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Abstract: This paper presents a novel framework for
image segmentation based on stochastic optimization. Dur-
ing the last few years, several segmentation methods have
been proposed to integrate different information in a varia-
tional framework, where an objective function depending
on both boundary information and region information is
minimized using a gradient-descent method. Some recent
methods are even able to extract the region model during
the segmentation process itself. Yet, in complex cases, the
objective function does not have any computable gradient.
In other cases, the minimization process gets stuck in some
local minimum, while no multi-resolution approach can be
invoked. To deal with those two frequent problems, we pro-
pose a stochastic optimization approach and show that even
a simple Simulated Annealing method is powerful enough
in many cases. Based on recent work on Stochastic Partial
Differential Equations (SPDEs), we propose a simple and
well-founded method to implement the stochastic evolution
of a curve in a Level Set framework. The performance of our
method is demonstrated on both synthetic and real images.

1. Introduction
This work is motivated by how stochastic motion can im-
prove current shape optimization methods in Computer Vi-
sion. We are interested in a hypersurface evolution∂Γ(t),
whereΓ(t) is a closed subset ofRN with non empty interior
and∂Γ(t) evolves according to the equation

∂(∂Γ)
∂t

= (κ +Ẇ (t, x))n = βn (1)

wheren is the normal to∂Γ(t) and where the normal ve-
locity β depends onκ, the mean curvature of∂Γ(t), and
Ẇ , a stochastic perturbation, which will changeΓ(t) only
through its normal component. The mean curvature motion
β = κ and its implementation with the Level Sets method
[21, 25, 20] is well known. The novelty in this work is the
implementation of the recently proposed stochastic curva-
ture driven flows like equation (1) (see [28]) and its appli-
cation to Computer Vision.
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Stochastic dynamics of interfaces have been widely dis-
cussed in later years in the physics literature. The work
in fields like front propagation or front transition is aimed
at modeling and studying the properties of a moving fron-
tier between two media that is subject to macroscopic con-
straints and random perturbations (which are due to the
bulk). The natural translation of this dynamic in mathemat-
ical language is done through Stochastic Partial Differential
Equations (SPDEs). These equations were introduced by
Walsh in [28] and their mathematical properties were stud-
ied using mostly partial differential equations tools. Nev-
ertheless, the problems researchers have to deal with are
various and there is more than one way to add a stochastic
perturbation to a PDE. An up to date survey of the exist-
ing models on stochastic motions by mean curvature can be
found in [30].

It was only in recent years that the notion of viscosity
solution for a SPDE was developed by Lions and Sougani-
dis in a series of articles [15, 16, 17, 18]. Their notion of
weak viscosity solution is very attractive for numerical ap-
plications, since they define the solution as a limit in a con-
venient space for a set of approximations. Since their pio-
neering work, related work has been done by Yip [29] and
by Katsoulakis et al [12]. Other approaches have also been
proposed by Bally et al in [2], much in the spirit of Walsh
[28], and recently by Buckdahn in a series of articles [5]
which amounts to a different definition of viscosity solu-
tions. Yet, we will make direct use of Lions and Souganidis
results. Their extension of the viscosity solution notion is
particularly adapted to the well known Level Sets method
[20], making it even more interesting in the area of Com-
puter Vision.

In the following, we will briefly present previous work
aimed at modeling a surface that is subject to mean cur-
vature motion coupled with noise perturbation. Afterward,
we will discuss the implementation of such a dynamic in the
Level Sets framework. Then we expose how this stochas-
tic motion, coupled with Simulated Annealing [14], can be
used in Computer Vision in the context of shape optimiza-
tion problems. Finally, results are given in the particular
case of active contours [24, 22, 6] demonstrating how the
Active Contours can be improved in what could be called
Stochastic Active Contours



2. Theoretical results
The mean curvature motion [8] is usually implemented with
the Level Sets method [21, 25, 20]. The underlying math-
ematical tool is the theory of viscosity solutions for Partial
Differential Equations (PDE).

Namely, letu : R+×RN → R be the Level Sets func-
tion which describes, at timet ≥ 0, the evolution of the
domainsΓ(t):

Γ(t) = {x ∈ RN : u(t, x) ≤ 0}
∂Γ(t) = {x ∈ RN : u(t, x) = 0}

It is well known that making∂Γ(t) move with normal ve-
locity equals to its curvatureβ = κ amounts tou satisfying
the Partial Differential Equation (PDE)

∂u

∂t
= |D u| div

(
Du

|Du|
)

(2)

This equation admits unique globally defined uniformly
continuous solutions in the viscosity sense (see [21, 25,
20]).

