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Abstract ric is defined on the image domain, and curve length in this
metric is then used as the energy functional. Region terms
We present a novel method for the incorporation of shape were added to the energy, in [26, 5, 15] among others, to
formation into active contour models, and apply it to the efacilitate the description of region properties, and to reduce
traction of line networksd.g.road, water) from satellite im- sensitivity to noise and clutter. On the algorithmic side, early
agery. The method is based on a new class of contour emeethods for finding a minimum used gradient descent on the
gies. These energies are quadratic on the space of one-chainsour itself, but problems with parameterization and topol-
in the image, as opposed to classical energies, which are tigy change led to the adoption of level set methods [25],
ear. They can be expressed as double integrals on the eanich do not require the former and allow the latter.
tour, and thus incorporate non-trivial interactions betweenin all these models, tha priori constraints on the con-
different contour points. The new energies describe familiggir rely on elasticity (and sometimes rigidity) measures.
of contours that share complex geometric properties, withhese geometrical constraints lead to curvature-based regu-
out making reference to any particular shape. Networks felfization forces that are generic in the sense of encouraging
into such a family, and to model them we make a particeircles as the energy minima. Recently, several approaches
lar choice of quadratic energy whose minima are reticulaté¢give been developed that incorporate more detailed geomet-
To optimize the energies, we use a level set approach. Tieenformation about the target object.
forces derived from the new energies are non-local howevern_eventonet al. [22] incorporate shape information into
thus necessitating an extension of standard level set mefie- evolution of geodesic active contours. The contour is
ods. Promising experimental results are obtained using ré@lved in the direction of an estimated shape and pose. The
images. shape of the target object is represented by a signed distance
function, and deviations from the mean distance function are
penalized. Cremerst al. [11] modify the Mumford-Shah
1 Introduction functional to incorporate statistical shape knowledge. They
use an explicit parameterization of the contour as a closed
Active contours have been extensively used in computer gpline curve, and learn a Gaussian probability distribution
sion since the original paper of Kaasal. [18]. They have for the spline control point vectors. The statistical prior re-
proved their efficiency in many application domains, inclugtricts the contour deformations to the subspace of learned
ing image segmentation, video tracking, inpainting, and 3@formations.
reconstruction. The idea is simple and attractive: defineParagios and Rousson [27] propose a functional that can
an ‘energy’ functional on a space of curves in the imagecount for the global and local shape properties of the tar-
domain, designed so that the (local) minima of the energgt object. A prior shape model is built using aligned train-
delineate features or objects of interest in the image; thiag examples. A probabilistic framework uses the shape im-
find a minimum. The number of variations on this theme &e and the variability of shape deformations as unknown
enormous. The original active contours were defined on treaiables. They seek a global transformation and a level set
space of parameterized open or closed curves in the imaggresentation that maximizes the posterior probability given
domain [18, 8], and penalized irregularity, and low imagée prior shape model. Chenal. [7] define an energy func-
gradients under the curve. However the parameterization lenal depending on the gradient and the average shape of the
pendence of these models is undesirable, and in consequésicget object. The prior shape term evaluates the similarity of
most subsequent active contour models have been definetthashape of the contour (modulo scale, rotation and transla-
functionals on the space of equivalence classes of curvestion) to that of the reference shape through the computation
der changes of parameterization. ‘Geometric’ or ‘geodesaf a distance function using the Fast Marching method of
active contours [23, 3, 4, 19] constitute one example. A m&ethian [31].



If one were to summarize the way in which the abowan C;(X). These functionals are expressedrasgtipleinte-
methods describe shape, it would be as follows. Given ograls (two in the case of quadratic energies) and can hence
or more training examples, and a shape representatioreacribe interactions between arbitrary points of the curve,
‘mean’ shape is computed. (For the difficulties inherent because the multiple integral constitute a sum over all tuples
doing this, see [16].) In addition, a covariance matrix is e points (pairs in the case of quadratic energies).
ther assumed (to be the identity), or computed as the dat&uch higher-order functionals can be used to define
covariance of a finite number of ‘principal modes of varhigher-order active contours. As explained above, these
ation’ of the shape. An energy/distance term can then medels bear the same relation to conventional active con-
constructed: it is essentially the logarithm of a Gaussian disurs as polynomials bear to linear functions, and enlarge
tribution, with the given mean and covariance. Plainly thiee range of possible models in a similar fashion. (As we
encourages the properties of the contour summarized bywhik see in the next section, there are only two Euclidean-
shape space, to approach the given mean. invariant linear energies, but a whole function space full of

