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Abstract

We offer an overview a novel, comprehense approab to

the computationhdifferentid geomety of curves with ap-
plicatiors to shap analyss ard dismvery/recognition of

objecs in images The main idea is to specify a spa@ of

curveswith constraing suited to the application and exploit

the differentid geomety of this spa@ to solve optimiza-
tion and inferen@ problems Applicatiors of this approach
include the statistich analyss of plana shapescurve in-

terpolatiors with elasticag and the Bayesia discwovery of

contous of objectin noisy images.

1 Introduction

Animportarn god inimage understandig isto detect track
ard labd object of interes presemnin obseved images Im-
ageal objecs can be characterizé in many ways according
to their colors textures shapesmovementsand locations.
The pag decae has sea significart advances in the mod-
eling ard analyss of pixel values or textures to characte
ize objecs in images albet with limited success On the
othe hand plana curves tha represehcontous of objects
have bean studial independenyi for along time. An emeg-
ing opinion in the vision communiy is tha globd features
suc asshaps of contous shoul also betaken into account
for the successfludetection and recognition of objects A
comman approab to analyzirg curvesin imagesis to treat
them as level set of functions ard algorithirs involving
sud active contouss are governel usuall by partid differ-
entid equatiors (PDE9 driven by appropria¢ dat terms
ard smoothnespenalties (see for exampk [12]). Regula-
ized curve evolutions ard region-basd acive contous offer
alternatvesin similar frameworks Thisremarkabé body of
work contairs various studies of curve evolution, ead with
relaive strengtls and drawbacks Recen work of Charpiat
et al. [1] provides anothe viewpoint on shape analyss us-
ing adifferert formulation.

In this pape, we presehanovel framework for the algo-

rithmic study of curves their variatiors ard statistics In

this approach a fundamenthelemen is a spa@ of con-
strained curves called SCC henceforthwith constrains ap-
propriae to the applicatio of interest (Asan example we

may be intereste in analyzirg closel curves ard this pro-

vides a constrainf) We exploit the geomety of SCGs using
elemens sud as tangentsnormals geodesis and gradient
flows, to solve optimization and statistica inferene prob-
lems for a variety of cod functions and probability densi-
ties This framework differs from those employel in pre-
vious works on “geometry-diven flows’ [10] in the sense
that here both the geomety of the curves ard the geometry
of SCGs are utilized. The dynamic of acive contous is

describé by vecta fields on SCCs thus reducirg the evo-

lution of curvesto the study of ordinary differential equa-

tions (ODE9 on SCCs It is importart to emphasie that
a SCC is usualy a non-linea, infinite-dimensionamani-

fold, and its elemens are the individud curves of interest.
Severd interestirg applicatiors can be addressein thisfor-

mulation:

1. Efficient deformatiors betwea any two curwves are
generatd by geodesi paths connectilg the elements
they represehnin the SCC Geodesi lengtls also pro-
vide anatura metric for clusterirg curves (automated
learning accordirg to their shapes.

2. The dismvelry of plana shaps in given noisy images
can be treatal as the problem of finding maximum a-
posterioii pointsin SCCs.

3. Given a sé of curves (or shapes) one can define
the conceps of mean ard covarian@ using geodesic
paths and thus develop statistich frameworks for
studyirg shapes Furthermore one can define proba-
bilities on a SCC to perfom curve (or shapg classifi-
cation viahypothess testing.

4. Tracking time-varying curves or dynamt shaps can
be studiad as a problem of Bayesia nonlinea filtering
on SCCs.
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5. Completions of partially occluded contours using elas- statistical analysis on a SCC, while Section 5 presents two
ticae (or local elasticae) can be accomplished via applications of this framework: (i) completion of partially

gradient-based optimizations on a SCC.

occluded objects in images, and (ii) discovery of shapes in

noisy images using a Bayesian framework.