2.1. Viscosity solutions
Recently, the stochastic dynamics given by equation (1), ie.
β = κ+Ẇ (t, x), have been addressed in [16] and a no-
tion of weak solution has been developed for this type of
equation. Equation (1) is in fact a shortcut for:

d(∂Γ) = κnd t + n ◦ d W (3)

(see Walsh [28]), where the symbol◦dW stands for the
Stratonovich integral, which, unlike the Itô integral, is well
suited for stochastic geometry, since it does not change
when the coordinates change (see [7, 10] for an introduc-
tion). Lions and Souganidis state that the corresponding
SPDE in the Level Sets framework, namely

du = |D u|div
(

D u

|D u|
)

dt + |Du| ◦ dW (t, x), (4)

admits a unique solution in some viscosity sense. The
uniqueness of the solution in the viscosity sense is of great
importance, since it ensures that at all times the zero level
set{x ∈ RN : u(t, x) = 0} does not develop a non empty
interior - phenomenon also known asfattening.

Due to lack of place, we will not expose the complete
theory. Briefly, Lions and Souganidis define the viscosity
solutions of

{
ut = F (D2 u, D u) +

∑M
i=1 Hi(Du) ◦ dW (t, x)

u(0, x) = u0(x)

whereF is continuous and degenerate elliptic andH is con-
tinuous and positively homogenous of degree one (for more
details, see [15])

By replacing the Gaussian noise with finite variation ap-
proximations, they obtain a class of approximations
{

uε
t = F (D2 uε, D uε) +

∑M
i=1 Hi(Duε)ξ̇ε

i (t, x)
uε = uε

0

(5)

for which convergence whenε → 0 is proved using mainly
the method of characteristics in PDEs. Consequently, their
resultallows us to simulate the solutions of such equations
and be sure that the result of our computer simulation is
what we expect it to be.

Further more, we mention that according to Lions, the
convergence takes place inC(R+×RN ), which means that
the numerical solutions we develop will be continuous and
that they will be converge uniformly almost surely inω ∈
Ω, the space of the possible realizations.

2.2. Noise
One aspect of the equation (4) that we have not covered so
far is the noise introduced in the equation. In the sequel,
we will introduce briefly the stochastic Brownian sheet and
try to describe some of its immediate properties and con-
sequences on our equation. For a basic introduction on
stochastic processes, see [10].

To add noise to a PDE, one would typically add a Gaus-
sian to the stepping scheme made up for the equation.
This gives rise to independent increments, both in time and
space. Hence the idea of Brownian sheet. The same intu-
ition resides in a very nice example given by Walsh in [28].

Formally, the Brownian sheet is a process defined as

W : Ω× R+×RN → R

where Ω is a space of labels of realizations. Each
W (ω, t, x) = W (t, x) is thus a real-valued Gaussian ran-
dom variable with mean zero and variance〈W (t, x)〉 =
tx1 . . . xN .

The definition of an integral with respect to this process
takes the same path as the definition of the classical stochas-
tic integral. For details, see for example [28].

The usage of the stochastic integral always gives rise to a
quadratic variation term, which has to be controlled. This is
not always obvious in a classical framework when using the
Brownian sheet. Therefore, we mention the work of [12],
who study the same type of equation. Their solution in order
to control the explosive character of the stochastic term, is
to consider acolored white noiseterm. This corresponds to
limiting the numbers of independent sources of noise and
thus allows to having a more regular behavior.

3. Implementation
We now focus on practical ways of implementing the
stochastic evolution given by equation (4).



As a first step, we use the following explicit first order
scheme:

u(t + ∆t) = u(t) + |D u|div(
D u

|D u| )∆t

+ |D u| (Wx(t + ∆t)−Wx(t))

whereWx(t + ∆t) − Wx(t) ∼ Wx(∆t) ∼ √
∆tN (0, 1),

sinceWx(t) is a standard Brownian motion. Hence, we
implement

u(t + ∆t) =u(t)

+ |D u|
[
div(

D u

|D u| )∆t +N (0, 1)
√

∆t

]

using a standard narrow-banded procedure like the one de-
scribed in [23].