In contrast, we would like to introduce shape informatidauclidean-invariant quadratic energies.)
that is not specific to a particular or single object, but that The above can be seen from another point of view. Given
rather defines a large class of shapes that share a ‘faméig’energye on some set’, we can (at least formally) define
resemblance. To give an example pertinent to the work peeprobability distribution as the normalized negative expo-
sented here: what is it that all road networks have in comential of E: Pr(v) = Z lexp—E(v). If the setV is a
mon geometrically? Clearly they are not Gaussian variatiorector space, and i is a linear functional, we have an ex-
around a mean parameterized by a few simple geometrigahential distribution. For an exponential distribution, the
guantities. On the other hand, they clearly share a numbemponents of in any basis are independent. In the case of
of properties, some of which lead us to apply the word ‘neine-chains on a manifold, this means that the points of the
work’ to them. contour are independent. Apart from the trivial dependency

To model such shape families, we propose a nlssof of closure, this independence necessarily survives the condi-
active contour models. In these models, the contour intéiening of the probability distribution on membership of the
acts with itself. That is, the models describe interactions sitbset’; (X) (although it no longer makes sense to describe
correlations between different points of the contour, sonigas exponential, sinag, (X) is not a vector space).
thing entirely absent from conventional models. These in-By contrast, if the energy is quadratic or higher-order,
teractions in their turn allow the incorporation of non-trivisthe components ob are not necessarily independent (and
geometric information into prior terms, and in particular theven if they are, the behaviour is still not linear). Corre-
description of shape families such as networks. If usedlatons now exist between the components. Focusing on the
data terms, they allow the description of more complex refaadratic case, the distribution becomes Gaussiah @X).
tions between the contour and the image. It is not however ‘Gaussian’ of; (X). Indeed such a de-

scription would not make sense sin€g(X) is not a vec-
. tor space, and it is thus important to realize the great differ-
1.1 One-chains ence between the Gaussian distributions used in the works

In order to clarify the nature of the new models, it is helpflﬁited earlier, and the Gaussian distribution resulting from a
to use the notion of a ‘one-chain’. The space of one-chaﬁ‘fé""drat'C active co ntour. :

C1(X) in amanifoldX is the space of all formal linear com- _TO See the dlﬁerence,_ consider by analogy a two-
binations of curves in that manifold. Active contour enefimensional vector spaceie. the plane (analogous to
gies are functionals on this space. In practice however, (X )); and a curve in that space (analogou€taX)). The

are interested only in closed one-chains with binary coeffforks cited above approximate a probability distribution on
cients, which correspond to closed curves with no repeatB curve by choosing a point (the ‘mean’) and construct-

segments, so that minimization of the energy is constraifBd @ Gaussian distribution in some coordinate distribution
to this subsetC; (X). centred on that point, essentially treating the curve as if it

é/gire an infinite straight line. In contrast, the Gaussian dis-
ution resulting from a quadratic active contour energy is
logous to a Gaussian distribution the planewhich is

n restricted to the curve by conditional probability. The

Single integrals of quantities along a curve are then lin
functionals onC; (X): the integral along two curves taker}"
together is the sum of the integrals along each of them ta

separately. Almost all previous models use energies that o
linear in this sensé. The consequence is that these endjature of the distribution on the curve can then be very much

gies are local: they can describe interactions only betwe{@ﬂre (:tgmpl|cfa‘t§d tha_n ||,1r:he plr_'t[et;/lotus dcasgt,hand mdetehd the
infinitesimally separated points of the contour, because 4fp notions ot >aussian: have fittie to do with one another.

integral is essentially a sum over single points.
It is however possible to definigher-orderfunctionals  The new energies require new minimization techniques
1All those previous energies that are not linear are nevertheless buiIE%P' ngher-order energies lead to non-local forces: the force

linear functionals, in the sense of being products or quotients [17, 15]3 @ Point in the contour _depend_s on the 9|O_ba| con_figuration
them. of the contour and not just on its infinitesimal neighbour-