Many of these problems have been studied in the past with
elegant solutions presented in the literature (examples in-

clude [11, 13, 8, 2, 6]), but using significantly different 2  Geometric Representations of Con-

ideas. We demonstrate the strength of the proposed frame-
work by addressing the above-mentioned applications in a
comprehensive and unified manner. This framework relates
closely to the ideas presented in [15].

strained Curves

In this section we provide two exampl€s and C, of

Given past achievements in PDE-based approaches to2CCs on which optimization and inference problems will
curve evolution, what is the need for newer frameworks? P€ solved _Iatgr in the paper. In t_hi53 paper we restrict mostly
The study of the structure of SCCs provides new insights [0 curves ink= although curves if” can be handled sim-

and solutions to problems involving dynamic contours and ilarly. Let « -

R +— R? denote the coordinate func-

problems in quantitative shape analysis. Once the con-ion of a curve parameterized by arc-length, i.e., satisfying
straints are utilized in definitions of SCCs the resulting so- [|(s)[| = 1, for everys. A direction functiond(s) is a
lutions automatically satisfy these constraints. It also com- function satisfyingi(s) = ¢/%¢*), wherej = /~1. ¢ cap-
plements existing methods of image processing and analy{ures the angle made by the velocity vector with thexis,
sis well by providing new computational efficiencies. The @nd is defined up to the addition of integer multiple<of

main strength of this approach is its exploitation of the dif- The curvature function:(s) = 6(s) can also be used to
ferential geometry of SCCs. For instance, a geodesic orféPresentacurve.

gradient flowX; of an energy functiork (on a SCC) can
be generated as solution of an ODE of the type

The choice of representation of curves will depend on
the specific application. Furthermore, different constraints

imposed on curves lead to different SCCs. Two examples

X wEX.)) . 1)

suitable for the applications considered in this paper are dis-

dt cussed next.

wherell denotes an appropriate projection onto the tangent
bundle of that SCC. This is in contrast with the nonlinear
PDE-based curve evolutions of past works. The geometry
of SCCs also enables us to derive statistical elements: prob-
ability measures, means and covariances on SCCs; these
quantities have rarely been treated in previous studies. In
shape extraction, the main focus in past works has been on
solving PDEs driven by image features under smoothness
constraints, and not on the statistical analysis of shapes of
curves. The use of geodesic paths, or piecewise geodesic
paths, has also seen limited use in the past.

We should also point out the main limitations of the pro-
posed framework. One drawback is that curve evolutions
can not handle certain changes in topology, which is one
of the key features of level-set methods; a SCC is purposely
setup to not allow curves to branch into several components.
Secondly, this idea does not extend easily to the analysis
of surfaces inR3. Despite these limitations, the proposed
methodology provides powerful algorithms for the analysis
of planar curves as demonstrated by the examples presented
later. Moreover, even in applications where branching ap-
pears to be essential, the proposed methods may be applica-
ble with additional developments.

This paper is laid out as follows: Section 2 studies ge-
ometric representations of constrained curves with two ex-
amples of SCCs. A brief geometric analysis of these spaces
is presented in Section 3. Section 4 provides an example of

1. A Space of Closed Curves with Fixed LengthCon-

sider the problem of studying shapes of contours or
silhouettes of imaged objects as closed, planar curves
in R2, parameterized by arc length. Since shapes are
invariant to rigid motions (rotations and translations)
and uniform scaling, a shape representation should be
insensitive to these transformations. Scaling can be re-
solved by fixing the length of to be 27, and trans-
lations by representing curves via their direction func-
tions. Thus, we consider the spakeé of all square
integrable function®: [0,27] — R, with the usual
inner product(f, g) = fo% f(s)g(s)ds. To account

for rotations and ambiguities on the choicefyfwe
restrict direction functions to those having a fixed av-
erage, sayr. Fora to be closed, it must satisfy tho-

sure condition[;™ ¢/°(*) ds = 0. Thus, we represent
curves by direction functions satisfying the average-
m« and closure conditions; we call this space of direc-
tion functionsD;. Summarizing,D; is the subspace