Using the results mentioned in the last section, we claim
that the above algorithm will converge, when∆t → 0, to-
wards the solution of equation (4).

Note thatẆ is computed only on the space grid of the
Level Sets implementation we are considering. As men-
tioned earlier, there are problems when considering a Brow-
nian sheet due to the explosive character of the quadratic
variation term. Nevertheless, we did not deal with this
problem, since for the applications we developed we have a
lower bound on the space grid dimension, which is given by
the resolution of the underlying image. Thus, the noise we
consider is strongly correlated in thex variable. Moreover,
if some more spatial regularity in noise is needed, the noise
can be computed on a coarser grid and interpolated in the
near grid points. Figure 1 illustrates the effect of smooth-
ing Ẇ in space: a more spatially smooth noise, gives more
regular but larger oscillations of the surface. Note also that
the curvature has a strong role with respect to this aspect,
since it stops the contour to bend excessively. In doing this,
the contour preserves nice properties such as the short-time
connectivity. To emphasize this idea, we mention that in the
absence of the curvature term (and thus being exposed to a
completely random dynamic), the contour tends to break up
around the main line and to develop bubbles. Despite the
previous theoretical results, the properties of the stochas-
tic mean curvature motion are still unknown, as were the
properties of the classical mean curvature motion in the pi-
oneering work by [8].

4. Applications to Computer Vision
Many Computer Vision problems consist in recovering
a certain surface or region through a shape optimization
framework [6, 22, 9]. The dynamics presented earlier, cou-
pled with a decision mechanism, can be used to select such
regions. This is why another ingredient we turned our at-
tention to is the Simulated Annealing algorithm.

Figure 1: Different Stochastic Mean Curvature motions.
Top row: starting from the initial curve (top left), three time
steps of the evolution with Gaussian noise. Middle row:
from the same initial curve, four time steps of the evolution
with a spatially smoother noise. Bottom row: a 3D example
starting from the cortex of a monkey.

Based on the work of Metropolis et al., Simulated An-
nealing was first mentioned by Kirkpatrick in [14] as a nice
application of statistical physics to optimization problems.
Its purpose is to introduce a probabilistic decision mecha-
nism for finding global minima in higher dimension.

As it will be seen further, the combination of the stochas-
tic mean curvature dynamics with this selection algorithm
can be a powerful tool in Computer Vision, for instance in
the context of active contours [6]. As opposed to the dy-
namics introduced earlier, the use of Simulated Annealing
in the area of active contours is not a complete novelty. We
would like to briefly comment upon the previous works ori-
ented toward the use of genetic programming in this field.

4.1. Comparison with previous work in Com-
puter Vision

In a lot of cases, the stochastic theory is used to help re-
searchers develop an intuition of the macroscopic dynamics
at a microscopic level. This if, for instance, the case in [3],
where an algorithm for stochastic approximations to a curve
shortening flow are built. Another example is given by [27],
where the authors develop a model of anisotropic diffusion
using the information gained by analyzing the stochastic
differential equation associated to a linearized version of the
geometric heat equation.

In other cases, stochastics are actively used in selection
algorithms meant to overcome some classical dynamics dif-
ficulties. In [26] Storvik used Simulated Annealing com-
bined with a Bayesian dynamics and developed applications



in medical imagery. He used a node-oriented representation
technique for the contour representation. Thus, his algo-
rithm can only detect simply connected domains in an im-
age. Moreover, self-intersections are not allowed, due to
the complications they would involve. The Bayesian tech-
niques used for his contour evolution were therefore highly
limited (perhaps due to reduced computing power available
at the time) and the applications presented only make use of
3 pixels being changed in a time step.

More recently, Ballerini et al developed in [1] an inter-
esting application to medical image segmentation using a
genetic algorithm,genetic snakes. They used a model that
they fit using a number of control points. Their application
cannot, therefore, be extended to a more general framework.

In conclusion, it is important to notice that the main in-
gredient of our work is not the Simulated Annealing part,
but rather the underlying dynamics presented earlier. It is
obvious that the stochastic approach adds to the power and
flexibility of the Level Sets technique into a very power-
ful tool. We can thus use this mechanism through skillfully
applied controls, while continuing to allow for topological
changes and weak regularity assumptions. Moreover, the
presence of the stochastic terms tends to help the dynamics
grow towards non convex shapes, which was another draw-
back of the classical method.