hood. The computation of the force thus involves integrafsere are only two linear terms compatible with Euclidean
over the contour. We will use a level set approach, and in tingariance: length and aréa.
process we will extend standard methods to handle non-local
forcesina way similar to,_ bgt necessarily more precise th@_z Quadratic energies
that used for incompressibled. area preserving) flows.
In sections 2 and 3, we describe the new class of actiMee formal construction of quadratic energies proceeds as
contour energies and present the level set method we usliows. Given twol-chainsC and D in €2, one can define
minimize them. In section 4, we apply a particular quadraticeir product,C ® D, a 2-chain inQ2. (In the case that
energy functional to the extraction of line networks in satel? : S' — €, this construction gives the mag x C :
lite imagery. In section 5, we present experimental resuli& — 2, whereT? = S!' x S! is the 2-torus.) We
We summarize and conclude in section 6. thus have a map : C1(Q2) x C1(Q) — C2(Q?), where
Cp(X) is the space op-chains in the manifold{. A lin-
. ear functional orC»(92?) becomes a bilinear functional on
2 Energy Functional C1(92) x C1(€2) by this construction. In turn, by definition,
such a bilinear functional is, when composed with the diago-
We first discuss conventional linear energies to establish cagt mapC, () — C1(Q)xC1(Q) : € — (C, C), aquadratic
cepts and notation, and then the construction and naturguelctional onCy (2).

quadratic energies. Thus to construct a quadratic functional on the space of
1-chains inf2, we must construct a linear functional on the
2.1 Linear Energies space of2-chains inQ22. As in section 2.1, we can do this

in two ways. Given a metric and a function 63, we may
Let © be a bounded subset &2, and! : 2 — R be an define a functional or2-chains analogous to equation (1).
image. The discussion below applies to genérahains, These functionals are interesting to consider, but space re-
but for ease of presentation, we will consider a ndap: quirements prevent us from discussing them further here.
S' — Q. Given a metricy and a functionf on ©, both Alternatively, we may define 2-form F onQ2, and use the
of which may depend oi, the following linear functional analogue of equation (3):
on the space of-chains can be defined:

E(C) :/ (CxCY'F . 4)
BO) = [ rors O°F ®
° The product structures @f x C and7? mean that this func-
Here, C* is pullback byC, C*g is therefore the metric ontional can always be written (in terms of coordinatesy’)
S' induced byC, andxc-, is the associated Hodge stapn 72) as
This equation manifests the invariance of the energy both
to changes of coordinates éhandS*, and to changes i@ E(C) = dpdp' T(p) - F(C(p),C(p)) -E(0') , (5)

that result in the same geometric curvéliidiffeomorphism T
invariance). By choosing a coordingieon S!, we find the i )
more familiar expression where F(z,2'), for each(z,2') € Q2 is a matrix. The

operatorF’ allows us to model a non-trivial interaction be-
- tween different contour points. Note that this interaction is
E(C) = %dp [tP)ly F(C @) (2) hot Markov since the interaction is mediated by the embed-
ding rather than the embedded space. The forces derived
whereﬁ(p) = ('(p) is the tangent vector t¢' at p, and from the energy in equation (5) are non-local: the force at a
|v|4 is the norm of the vector in the metricg. The form point is determined by an integral over the contour.
of functional in equations (1) and (2) encompasses most off the 2-form F' does not depend on the image, then we
the models that have been used in the past. Another linagain require the energy to be Euclidean invariant. This re-
possibility is to integrate d-form A (intuitively, a vector sults in the form
field) over thel-chain:

) B(C) =~ § fdpa! E)-E) W(ICG) - O |
BO) = [ ca- fatw-a. @ (6)

wherev - A is the ‘inner product’ of the-form A and vector where|z —y/| is the Euclidean distance between pointnd

v. The area of the interior of &chain is one example. y in Q. The functionl weights the interactions between dif-
If the metric, function and-form do not depend on theferent points of the curve according to their distance, and

image, itis natural to enforce Euclidean translation and FOt2\\e will not consider here energy terms that depend on the curvature.

tion inVariance- This forceg to be constr_:mtg 'FO be invari- These involve lifting the -chainC to the tangent bundle 6%, but otherwise
ant (.e. Euclidean) andi to calculate the interior area. Thushe mechanics of the construction of functionals is the same as here.




