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Abstract
We present a regularized method for solving an inverse prob-
lem in Diffusion Tensor Magnetic Resonance Imaging (DT–
MRI) data. In the case of brain images, DT–MR obtains a
tensor field that indicates the local orientation of nerve bun-
dles. Now days, the spatial resolution of this technique is
limited by the partial volume effect; i.e. the measured tensors
at voxels that contain fiber crossings or bifurcations results
from the addition of several tensors, each one oriented with
its corresponding nerve bundle. In this paper, we proposed a
method for recovering the original intra–voxel information.
We assume that the observed tensors are a linear combination
of a given tensor base, therefore, the aim of our approach is
the computation of the unknown coefficients of this linear
combination. By regularizing the problem, we introduce the
prior information about the piecewise smoothness of nerve
bundles orientation. Such regularization process performs
an anisotropic filtering of the coefficients. As a result, we re-
cover a multi–tensor field. Moreover, we propose to estimate
the nerve bundles trajectory by performing stochastic walks
of particles in the computed multi–tensor field. In order to
demonstrate the performance of the method, we ran several
experiments using both synthetic and real data.

1 Introduction
One of the most challenger medical goals is the estima-
tion of brain connectivity in vivo. For this purpose, a spe-
cial Resonance Magnetic Imaging (MRI) technique named
Diffusion Tensor Magnetic Resonance Imaging (DT–MRI)
is used. The 3–dimensional (3D) Diffusion Tensor Im-
age (DTI), measures the microscopic diffusion of water in
a tissue, such diffusion is constrained by the direction of
nerve bundles. For a given voxel r, the Stejskal–Tanner
equation[1],

Sr = S0r exp(−bgT Drg), (1)

shows the relationship between the signal magnitude mea-
sured without diffusion, S0, and the one attenuated by the
water diffusion in the tissue, S. The unitary vector g =
[gx, gy, gz]

T indicates the direction in which a directional
independent magnetic gradient is applied, Dr is a positive

Figure 1: Geometric interpretation of the diffusion tensor.

definite symmetric tensor and b is a constant that depends
on the acquisition parameters, see [1] for more details. The
conventional procedure for computing the tensor field D, at
each voxel r, is based on a least–squares method: at least 8
diffusion images (each one corresponding to a magnetic gra-
dient) are taken and then the least–squares problem for the
6+1 unknowns is solved [2]. These unknowns are the six
independent components of the symmetric diffusion tensor
Dr, and S0r.

The diffusion tensor can be visualized as a 3D ellip-
soid, as shown in Figure 1. In this geometric interpretation,
the principal axis are aligned according to the eigenvectors
[ê1, ê2, ê3], and the eigenvalues λ1 ≥ λ2 ≥ λ3, define the
diffusion magnitude along each axis. Thus, ê1 is named the
principal diffusion direction (PDD). A study of the behavior
of the eigenvalues gives more insight of the angular variation
of the diffusion into the voxels. Three geometric classes of
diffusion based on the relationship between the eigenvalues
are discussed in [2], they are:

1. LINEAR: λ1 � λ2 ' λ3, high anisotropy . The
geometric interpretation of such tensor has a cigarette
shape.

2. PLANAR: λ1 ' λ2 � λ3, medium anisotropy. The
geometric interpretation of the tensor looks like a plate.

3. SPHERICAL: λ1 ' λ2 ' λ3, low anisotropy. This
case can be visualized as a soccer ball.

In the 3D case, the one that concerns here, the measure of
anisotropy most commonly used is the fractional anisotropy



Figure 2: Two pairs of high–anisotropic tensors which addi-
tion produces the same low–anisotropic tensor

(FA) [3, 4]:
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where λk is the kth eigenvector of D. Note that for highly
anisotropic tensors, FA is close to one, while FA is close to
zero for a low anisotropic tensor (the spherical case).