Simulated Annealing is used in our experiments. In the
future, more evolved genetic programming selection tech-
niques might be considered, but it is encouraging that such
simple ingredients added to the Level Sets framework pro-
vide good practical results.Sketchily, one can see the same
difference between our method and the previous ones, than
between geodesic active contours and the pioneering snakes
[11] .

4.2. Principle
Given some Computer Vision problem in a variational
framework where we have to find the regionΓ that mini-
mizes an energyE(Γ) = E(u), we use the following sim-
ple Simulated Annealing decision scheme:

1. Start from some initial guessu0

2. computeun+1 from un using the dynamics presented
earlier

3. compute the energyE(un+1)

4. acceptun+1:

• if E(un+1) < E(un)
• otherwise, accept un+1 with probability

exp
(
−E(un+1)−E(un)

T (n)

)

5. loop back to step 2, until some stopping condition is
fulfilled

Here,T (n) is a time-dependent function that plays the same
role as a decreasing temperature. Its choice is not obvious.
If the temperature decreases to fast, the process may get
stuck in a local minimum; on the contrary, decreasing too
slowly in order to reach the global minimum may be compu-
tationally expensive. A classical choice isT (n) = T0/

√
n.

4.3. Remarks and motivation
The classical way to solve the previous minimization prob-
lem is often to use a gradient descent method. The Euler-
Lagrange equation is computed, leading to some PDE
∂Γt = βcn. In that case, we use the classical motion as
heuristics that drive the evolution faster toward a minimum,
and replace the dynamics of step 2, by

β = βc + κ +Ẇ (t, x)

or even byβ = βc + Ẇ (t, x) whenβc already contains a
curvature term.

As often with genetic algorithms, the proof of the con-
vergence of this algorithm toward a global minimum is still
an open problem. However, practical simulations indicate
that the above algorithm is more likely to overcome lo-
cal minima than the classical approach. This is our main
motivation, since local minima are the major problem of
classical approaches. Note also that our framework can be
used in cases when the Euler-Lagrange equation is too com-
plex from a mathematical or computational point of view, or
even impossible to compute.

5. Stochastic Active Contours
Our scheme could be used in the Geodesic Active Contours
framework [6] where segmentation is based upon gradient
intensity variations. Yet, a multiscale approach is often used
successfully in that context to overcome the local minimum
problem. However, many other segmentation schemes [22]
use a region model (eg. texture, statistics) often unadapted
to multiscale or unusable at coarse scales. We will first fo-
cus on one such case, namely a single Gaussian statistics
model by Deriche and Rousson [24].

5.1. Single Gaussian model
In their active and adaptive segmentation framework [24],
the authors model each region of a gray-valued of color im-
ageI by a single Gaussian distribution of unknown mean
µi and varianceΣi. The case of two regions segmentation
turn into minimizing the following energy:

E(Γ, µ1,Σ1, µ2, Σ2) =
∫

Γ

e1(x) +
∫

D/Γ

e2(x)

+ νlength(∂Γ)



with
ei(x) = − log pµiΣi

(I(x))

where

pµiΣi
(I(x)) = C|Σi|−1/2e−(I(x)−µi)

T Σ−1
i (I(x)−µi)/2

is the conditional probability density function of a given
valueI(x) with respect to the hypothesis(µi,Σi). The pa-
rameters(µi,Σi) depending onΓ, the energy is actually
a function ofΓ only: E(Γ, µ1,Σ1, µ2, Σ2) = E(Γ). Its
Euler-Lagrange equation is not obvious, but finally simpli-
fies into the minimization dynamics

βc = e2(x)− e1(x) + ν div
(

D u

|D u|
)

The authors successfully segment two regions even with
same mean. However, the evolution could easily be stuck
into some local minimum and a multiscale approach might
modify the statistics of the region so that no segmenta-
tion would be possible anymore. As demonstrated figure
2, a simple Simulated Annealing scheme with dynamics
β = βc + Ẇ (t, x) overcomes this problem. Figure 3 shows
the same phenomenon on a real image. Note that this im-
age was successfully segmented by Paragios and Deriche
with their active region framework [22]. Yet, they used an
adapted model of texture. Here, the Stochastic Active Con-
tours framework succeeds in making a simple single Gaus-
sian model with unknown parameters find the correct re-
gions.