The growth away from a circle towards a labyrinthine
structure with elongated ‘arms’ can be understood as fol-
1 , lows. A linear analysis of the stability of the circle to small

A sinusoidal perturbations shows that above a certain angu-
\ lar wavelength, the perturbations, rather than being damped
_ ] back to zero, are amplified, their size and their spatial fre-
gty ekl sl " guency around the initial circle being controlled by tie

' 1 function. Thus instead of smoothing all irregularities, as in
| the linear case, this energy allows some of them to develop,
and hence encourages complex shapes. An uncontrollable

or e instability at all frequencies is prevented by the fact that the
‘bumps’ corresponding to two peaks in the sinusoid cannot
approach closer thafy,;,,. Once created, the bumps elongate
into arms with parallel sides, thus decreasing the energy, al-
though this nonlinear behaviour can no longer be described
within the linear approximation used to study stability. In an
infinite domain it seems likely that the energy is not bounded
below, and that the arms will continue to grow and to ramify
must be chosen carefully since it defines the geometricadefinitely. In a finite domain such as an image, this cannot
content of the model. In order to eliminate uncontrollableappen due to the repulsion between the arms.
size effects\W(x) should tend to zero astends to infinity, ~ One can view the formation of complex shapes as a case of
meaning that two far away points do not interact. It shoulsymmetry breaking’. The minima of the Euclidean invariant
also be chosen so that the integral converges. Otherwise, lamgar functionals described above, being circles, possess the
choice of U is possible, but the detailed behaviour to be egsame symmetries as the energy, but the same is not true in
pected from any particular choice is far from obvious armgkneral of quadratic energies. Although the energy may be
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Figure 1: The functionr

remains to be studied. Euclidean invariant, the minima in general possess no sym-
In the experiments shown later, we use the following formetries.
for U:
Lif 2 < duin — ¢ 3 Minimization of the energy
W(l‘): 0if 2 >dmnin+€ R
$(1 — =dmin _ Lgjp(r2=duin) otherwise In order to minimize the energy, we will use gradient de-

(7) scent, evolving the contour using the level set framework in-
) , troduced by Osher and Sethian [25]. As is well known, level
where the parametet,;, ande are illustrated on figure 1. o representations handle changes of topology naturally, are
This choice describes a ‘hard core’ potential between eysrameter free, and allow the simple expression of geometri-
ery pair of points with anti-parallel tangent vectors. Ong,| quantities like curvature. If the contour propagates along

of its effects is to prevent two points with anti-parallel tange outward normal direction with spedtlp), the level set
gent vectors from approaching closer thégi,. On the ¢,nction obeys

other hand, pairs of points with parallel tangent vectors are

favoured, thus encouraging straight lines to lengthen. The [ FIVg| ©)
energy minima that result consist of elongated structures ot '

(arms’) of a fixed minimum width that tend t.o grow. The We use the Fast Marching method [31] for the initializa-
arms are mutually repulsive, so that they distribute them-

lves over the domaii. and have a limited branching n mpon of the function¢ as a signed distance function and the
er s over the domain, & avea edbranching UMy arrow Band algorithm [32] to evolvé. This consists of

In an earlier model [29], we used another functibn evolving the functior_1 only in the narrow pand around the
' zero level set for whickp(x,y) < ¢, wheret is a threshold.
U(z) = sin™ (1 /2) + = — \/(1 +a?) . 8) This results _in sign.ifi.c.ant gaiqs in computational efficienpy.
The functionF, initially defined only on the contour, is
This function is also decreasing, behavingl@8z when required in equation (9) to be defined all o¢erin the case
x >> landas If2/z) whenz < 1, the latter behaviour pre-that 7' on the contour can be expressed as a local functional
venting the integral from diverging. This choice also favoudd ¢, this is easily done by assuming that this definition holds
the formation of thin elongated structures, but the divergermesrywhere. For a quadratic energy however, the force at
of ¥ asz tends to zero causes stability difficulties in calcieach point of the contour is given by an integral over the
lating the force numerically. Moreover, due the relativelyhole contour. To calculate the force at a paigtthen, one
slow decrease o¥ over a long range, the width of the armsould extract the level set correspondinga,) and inte-
varies considerably more than with tliein equation (7).  grate around it. This process would need to be repeated for



each point in the Narrow Band, and is thus not very efficiedt. ~ Application: line network detection
Another way would be to persevere with a pure level set ap-
proach, replacing dp by [ dx dy §(¢, ¢(x0))|V¢| in the Automatic detection of line networks, and especially of road
expression of the force, as was done in [6] for incompresgmstworks, in satellite imagery has been studied for the last
ible flows. We have found that this technique does indetiiieen years at least. Motivated by the increasing rate of
work well for area preserving evolutions, but that it is ngtata acquisition and the growing importance of geographic
precise enough for the case at hand. We rather adoptddfarmation systems, a wide variety of methods have been
two-step method: in step one, thie= 0 contour is extracted developed to attack this problem. Despite all this attention,
and the force is computed at each point by integrating owxtraction of line networks remains a challenge because of
the contour. In step two, the force is extended over the Ntfre great variability of the objects concerned, and the conse-
row Band. It proved necessary to be as precise as possiblguant difficulty in their characterization. The intensity of a
these computations. Many of the techniques we tried work&gd can vary significantly from one road to another, for ex-
well for area-preserving flows, which also involve integra®mple, while the presence of trees and buildings (‘geomet-
over the contour, but failed when it came to quadratic funde noise’) can obscure the network; junctions can be highly
tionals. Note that the contour is used only to compute themplex; networks do not possess exactly the same proper-
force, and not to evolve or represent the contour, so that ti&s in rural and urban areas; and so on.
lose none of the advantages of the level set method. We mention briefly various methods that have been devel-