In addition to standard studies on MR images, as the clas-
sification of voxels between white/gray matter tissues, DT–
MR images provide tissue information according to the FA.
However, perhaps, the most important information that can
be inferred from DT–MR images is tissue connections. That
means that for brain DT–MR images, one could estimate ax-
ons bundle pathways by following the PDD’s in regions with
high anisotropy (sites where FA takes large values). This in-
formation is very useful in medical image research, due to
the relationship of brain connectivity with several diseases,
and in general, with brain development.

Like any other imaging acquisition technique, the infor-
mation accurateness is corrupted by noise, so that, a filtering
process is required. Other problem on DT–MR images con-
cerns the limited resolution for dealing with partial volume
voxels. That is, when a voxel contains a cross or a bifurca-
tion of fibers.

1.1 Statement of the Problem
Noise is not the only problem precluding DT–MR images.
Partial volume voxels have a more pernicious effect than in
standard MR images: the observed diffusion tensor at voxels
where two or more fibers cross, split, or merge, is the ad-
dition of several diffusion tensors,—each one aligned with
a particular bundle fiber. Tensor addition is very different
to vector addition. The addition of two almost orthogonal
tensors with high–anisotropy results in a tensor with low–
anisotropy. This fact increases the uncertainty of the tissue
orientation and reduces the anisotropy of the observed tensor
[1]. Furthermore, the inverse problem is not well–defined:
different combinations of high–anisotropic tensors may re-
sults in the same low–anisotropic tensor, see Figure 2. So,
one needs to solve these two issues in order to recover the
two tensors that produced the measured tensor.

If the spatial image resolution is increased, then the par-
tial volume effect could be diminished at those voxels at the

boundary of differently oriented tissues, but with a signifi-
cant increment in the acquisition time. However, the partial
volume effect produced by fiber crossing can not be dimin-
ished by increasing the spatial resolution. Therefore, in order
to compute a good estimation of the original fiber pathways,
it is necessary to develop a process that recover the lost intra–
voxel information.

Several methods are reported in the literature for estimat-
ing fiber pathways. Those methods are based on: performing
deterministic walks of particles on the tensor field by follow-
ing the PDD [4, 17], or by propagating a wavefront with the
use of the fast marching method [14]. In [6], the displace-
ment direction of the particle is computed with a determin-
istic method. Then, this direction is randomly disturbed in
order to introduce a stochastic behavior. Anyway, the par-
tial volume effect reduces the accurateness of the estimated
fiber pathways. Figure 3 illustrates the case of estimating
fiber pathways in a fiber crossing. One can see in this fig-
ure that the intersection of two bundle fibers with high frac-
tional anisotropy (FA close to 1), produces a region where
the local orientation information is uncertain (with FA close
to 0). To ensure the correct particle trajectory through the
fiber crossing, these particles should reach the low confident
region with a trajectory aligned to the tracked fiber. Other-
wise, the particle trajectory could be bent. In [1, 2, 6], an
homogeneous Gaussian smoothing is applied to the tensor
field. Although the blurring produces a denoising effect, it
also increases the uncertainty in the orientation. Another ap-
proach [17], aims to reduce the uncertainty in the direction
by computing the displacement of each particle with a direc-
tion computed from a robust anisotropic average of the ten-
sors in a neighborhood around the particle. More recently,
Tuch et al. [9, 10, 11], proposed a high angular resolution
imaging method based on an observation model built by a
finite mixture of Gaussians:

Sr = S0r

∑

j

fi exp(−bgT Dirg), (3)

where fi is the contribution of the tensor Di to the total dif-
fusion in the voxel. Both, f and Di, are vector and tensor un-
known fields, respectively, that are computed, independently
for each voxel, from a large set of acquired images {S}.
This Diffusion Multi–Tensor Magnetic Resonance Imaging
(DMT–MRI) technique allows one to recover the intra–voxel
information that is not observed in the standard DT–MRI.
This imaging method is considered the state of the art in DT–
MRI. The drawbacks of the method, are: the large number
of additional diffusion images {S} required (for instance, in
[11], 126 diffusion 3D–images are used), the consequent in-
crement on their acquisition time, and the algorithmic prob-
lems related to Equation (3) which is highly nonlinear, so
that multiple restarts of the optimization method are required
to prevent the algorithm from settling in a local minima. Fur-
thermore, no stable solution has been reported for more than
2 fiber bundles, i.e. for j > 2 (see discussion on Ref. [11],
Chap. 7).