of L2 consisting of all (direction) functions satisfying
the constraints

2m
0(s)ds =
0

/%sin(g(s))ds = 0. (2
0



It is still possible to have multiple elementsDf rep- compute the gradient on the linear spade(H', resp.) in
resenting the same shape. This variability is due to which the SCC is contained (usually, a simpler task), and
the choice of the reference poift = 0) along the thensubtract the normal componertts obtain the compo-
curve. Forr € S' andf € Dy, define(x - 0) as nent that is tangent to the SCC,; (ii) we wish to employ iter-
a curve whose initial points( = 0) is changed by  ative numerical methods in the simulation of geodesic and
a distance ofr along the curve. We term this a re- gradient flows; at each step in the iteration, we first flow
parametrization of the curve. To remove the variability in the linear spac&? (H', resp.) using standard methods,
due to this re-parametrization group, define the quo- and then project the new point back onto the SCC using our
tient spaceC; = D;/S! as the space of continuous, knowledge of the normal structure, as discussed in Section
planar shapes. 3.2. The tangent spaces on these two SCCs are described
2. Space of Curves with Specified Boundary Con- next

ditions:  As another example, we consider curves 1 case 1 For technical reasons, it is convenient to re-

a: I — R? satisfying given boundary conditions to duce optimization and inference problems @nto
first order, wherd = [0, 1]. Given pointspg, p1 € R? problems on the manifol®;, so we study the latter. It
with [[p1 — pol| < 1 and angledy, 6, € R, we are is difficult to specify the tangent spacesZy directly,
interested in curves that admit angle functionsat- because they are infinite-dimensional. When working
isfying a(i) = p; andf(i) = 6;, fori = 0, 1. with finitely many constraints, as is the case here, it is
Curves witha(0) = po are determined by their di- easier to describe the space of normal®tdan L2 in-
rection functions via the expressians) = py + stead. It can be shown that a vecfoe 1.2 is tangent
J; €7 du. For these curves, the conditions above to D, até if and only if f is orthogonal to the subspace
can be rephrased as spanned by{1,sin 6, cos #}. Hence, these three func-

) tions span the normal spaceTy atf. Implicitly, the
0(0) = 6o, (1) = 61, and / e15) ds — d, tangent space is given as:
’ Ty(D1) = {f € L?|f L spa{1,cosf,sinf}}.
whered = p; — pg is the total displacement of. This

last condition ensures that the end point of the curve Thus, the projectiodl in Eqn. 1 can be specified by
is p1. We consider the vector spaie of all absolutely subtracting from a function (if.2) its projection onto
continuous function8: I — R with square integrable the space spanned by these three elements.

derivative, equipped with the inner produgt, g) =

F(0)g(0) + [ f(s)d(s)ds. Here, we use the space
H! instead of.? because we wish to be able to control
the values of at the end points. The spa€gconsists
of all functions inH' satisfying the three conditions

2. Case 2 Similar to Case 1, one can specify the four-
dimensional space of normals @ inside H' as the
space spanned by, s, 1,62}, whereey,eo: I — R
are characterized b = cosf, €1(0) = £1(0) = 0,

above. andé'g =sind, 52(0) = 52(0) =0 [7] Thus,
Tp(Co) = {f € L?|f L sparl,s,e1,e2}}.
3 Geometries of SCCs

The main idea in the proposed framework is to use the geo-
metric structure of SCCs to solve optimization and statis- We first describe the computation of geodesics (or, one-
tical inference problems on these spaces. This approactparameter flows) irD; with prescribed initial conditions.
often leads to simple formulations of these problems and The intricate geometry dP; disallows explicit analytic ex-

to more efficient vision algorithms. Thus, we must study pressions. Therefore, we adopt an iterative strategy, where
issues related to the differential geometry and topology of in each step, we first flow infinitesimally in the prescribed
those SCCs. In this paper we restrict to the tangent and nortangent direction in the spade, and then project the end
mal bundles, and geodesic flows on these spaces. point of the path toD;. Next, we parallel transport the
velocity vector to the new point by projecting the previ-
ous velocity orthogonally onto the tanget spacelnaf at

the new point. Again, this is done by subtracting normal
There are two main reasons for studying the tangential andcomponents. The simplest implementation is to use Euler’s
normal structures: (i) to compute the gradient of the restric- method inlL?, i.e., to move in each step along short straight
tion of a functional oriL2 (H', resp.) to a SCC, we can first line segments irl.? in the prescribed direction, and then

