the
elastic energy efficiently are known ascurve straight-
ening flows.

Shown in the top panels of Figure 3 are some examples
of elasticae inR2 andR

3 for given boundary condi-
tionsp0, p1, θ0, andθ1 (depicted via arrows). The bot-
tom row shows an example of using a variant known as
scale-invariant elasticae for completing missing edges
of a partially occluded object. Object in the left panel
is obscured artificially, and the boundaries of the visi-
ble parts are used to find interpolating elasticae that are
shown in white lines in the right panel.
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Figure 3: Upper row: solid lines show the elastica between given points and directions shown by arrows. Lower two rows:
objects in left images are obscured and the end points of the visible edges are used to find elastica, shown in the right panels.

2. Using Local Harmonics to Constrain Curves: So
far, the task of completing curves has been based solely
on first-order boundary data. It seems logical to use
more information from the visible portions. Our idea
is to consider a subspaceV of H

1 associated with the
dominant lower harmonics of the direction function of
the visible portions of the edge, and restrict the search
for completions to the spaceCV

2 = V ∩ C2. The en-
ergy now consists of two terms:E1 is the same as the
elastic energy defined in item 1, whileE2 gives a mea-
surement of the similarity between the predicted and
observed curves.

E2(θ) =
∫ l

0

|θ(s) − θ∗(s)|2ds ,

wherel andθ∗ are the length and the direction func-
tion of the visible curve, respectively. We have derived
analytical expressions for the gradients of these two
energies onCV

2 , and have utilized them to search for
the completion with least total energy. The edge com-
pletion can be complemented with a study of textures.
Statistics of the texture of visible regions can used to
predict the pixels values in the augmented region [14].

Shown in Figure 4 are simple examples computed us-
ing these ideas. The left panels show images of par-
tially obscured objects and our goal is to predict the
missing pieces of these objects. We solve this pre-
diction problem in two steps using: (i) curve comple-
tion, and (ii) texture growth. For curve completion,
we extract the boundaries of the visible portions, ex-
tract dominant harmonics, and use these harmonics in
the prediction of closed contours . The middle panels
show the visible portions in marked lines and the cor-
responding optimal completions in plain lines. Texture
growth is used to produce the final results displayed on
the right panels of each row.

5.2 Bayesian Discovery of Objects in Images

An important application of these shape analysis tools in
the discovery of partially occluded objects in noisy images.
Given some prior knowledge of their shapes, how can we in-
corporate it in the search for the objects? We define a prior
probability distribution on an appropriate curve space, and
use a Bayesian framework to infer new shapes. The curve
spaceC used here is a simple variation ofC1 that takes po-
sition, orientation, and scale into consideration. Elements
γ ∈ C can (up to reparametrizations) be represented as pairs
γ = (x, θ), wherex is a finite-dimensional variable encod-
ing initial position, initial velocity and scale, andθ ∈ C1.
We start by deriving a posterior density onC.

1. Image Likelihood: The likelihood function can be de-
scribed as follows: LetD ⊂ R

2 be the image domain
andI : D → R

+ be an image. A (simple) closed curve
γ in D divides the image domain into a regionDi(γ)
inside the curve, and a regionDo(γ) outside. LetPi

be a probability model for the pixel values inside the
curve, andPo be a model for pixels outside. For ex-
ample, for a noisy two-phase image, one can choose
Pi andPo to be Gaussian distributions with different
means.

For a given imageI, the likelihood thatγ is present in

it is proportional toe
− 1

σ2
1

H(θ,I)
, whereH is given by:

− log(
∫

Di(γ)

Pi(I(x))dx+
∫

Do(γ)

Po(I(x))dx) . (4)

This image model can be modified with energies such
as the magnitude square of the image gradient [9], or
information-theoretic entropy based terms [3].

2. Prior Density: We choose a “Gaussian” probability
density as a prior. Letθ0 represent a mean shape,σ2

0



Figure 4: Left panels: given images of obscured objects. Middle panels: edges extracted from visible parts (marked lines)
are used to find optimal curve completions (solid lines). Right panels: Texture statistics from the visible portions are used to
grow pixels in new regions.

be the shape dispersion, andθ(γ) ∈ C1 be the shape
associated withγ. Then, define the prior density by

µ(γ) ∝ e
− 1

σ2
0

d(θ(γ),θ0)
2

e
−P (x)

σ2
2 , whered(·, ·) is the

geodesic distance onC1 discussed earlier andP is a
prior energy on the space of nuisance variables.

The posterior density is given by:

µ(γ|I) =
1
Z

e
− 1

σ2
0

d(θ(γ),θ0)
2− 1

σ2
2

P (x)− 1
σ2
1

H(γ,I)
.

We have used a gradient approach to find the MAP es-
timate of γ for a given image. For an initial condition
γ0 = (x0, θ0), let Ψ(γ0, t, w, f) be the geodesic flow from
γ0 with initial velocity (w, f). Here,w is the component
tangential to the “nuisance” variablex andf ∈ Tθ0(C1).
Using the fact thatd(θ, θ0) = ‖f‖, we rewrite the posterior
energy as:

E[w, f ] =
1
σ2

1

H(Ψ(γ0, 1, w, f), I)+
1
σ2

0

‖f‖2+
1
σ2

2

P (x(w)) .

Now using a Fourier decomposition off , we use a gradient
process to minimize the posterior energy.

Shown in Figure 5 is an illustration of this Bayesian
shape extraction. Top left panel shows the true shape em-
bedded in the observed images, and top right shows the
prior mean shape associated withθ0. In the lower two rows,
the left panels show the observed images and the remain-
ing panels show MAP estimates ofθ under an increasing

influence of the prior (going from left to right). Successful
discovery of the hidden shape despite partial obscuration (in
the last row) emphasizes the need and power of a Bayesian
approach in such problems.

6 Conclusions

We have presented an overview of an ambitious framework
to solve optimization and inference problems on spaces of
constrained curves (SCC). The main idea is to exploit the
differential geometry of these Riemannian manifolds to ob-
tain simpler solutions as compared to those obtained with
PDE-based methods. Using two examples of SCCs, we
have presented some applications of this framework in im-
age understanding. In particular, these ideas lead to a novel
statistical theory of shapes of planar objects with powerful
tools for shape analysis.
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