a) b)
Figure 3: Left: A tensor field on a fiber crossing. Right: par-
ticles walking through the horizontal fiber path; most parti-
cles are deviated from the right trajectory, due to the uncer-
tain direction on the cross.

The method we propose here, consist of two stages: i)
restoration of the intra–voxel information by computing the
coefficients of a tensor basis field, and ii) estimation of fiber
pathways by particle stochastic walks. The method for re-
construction of the intra–voxel information uses standard
DT–MR images as input data. That means that the existing
large data base or new measurements of DT–MR images can
be processed at a fraction of the acquisition time with respect
to DMT–MR images. Additionally, the proposed method
is based on the minimization of a quadratic cost function
that can be efficiently minimized with standard deterministic
algorithms, in particular we used an iterated Gauss–Seidel
scheme. In the second stage, we estimate bundle fibers by
means of a stochastic walk procedure. This stochastic walk
is formulated in a Bayessian framework where the new po-
sition of the particle is computed by sampling the posterior
distribution of displacement directions. In order to compute
this posterior distribution, we take into account: the last posi-
tions of the particle in a likelihood term (actually, we investi-
gate Markovian process models of first or second order), and
a prior (regularization) term that codifies the information of
the reconstructed diffusion multi–tensor field.

The structure of this paper is as follows. In Section 2, we
present the proposed restoration method for the intra–voxel
structure information and the algorithmic details for mini-
mizing the proposed cost function. In order to estimate axons
bundle pathways, we proposed in Section 3 a stochastic walk
method that uses the restored multi–tensor field. Section 4
describes experiments with both synthetic and real DT–MR
images. Finally, our conclusions are given in Section 5.

2 Restoration of Intra–Voxel Infor-
mation

This section introduces the first stage of the method: the
procedure for recovering the intra–voxel structure. In order
to motivate our approach, we first present the observation
model of the measured diffusion tensor field.

Figure 4: A example of 2D tensor base set T̄, with cardinality
equal to four.

2.1 Observation Model of the Diffusion tensor
Differently to the method reported by Tuch et. al. [see model
(3)], we do not use as input data the raw data set {S} [as
in model (3)], but the measured (observed) tensor field D.
We assume that observed tensor Dr, at the voxel r, is the
result of a summation of individual tensors T, such tensors
correspond with no–collinear fibers into the voxel, this is:

Dr =

Mr
∑

i

Tir + ηr. (4)

where Mr is equal to the number of fibers with a different
orientation (note that M depends on the voxel), the tensor
η represents the independent additive noise. The solution
to the inverse problem implicit in the model (4), involves
the computation of the tensors {Tir}, with arbitrary size and
orientation. Instead of the “exact” model (4), we propose to
use an approached model based on a predefined tensor basis,
T̄. The base tensors are chosen such that they are uniformly
distributed on 3D space of orientations, and have FA(T̄i) ≈
1 (Figure 4 shows a 2D example of a basis set of four tensors
with their orientations uniformly distributed in the interval
[0, 2π]). Therefore, the approximated observation model is
[compare with (3) and (4)]:

Dr =

N
∑

i

αirT̄i + ηr. (5)

where N is the cardinality of the base T̄ =
[T̄1, T̄2, ..., T̄i, ..., T̄N ] and α = [α1, α2, ..., αi, ..., αN ]T is
a vector field such that the scalar αir denotes the contribu-
tion of the individual base tensor T̄i at the voxel r to the
observed tensor Dr. For a tensor basis with high angular
resolution (N is relatively large), one can expect that in a
voxel where there is only one fiber path, a single coefficient
αi will take a significant large value and the others αj 6=i

would take values close to zero. In the same way, if there
are m different fiber paths in a voxel, then we expect that
m coefficients αk will take a significant large value with
respect to the other coefficients.