3.2 Geodesics Connecting Closed Curves

3.1 Tangents and Normals to SCCs



project the path back ont®;. Details of this numerical  Since(C; is complete, the intrinsic mean as defined above

construction of geodesics are provided in [5]. always exists. However, there may be collections of shapes
A one-parameter flow can be specified by an initial con- for which y is not unique.
dition # € D; and a directiorf € Ty(D;), the space of all We now review an iterative algorithm given in [6] for

tangent directions &t. We will denote the corresponding finding a Karcher mean of given shapes.

flow by ¥ (0, t, f), wheret is the time parameter. The tech- _ o

nique just described allows us to comptiteumerically. Algorithm 1 Setk = 0. Choose some time increment
Next, we focus on the problem of finding a geodesic ;- ChoOse a poing, € C; as an initial guess of the mean.

path between any two given shapes ¢, € D;. The  (Forexample, one could just takg = 6,.)

only remaining issue is to find that appropriate direction

f € Ty, (D) such that a geodesic frofh in that direction

passes through, attimet = 1. In other words, the problem

is to solve for anf € Ty, (D) such that¥'(6,,0, f) = 6,

and¥(6y, 1, f) = 62. One can treat the search for this di-

rection as an optimization problem over the tangent space

Ty, (D1). The cost to be minimized is given by the func-

1. For eachi = 1,...,n choose the tangent vectgy €
T, (C1) which is tangent to the shortest geodesic from
1y 1o 6;, and whose norm is equal to the length of this
shortest geodesic. The vecipe= >, f; is equal to
(—2) times the gradient gt of the functionV : C; —

R which we defined above.

tional H[f] = [[W(61,1,f) — 62 and we are looking 2. Flow for timee along the geodesic which starts aj
for that f € T, (Cy) for which: (i) H[f] is zero, and and has velocity vectar. Call the point where you end
(i) [|f|l is minimum among all such tangents. Since the UP g1, -6 st = W (g, €, g).

spaceTy, (D,) is infinite dimensional, this optimization is

not straightforward. However, singec 1.2, it has a Fourier 3. If not converged, sdt = k£ + 1, and go to Step 1.

decomposition, and we can solve the optimization problem ) .
over a finite number of Fourier coefficients. For any two 2 Similar algorithm and convergence results for a (finite-

shaped, , 6, € D, we have used a shooting method to find dimensional) landmark-based representation of shapes are
the optimalf [5]. The basic idea is to choose an initial di- described in [6].

2
rection f specified by its Fourier coefficients and thenuse a  oF the mean, et T,(C1) C L° be the space of all
gradient search to minimizH as a function of the Fourier tangents to the shape spacg.atet a tangent elemerft €

coefficients. T,.(C1) be represented by its Fourier expansion:
Finally, to find the shortest path between two shapes in m
Ci , We compute the shortest geodgsip conpecting represen- fs) = Z(“k cos(ks) + by, sin(ks))
tatives of the given shapes i,. This is a simple numer- =1
ical problem, becausé,; is the quotient ofD; by the 1-
dimensional re-parametrization gro§ip. for a large positive integem. Using the identification

Shown in Figure 1 are two examples of geodesic paths in/ ~ a = {ax, b} € R?*m~1, one can define a probability
C; connecting given shapes. Drawn in between are shapeglistribution on the tangent vectors in an approximate fash-
corresponding to equally spaced points along the geodesidon. We will modela as multivariate normal with mean

paths. Similar ideas can be used to find geodesics on thd and covariancek’ € REZm=1xZm=1) we will term
space’s. o? = tracd K) the dispersionof a shape model. Estima-

tion of K from observed shapes follows the standard proce-
L dure. One can easily sample tangent vectors from this multi-

4 Statistical Models on SCCs variate normal, and use the geodesic calculation to generate
sample shapes. Shown in Figure 2 is an illustration of this