Figure 2: Segmentation of two regions modeled by two un-
known Gaussian distributions (same mean, different vari-
ances). From left to right: (i) the initial curve, (ii) the final
state of the classical approach [24] stuck in a local mini-
mum, (iii) and (iv) an intermediate and the final state of our
method

5.2. Gaussian mixtures
As an illustration of the case when the Euler-Lagrange
equation cannot be computed, we simply extend the
previous model to region statistics modeled by a mix-
ture of Gaussian distributions of parametersΘi =
(π1

i , µ1
i ,Σ

1
i , ..., π

ni
i , µni

i , Σni
i ). with

∑
j πj

i = 1. The con-
ditional probability density function of a given valueI(x)

Figure 3: Segmentation of two regions modeled by two un-
known Gaussian distributions. Top row: the initial curve, an
intermediate and the final time step of the classical method,
again stuck in a local minimum. Bottom row: two interme-
diate steps and the final step of our method.

becomes:

pΘi(I(x)) =
ni∑

j=1

πjpµj
iΣ

j
i
(I(x))

The number of Gaussian distributions can be given, esti-
mated at initial time step, or dynamically evaluated. A large
literature is dedicated to the problem of estimatingΘi from
input samples. We use here the original k-means algorithm
pioneered by MacQueen [19], although we have tested ex-
tensions like the fuzzy k-means [4].

Our segmentation problem still consists in minimizing
the same energy, with nowei(x) = − log pΘi(I(x)). Un-
fortunately, we now have to deal with a complex depen-
dency ofΘi with respect toΓ. In fact, the k-means algo-
rithm acts as a “black box” implementingΓ → Θi(Γ). As
a consequence, the Euler-Lagrange equation of the energy
E(Γ,Θ1(Γ), Θ2(Γ)) = E(Γ) cannot be computed. A de-
terministic contour evolution driven byβc = e2 − e1 + νκ
does not always converge, even to a local minimum, due to
the fact thatβcn is not the exact gradient (see figure 4). Yet,
the Stochastic Active Contours can still be used, withβc as
heuristics (figure 4 again).

Even when the deterministic scheme converge more or
less, our method shows a better ability to overcome local
minima: figure 5 illustrated the case of a standard geomet-
ric energy barrier caused by narrow pathways while figure
6 shows howΘi can be stuck leading to a dramatic evo-
lution toward completely false regions (see also attached
multimedia material). Finally, figure 7 shows some more
examples on other real images. Animations correspond-
ing to all the presented examples can be downloaded at
http://cermics.enpc.fr/˜juan/SAC/ .



Figure 4: Segmentation of two regions modeled by two
unknown Gaussian mixtures (here, only one Gaussian by
mixture!) Top row: the initial curve, and two states of the
deterministic method, states between which the final curve
oscillates, a behavior caused by an incorrect gradient. Bot-
tom row: two intermediate steps and the final step of our
method, using the same gradient as heuristics.

Figure 5: Segmentation of two regions modeled by two un-
known Gaussian mixtures (here, two identical mixtures of
two colors with only different variances). Top row: the ini-
tial curve, an intermediate and the final time step of the de-
terministic method, again stuck in a local minimum. Bot-
tom row: two intermediate steps and the final step of our
method.

Figure 6: Segmentation of two regions modeled by two un-
known Gaussian mixtures. From left to right: (i) The initial
curve, (ii) the final state of the deterministic method, stuck
in a local minimum and (iii) the final state of our method.
The two lines of colored rectangles below the images in-
dicate the means of the mixtures components and their re-
spective weights (Top line for the inside region, bottom line
for the outside region)

6. Conclusion
Based on recent work on Stochastic Partial Differential
Equations, we have presented propose a simple and well-
founded method to implement the stochastic mean curva-
ture motion of a surface in a Level Set framework. This
method is used as the key point of a stochastic extension
to standard shape optimization methods in Computer Vi-
sion. In the particular case of segmentation, we introduced
the Stochastic Active Contours, a natural extension of the
well-known active contours. Our method overcome the lo-
cal minima problem and can also be used when the Euler-
Lagrange equation of the energy is out of reach. This exten-
sion is not time consuming: the only computational effort
is computing the energy, which can generally be done by a
simple run through the domain of level set function. Con-
vincing results are presented with the segmentation of re-
gions modeled by unknown statistics, namely single Gaus-
sian distributions or mixtures of Gaussian distributions. The
way is now open for applying our principle to other Com-
puter Vision problems but also in different fields where
shape optimization problems arise, like in theoretical chem-
istry [13].
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