2.2 Cost Function for Restoring Intra–Voxel
DT–MRI Structure

Model (5) can represent more than one tensor in a voxel,
but, it is still necessary to determine which linear combina-
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Figure 5: a) Information propagation from the anisotropic to
isotropic regions. b) A 2D neighborhood Nr of the voxel r.

tion of base tensors, in T̄, best fit the data Dr. Unfortunately,
the computation of the positive coefficients, {αir}, is an ill–
posed problem because the information provided by the ob-
served tensor, Dr, and the model (5) are not enough for com-
puting an unique solution. So that, we regularize the prob-
lem by using the voxel spatial context information. There-
fore, the coefficient information should be propagated from
regions with high anisotropy to those with low anisotropy.
This is consistent with prior knowledge that fiber crossing
occurs in regions with low anisotropy, this is illustrated in
Figure 5a. To solve this problem, we propose to minimize a
cost function of the form:

Û (α) =
∑

r

U (α; r) . (6)

This global cost Û is the summation of the individuals cost
functions U (α; r) associated to each voxel, r. A preliminary
version of the local cost function that it codifies the above
expressed is:

U (α; r) = ωrρ1

(

∑

i

αirT̄i, Dr

)

+λs

∑

s∈Nr

ρ2 (αr, αs) + λcρ3 (αr) , (7)

where, in general, the potential function ρj (with i = 1, 2, 3)
defines a norm. Now, we clarify the meaning of each term in
(7):

1. In the Bayessian regularization framework [12, 13], the
first term corresponds to the negative log–likelihood
and penalizes the difference between the proposed
model and the observed tensor Dr. In this particular
case, we choose the Frobenius’s norm for quantifying
such difference. In order to promote the propagation of
information of coefficients from the regions with high
anisotropy to those regions with low anisotropy, and to
restrict the opposite, we weight the data term with the
fractional anisotropy of the data: ωr = FA(Dr), see
Eq. (2).

2. The second term (first regularization term) codifies the
prior knowledge by penalizing the spatial inhomogene-
ity of the vector α. The relative contribution of this

term, to the total cost, is controlled by the parameter λs.
Nr is the set of neighbors voxels of r (a second order
neighborhood system), see Figure 5b. We want to con-
straint this smoothness process to be performed along
the fiber bundle. This is achieved by an anisotropic fil-
tering of the coefficients α. Therefore, we use the tensor
T̄i as the inertia tensor for controlling such anisotropic
filtering. Thus, ρ2 is a weighted quadratic potential of
the first differences: αr − αs. In Ref. [8] is proposed a
method for compute these weights given an inertia ten-
sor. In our formulation, these weights are computed as
follows:

wirs =
(s − r)

T T̄ir (s − r)

‖s − r‖4
. (8)

where wirs is the weight associated with the potential:
(αir − αis)

2.

3. The third term, controlled by the parameter λc, pro-
motes large contrast in the αir coefficients. Figure 6a
shows a low contrast example, with high uncertainty
about discerning which tensors are more representative.
On the other hand, Figure 6b shows an example with
low uncertainty; only two coefficients have large values
and the others are close to zero. Also, Figure 6 sug-
gests a method for improving the contrast: by forcing
each αir coefficient to be different from the arithmetic
mean: ᾱr =

∑

i αir/N .