In step one, the goal is to extract a list of poifits(p;) = oped for the detection of line networks. Early methods used
(zi,y,)} representing the contour, given the values of tlaelapted operators such as edge detectors and morphologi-
function ¢ at the grid points. This is done, as in [33], by ussal operations [30, 12]. Probabilistic methods using stochas-
ing an Essentially Non Oscillatory polynomial interpolatiotic geometry and/or Markov random fields have been pro-
technique to find the zeros between each pair of neighbguesed [2, 35, 20]. Other methods minimize the optimal path
ing grid points, coupled with a sophisticated contour tracifgtween end points [9, 14]. Multi-scale approaches have
algorithm. Any geometrical and image quantities neededlieen considered in [10]. Active contour models include 'rib-
compute the force at the contour points are bilinearly intdron snakes’ [13, 21] and ‘ziplock snakes’ [24].
polated from the grid. We then compute the forcat each
contour point using standard integration techniques.

In step two, we must extend the for@e from the zero
level set to each grid point in the Narrow Band. We do thishere are two parts to any model, corresponding to the like-
using the partial differential equation proposed in [28]. Wihood and the prior in probabilistic formulations: the prior

4.1 Energy Functional

solve terms, which do not mention the data, and the data terms,
Vo which do. Most models of road networks assume that the
Fr+ Sg'”(éf))w VE=0, (10)  radiometry of a road is slowly varying and that there is sig-

) ) i . _ nificant contrast between roads and their environment, thus
where sgn s the sign function, subject to initial and boundaty g raining the data term. They also assume that road width

conditions the same as those proposed in [1]. The steagyqes siowly with distance and that road curvature is small
state 39'”_“0” to equation (10) satisfles - V" = 0, 1.8 compared to inverse road width, except at intersections, thus
the variation ofF' along the normals to the level sets is nu'l:onstraining the prior terms.

The effect of the equation is thus to extend the force alongrhe energy we will describe takes into account these

the normals to the level sets. generic properties, but also, through the presence of
o quadratic terms, other properties that are impossible to char-
3.1 Reinitialization acterize with linear functionals, such as the fact that the roads

- . form a network. The energy th ntains twi rts:
In principle, the level set function should be equal to the orm a netwo € energy thus contains two parts

signed distance function from the zero level set throughout E(C) = E,(C) + A\Ei(C) (12)
the contour evolution. In practice this is not true, and in order g ’ ’

to correct the situation, reinitialization is required. Again t@here ) balances the contributions of the geometric F@ayt
achieve maximum precision, we use the method proposgg the data park;. The geometric park, is the sum of

by Sussman and Fatemi in [34]. We thus solve the followigree terms, two linear (length and area), and one quadratic:
partial differential equation fog, the reinitialized level set:

GomsgO( - Ve W) . (D E(C) = fdp [ +aA©)
where the constraint functionalis determined by the condi- ' Lo ,
tion that, in each cell of the grid, the area inside the contour - 5% j{dp dp’ t -t W(R(p,p)) (13)

should be conserved. The aim is to prevent movement of
the zero level set, which is a frequent side-effect of simplhere¥ is defined in equation (7R(p, p’) is the Euclidean
reinitializations. distance betweet’(p) andC(p’), and. A(C) is the area of



the interior of the contour. The length term aims at minimizfives a good idea of the type of shapes favoured by the new
ing the length of the contour and acts as a regularizing teremergy. Classical linear energies evolve from an arbitrary
The area term is introduced to control the expansion of thigape towards a circle. If there is no area term, this circle will
fingered structure. It gives birth to a constant force in tisbrink and vanish. The presence of the area term will cause
direction of the inward normal. The effect of the quadratibe circle to stabilize at a certain radius, where it will remain.

term was discussed in section 2. In contrast, as discussed above, the minima of the quadratic
The image parE; is composed of two terms: energies are not circles. In fact, circles are unstable, “de-
caying” under evolution of the contour into, in our case, fin-
E;(C) = ?{dp a-VI gered shapes that are well adapted to line network extraction,
demonstrating as they do elongated structures with parallel
_ f]{dp dp £t (VI-VI')U(R(p,p)) . sides and slowly varying width.