Using the case df;, we illustrate statistical modeling ofthe jdea. The left nine panels show the actual observed shapes
constrained curves. Algorithms for finding geodesic paths from which the mean and covariance are calculated. The
on SCCs allow us to compute means and covariances inmean is shown in the middle image and the nine random

these spaces. We adopt a notion of mean known amithe  shapes generated under the Gaussian model are shown in
trinsic meanor theKarcher mear([4]) that is quite natural  the right panels.

in our geometric framework. Lei(_,_) be the shortest-

path metric orC;. To calculate the Karcher mean of shapes

{61,...,0,} in Cy, define a functionV’ : ¢; — Rby 5 Applications

V(0) = >, d(6,6;)?. Then, define th&archer mean

of the given shapes to be any pojne C; for which V() In this section, we describe some applications that involve
is a local minimum. In the case of Euclidean spaces thisthe solution of optimization or inference problems on SCCs
definition agrees with the usual definitipn= % S i with geometric tools.
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Figure 1. Examples of evolving one shape into another via a geodesic path. Leftmost shap@itmost curves aré,,
and intermediate shapes are equispaced points along the geodesic.
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Figure 2: Learning shape models: For the nine observed shark shapes shown in left, the middle panel shows the mean shapes,
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and the right panels show nine random samples the Gaussian model.

5.1 Completion of Curves Using Constrained
Elastic Curves

In the problem of recognizing objects in given images, the
extraction and use of edges present in the images play an
important role. If the objects of interest are partially ob-
scured by other objects, an important task is to interpolate
between the observed edges to complete contours. The ge-
ometry near the end points of the observed edges provide
the boundary pointsg, p1, and the boundary anglég, 6, .

We complete the missing edge usingedasticasatisfying
these boundary conditions. This problem has been studied
by several other researchers as well; see for example [13, 8].
For simplicity, we only consider the case of interpolations
with elasticae with a given fixed length, normalized to be 1.

1. Elasticae for Curve Completiont In our notation, the
elastic energy of §: I — R can be expressed as

E() = %/0 0(s)? ds. (3)

We are interested in finding the critical pointsiofre-
stricted toC, using a gradient search method. Curves
represented by these critical points are knowelasti-
cae Letd*(s) = 6(s)—0y, andf: I — R be the func-
tion obtained by projecting* onto the tangent space
of C; atd. Then, V¢, E = f,i.e., f is the gradient of
E: Cy — R atd. The flow lines of the negative gra-
dient field —V¢, £ on C, approach elasticae asymp-
totically. Flows of this type that seek to minimize the
elastic energy efficiently are known aesrve straight-
ening flows

Shown in the top panels of Figure 3 are some examples
of elasticae inR? andR? for given boundary condi-
tionspyg, p1, o, andb; (depicted via arrows). The bot-
tom row shows an example of using a variant known as
scale-invariant elasticae for completing missing edges
of a partially occluded object. Object in the left panel
is obscured artificially, and the boundaries of the visi-
ble parts are used to find interpolating elasticae that are
shown in white lines in the right panel.



Figure 3: Upper row: solid lines show the elastica between given points and directions shown by arrows. Lower two rows:
objects in left images are obscured and the end points of the visible edges are used to find elastica, shown in the right panels.

2. Using Local Harmonics to Constrain Curves So 5.2 Bayesian Discovery of Objects in Images

far, the task of completing curves has been based solelyA . tant licati f th h vsis 10ols |
on first-order boundary data. It seems logical to use n important appiication ot these shap€ analysis tools In

more information from the visible portions. Our idea th_e discovery (_)f partially occluded _objects in noisy image_s.
is to consider a subspaeof H! associated with the Given some prior knowledge of their shapes, how can we in-
dominant lower harmonics of the direction function of corporate it in the search for the objects? We define a prior

the visible portions of the edge, and restrict the search probability distribution on an appropriate curve space, and
for completions to the spa@®’ — V N Cs. The en- use a Bayesian framework to infer new shapes. The curve

ergy now consists of two termg?; is the same as the spaceC u'sed hgre Is a simple.variation C)f thqt takes po-
elastic energy defined in item 1, whikg, gives a mea- sition, orientation, and scal_e |n_to consideration. Element_s
surement of the similarity between the predicted and 7 € Ccan(upto reparan_we_tnza_tmns) _be repre_sented as pairs
observed curves. ~v = (,0), wherez is a finite-dimensional variable encod-
ing initial position, initial velocity and scale, artd € C;.