Already we have all the ingredients for the final energy func-
tion, the complete local energy function is:

U (α, r) = ωr

∑

j

(

∑

i

αirT̄ij − Drj

)2

+λs

∑

s:s∈Nr

∑

i

wirs (αir − αis)
2

−λc

∑

i

(αir − ᾱr)
2 (9)

with the additional constraint:

αir ≥ 0,∀i, (10)

where i = 1, ..., N , j = 1, 2, ..., 9 is an index that runs over
the matrix coefficients, the weights ωr and wirs are com-
puted with (2) and (8), respectively.

2.3 Minimization Algorithm
The minimization of Eq. (6) is achieved by solving the linear
system [given that (9) is quadratic] that results from

∂U (α, r)

∂αkr

= 0. (11)

We use a simple Gauss–Seidel scheme, with the additional
advantage of low memory requirements, for solving this lin-
ear system.



Figure 6: a) Coefficients with low contrast: high uncertainty
about the significance of the basis tensors. b) High con-
trasted coefficients: low uncertainty (see text).

The constraint of positivity on αir, is satisfied by project-
ing to zero the negative values in each iteration. Accord-
ing to our experiments, it is important to set the parameter
λc = 0, then, once the algorithm has converged (with a low
contrast on the αr vectors) one refines the solution with the
right value for λc.

3 Stochastic Walks for Estimating
Fiber Pathways

The second stage of the method for recovering fiber path-
ways in DT–MRI, is the computation of walks of virtual par-
ticles that move through the computed multi–tensor field. In
opposition to deterministic walk methods reported in Refs.
[4, 17], our approach is based on stochastic walks. The par-
ticles pathways are close related with the fiber structure in
the following way: in voxels where only one fiber is present,
only one coefficient of the tensor basis field took a signif-
icant value and its PDD indicates the fiber orientation. On
the other hand, in a bifurcation, two coefficients took a sig-
nificant value and the particle will choose any of those paths
corresponding to the PDD’s.

Before we present the stochastic walk method, we will es-
tablish some definitions. We denote by xt the position vector
of the particle at iteration t, then d∗

t+1 is the unitary vector
that leads the particle from the position xt to the next step,
xt+1, then:

xt+1 = xt + δd∗
t+1 (12)

where δ is the step size.

3.1 Computation of the Displacement Vector

For the computation of the displacement vector, d∗
t+1 in (12),

we use a Bayessian estimation based on a Markov process.
This is explained next.

Let q = {q1, q2, ..., qN} be the set of orientations cor-
responding to the PDD of the base tensors in T̄. Then, by
using the Bayes Rule, we compute the probability of choos-
ing a particular qi orientation, as the orientation of the vec-
tor dt+1, given the sequence of displacements {d∗

k} (for

k = 1, 2, 3, ...t) with:

P

(

dt+1 ‖ qi

∣

∣

∣

∣

d̃t

)

=
1

Z
P

(

d̃t

∣

∣

∣

∣

dt+1 ‖ qi

)

P (dt+1 ‖ qi)

(13)
where Z is a normalization constant, x ‖ y denotes that x
is parallel to y and the vector d̃t is the extrapolated direction
estimated from the sequence {d∗

k}.
The prior probability of a particular orientation,

P (dt+1 ‖ qi), is directly computed from the α’s coef-
ficients at position xt:

P (dt+1 ‖ qi) =
αixt

∑N

j αjxt

, (14)

where αixt
coefficients are computed with a trilinear inter-

polation because xt ∈ Ω ⊂ R
3.

The likelihood term in (13), P

(

d̃t

∣

∣

∣

∣

dt+1 ‖ qi

)

, is the

probability of coming from the direction d̃t given that the
next direction, dt+1, is parallel to qi. To compute this like-
lihood, we need to compute the intersection distance of the
projection of the vector d̃t with the level curve of yT T̄iy = 1.
Note that T̄i is positive definite, and this level curve corre-
sponds to a 3D–ellipsoid. This process is illustrated by Fig-
ure 7: the distance from the center to the ellipsoid in the
direction d̃t is measured for the base tensors corresponding
to Figure 4. In this way it is clear that the largest value is
computed with the tensor B. Consequently, in this case, it is
more likely that the last travel direction of the particle is d̃t

if the next walk direction is parallel to the PDD of the base
tensor B. Thus, to compute the likelihood we use:

P

(

d̃t

∣

∣

∣

∣

dt+1 ‖ qi

)

=
1

Zl

1
√

d̃T
t T̄id̃t

. (15)

where Zl is a normalization constant.
Now, in order to compute d̃t, we do not require the full se-

quence {d∗
k}, but only the last ones: d∗

t and d∗
t−1. We inves-

tigate two cases: to preserve the last tendency or to preserve
the last curvature (see Figure 8). These cases are:

1. First Order Walk. Only the previous direction is taken
into account for compute d̃t, we use the model:

d̃t − d∗
t = 0. (16)

In this case, we have d̃t = d∗
t , and the likelihood term

P

(

d∗t

∣

∣

∣

∣

dt+1 ‖ qi

)

corresponds to a Markov process of

first order.

2. Second Order Walk. In order to preserve the curvature
of the trajectory, d̃t is computed with the model:

−d̃t + 2d∗
t − d∗

t−1 = 0. (17)

So that, the likelihood takes the form

P

(

d∗t , d
∗
t−1

∣

∣

∣

∣

dt+1 ‖ qi

)

, and it is a second order

Markov process.



Figure 7: Calculation of the term P

(

d̃t

∣

∣

∣

∣

dt+1 ‖ qi

)

.

Figure 8: a) Vector d̃t for the first order walk. b) Vector d̃t

for the second order walk.

Finally, the vector d∗
t+1 is computed by perform-

ing a sampling of the posterior probability distribution

P

(

dt+1 ‖ qi

∣

∣

∣

∣

d̃t

)

(this can be understood as a stochastic

tournament), see Eq. (13). The ambiguity in the sign of the
orientation is solved by choosing among dt+1 and −dt+1,
the one that the inner product with d̃t is positive, i.e. the
closest direction with the past trajectory.

3.2 Implementation Details

We scale the step size, δ, with a priori probability
P
(

d∗t+1 ‖ qi

)

[see Eq. (14)]. Given that the computed walk
have coarse trajectories because of the discrete nature of the
tensor basis, we refine the vector d∗

t+1. Such refinement con-
sists on to use as displacement vector the resultant sum of
two vectors: the previous direction step d∗

t , and the winner
of the stochastic tournament. In this way, smoother trajecto-
ries are obtained. Note that, the refined orientation does not
necessary belongs to the set q.

4 Experiments

In this section, we demonstrate the performance of the
method by numerical experiments in both synthetic and real
DT–MR data. Figure 9 shows the results of the first ex-
periment in synthetic two–dimensional (2D) data. Panel 9a
shows the noisy tensor field with a fiber crossing. The re-
stored multi–tensor field is shown in panel 9b. Note that,
the right two base tensors are recovered at the intersection
and the noise is practically eliminated. Thus, the intra–voxel
structure is discovered. Only the base tensors with the αi

coefficients that represent the 95% of the linear combination
are displayed. The parameters of the method are N = 6,
λs = 1.0, λc = 0.1. We choose the base tensors such that
their eigen–values are [λ1, λ2] = [1, 0.1].

The second experiment was performed on the 3D syn-
thetic data shown in Figure 10, panel (a). In this case, the ten-
sors show smooth wavy paths and their intersection is not or-
thogonal. Panel 10b shows the recovered multi–tensor field
and panel 10c shows the detail of the intersection. Panel 10d
shows the particle paths of a set of 100 particles with start-
ing point in the left part of the horizontal fiber. We note that
approximately the 15% of the particles are deviated to the
other simulated fiber bundle. This feature is product of the
stochastic nature of the particle walks and allows us to ex-
plore possible bifurcations in fiber bundles. In comparison,
deterministic walk methods will recover the same trajectory
for all the particles that where started at the same point. The
parameters of the method are: the orientation space is uni-
formly sampled in 57 orientation (N = 57), λs = 0.05, and
λc = 0.07. The image dimensions are 32×32×32 voxels. In
this case, we choose the base tensors, such that their eigen–
values are [λ1, λ2, λ3] = [1, 0.1, 0.1]. We select this tensor
basis based on the prior knowledge that diffusion along the
fiber PDD is about 10 times that of the transversal directions
in real axon fibers [18].