We start by deriving a posterior density 6n

l
By (0) = / 16(s) — 0"(s)[2ds .

1. Image Likelihood: The likelihood function can be de-

wherel and§* are the length and the direction func-

tion of the visible curve, respectively. We have derived
analytical expressions for the gradients of these two
energies orCy , and have utilized them to search for

the completion with least total energy. The edge com-
pletion can be complemented with a study of textures.
Statistics of the texture of visible regions can used to
predict the pixels values in the augmented region [14].

Shown in Figure 4 are simple examples computed us-
ing these ideas. The left panels show images of par-
tially obscured objects and our goal is to predict the
missing pieces of these objects. We solve this pre-
diction problem in two steps using: (i) curve comple-
tion, and (ii) texture growth. For curve completion,
we extract the boundaries of the visible portions, ex-
tract dominant harmonics, and use these harmonics in
the prediction of closed contours . The middle panels
show the visible portions in marked lines and the cor-
responding optimal completions in plain lines. Texture

growth is used to produce the final results displayed on 2.

the right panels of each row.

scribed as follows: LeD C R? be the image domain
andl: D — R* be animage. A (simple) closed curve
~ in D divides the image domain into a regidh (v)
inside the curve, and a regidb, () outside. LetP;

be a probability model for the pixel values inside the
curve, andP, be a model for pixels outside. For ex-
ample, for a noisy two-phase image, one can choose
P; and P, to be Gaussian distributions with different
means.

For a given imag€, th(la likelihood thaty is present in

L H(0,I)

it is proportional tae 1 , WhereH is given by:

~tog( | Pl /DM P,(I(2))dz) . (4)

This image model can be modified with energies such
as the magnitude square of the image gradient [9], or
information-theoretic entropy based terms [3].

Prior Density: We choose a “Gaussian” probability
density as a prior. Lefd, represent a mean shaps,



Figure 4: Left panels: given images of obscured objects. Middle panels: edges extracted from visible parts (marked lines)
are used to find optimal curve completions (solid lines). Right panels: Texture statistics from the visible portions are used to
grow pixels in new regions.

be the shape dispersion, afifly) € C; be the shape influence of the prior (going from left to right). Successful
associated withy. Then, define the prior density by discovery of the hidden shape despite partial obscuration (in
f%d(e(v)ﬁo):f 2 the last row) emphasizes the need and power of a Bayesian

p(y) o e "2, whered(.,-) s the approach in such problems
geodesic distance afy discussed earlier ang is a PP P )

prior energy on the space of nuisance variables.

The posterior density is given by: 6 Conclusions
(|1 = 1 —22d(0().00)* = 5 P(@)= 5 H(v.])
) = 7€ We have presented an overview of an ambitious framework

to solve optimization and inference problems on spaces of
constrained curves (SCC). The main idea is to exploit the
differential geometry of these Riemannian manifolds to ob-
tain simpler solutions as compared to those obtained with
PDE-based methods. Using two examples of SCCs, we
have presented some applications of this framework in im-
age understanding. In particular, these ideas lead to a novel
statistical theory of shapes of planar objects with powerful
tools for shape analysis.

We have used a gradient approach to find the MAP es-
timate of v for a given image. For an initial condition
Yo = (0, 6p), let (o, t, w, f) be the geodesic flow from
~o With initial velocity (w, f). Here,w is the component
tangential to the “nuisance” variableand f € Ty, (Cy).
Using the fact thatl(6, 6y) = || f||, we rewrite the posterior
energy as:

Bl f] = 5 H(¥ (30, L w, £), D)+ | [+~ Pla(w)).
oy lon g5

Now using a Fourier decomposition ¢f we use a gradient

process to minimize the posterior energy. References
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