Figures 11 and 12 show the results of an experiment with
real DT–MRI data. The original DT–MRI data were acquired
with a resolution of 128 × 128 × 20, and each voxel cor-
responds to a volumetric space of 2mm × 2mm × 4mm.
We interpolate the data so that each interpolated voxel have
a dimension of 1mm × 1mm × 1mm (it corresponds to
186 × 154 × 60 voxels in the region of interest, i.e. the par-
allelogram that contains brain tissue). We used the DT data
approximation method reported in Ref. [15], with a scaling
factor ∆ = 0.5. Figure 11a shows the fractional anisotropy
of an axial slice of the interpolated data and the small square
indicate the region of detail. Figure 11b shows the region of
detail of the interpolated DT used as input in the algorithm
for recovering intra–voxel structure. Figure 11c shows, the
detail of the recovered multi–tensor field and Figure 11d the
computed trajectories of the particles. In this case, the dis-
placement of the particles was constrained to lay in the axial
slice shown in 11a. Figure 12 shows the full view of sev-
eral pathways computed in the mentioned slice. It was not
needed to adjust the parameters for this experiment, the set
of parameters and the tensor basis are the same than the used
in the experiment of Figure 10. In all the previous exper-
iments, we performed a second order stochastic walks and
the step size was δ = 0.5P (d∗

i ).

Finally, figure 13 shows the result of the experiment de-
signed to demonstrate the capability of the method for filter-
ing tensor fields. Panel 13a shows a region of DT–MRI input
data, panel 13b shows the the recovered multi–tensor field
and panel 13c shows the tensor field computed as the linear
combination of the base tensor weighted by the α’s coeffi-
cients, i.e. with the direct model (5) but without the noise
component. Note that the restored tensor field is congru-
ent with the input data and the enhancement is evident: the
restoration have more defined local orientations and a higher
anisotropy.
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Figure 9: A 2D fiber crossing synthetic experiment. In a)
noise corrupted 2D tensor field with a fiber crossing. In b)
the 2D recovered multi–tensor field.

a) b)

c) d)

Figure 10: Results of the numerical experiment with syn-
thetic data (see text).

5 Conclusions
The main contribution of the paper are the followings:

1. We presented a method that improves the resolution of
standard DT–MRI technique and allows one to recon-
struct the intra–voxel information as fiber crossing and
bifurcations. Therefore, we estimate the intra–voxel
information from standard DT–MR images instead of
compute it directly from raw data as Tuch et al. in
[9, 10, 11]. In our method, the capture time for the DT–
MR images is not modified but the computational time.

2. The presented method is based on the minimization of
a quadratic potential function. So that, the minima can
easily be computed by gradient descent type methods
or, as in our case, by a memory efficient Gauss–Seidel
scheme. According to our experiments, the method is
robust to the parameter set and the tensor basis selected.

3. The proposed multi–tensor restoration method can effi-

a) b)

c) d)

Figure 11: Results of the numerical experiment with stan-
dard DT–MRI data (see text).

Figure 12: particle trajectories computed with the stochastic
walk in the recovered multi–tensor field.

ciently be used as a generic filtering method of tensor
fields, as was demonstrated by experiments.

4. We presented a novel stochastic particle walk proce-
dure based on Bayessian estimation theory and a second
order Markov random process model. The procedure
allow us to estimate the fiber pathways and therefore
deduct the brain connectivity. The stochastic movement
of the particle allows one to explore possible bifurca-
tions on fiber bundles.
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