(14) In figure 2 are shown several evolutions based on the geo-

L. . metric termsk, only. The parametef,,;, of the ¥ function
yvheren IS th? unit outward .normal tp the contou_r. For Clar(Sontrols the minimum width of the fingers, and in the ab-
ity, we use primed and unprimed variables to designate quan

e . , , ! ence of data terms, all fingers collapse down to this limit.
::Szaevaluated at poings(or C'(p)) andy’ (or C(p')) respec All the evolutions show the formation of fingered structures

, N : . vgth parallel-sided arms of constant width. The first three
The first data term favours situations in which the outwar ! : .
rows of figure 2 show evolutions for different values of the

{;ﬂ:?ﬁ!ﬁﬁg?g:g?stﬁ t::ti :Th?neitgsrae?]l\(/ai?c:,r\zel: tOt\?virevr\ﬁL%%lrametedmm that controls the width of the arms. We chose
is the case, it also favgurs larger gradients unde.r the contc]fg]f"“ = 3,5,7; thefingers formed are of the correct width.
The secon’d term is an examg le %f a quadratic data term; ie last two rows illustrate the role of the parameterin
: . P q né fourth rowa: = 0.05, while o = 0.1 in the fifth row: the
describes a relation between the contour and the data that
: . . : ._larger the value o#, the fewer the number of arms and the
cannot be incorporated into a linear functional. Its effectis {0

L . . ! . sparser the network.
favour situations in which pairs of points whose tangent vecJ[3

tors are anti-parallel and which are not too distant from each ., 1,ave also tested the above model on real satellite im-
other (.€. points on opposite sides of the road) lie on im""%“:ges. The results on two images are shown in figure 3. The

gradients that point in opposite directions and are large. images present several difficulties. There are regions of high

The energy in equatipn (12) s minimized.usin_g grad!e Fadient corresponding to the borders of fields rather than to

descent implemented via Ieyel sets as described in sectio gds. The fields are also objects with parallel sides. In the

Thus the contour evolution is determined by firstimage of figure 3, there is a discontinuity in the road. In
oC OF both images, the roads are found.

T —@( ) (15)

) . o ] Two important points need to be made here. The first con-
wheredE/5C is the functional derivative of with respect cerns initialization. This is always an issue for gradient de-
to C, i.e.itdescribes the change in eneigly due to asmall scent methods. The results may depend heavily on the ini-
change in the curvéC'. The resulting equation of motion isjgjization point, and indeed a number of methods used for
then the detection of roads rely on an initialization very close to
_ oC ) the target. In contrast, we have found that starting from a
n- ot T AV —a rounded rectangle covering the greater part of the image do-

main is sufficient for the new energies. This is not surprising.
+2A ]{ dp’ (VI'-VVI-i') ¥(R(p,p)) Greater specificity in the prior term should eliminate many
~ candidate contours from consideration, thus smoothing the
+2 % dp’ (R-0')(64+AVI-VI')V'(R(p,p")) , energy surface, while at the same time deepening the mini-
(16) mum corresponding to the true network. The method should
thus be less sensitive to initialization than less specific en-
whereR = (C(p)—C(1'))/|C(p)—C(')|. The component ergies. The second poin_t concerns termination. The results
of C/dt along the normal has been taken, movement alopgPWwn above are local minima of the energy: they evolve no
the tangent direction being equivalent to a diffeomorphisifther under more iterations.

of S1, the domain of”, and thus irrelevant. _ _ _
Figure 4 shows another result. It is quite good, but the

errors it contains illustrate some of the outstanding issues
5 Experimental results with the model. There is a piece of contour remaining that

does not correspond to a road, and the road to the bottom
Ignoring the image terms completely, and evolving the coright has not extended far enough. There is also a gap in the
tour under the influence of the prior, purely geometric ternt®ad at the junction.



Figure 2: Geometrical evolutions for different values of the
parametetl,,;, (first three rows) and: (last two rows).

6 Conclusions

We have introduced a new class of active contour energy X

functionals. These energies are quadratic on the space of

one-chains, in contrast to classical energies, which are lin-

ear. The new energies enable us to introduce complex geo- Figure 3: Detection of roads in 2 satellite images.
metrical information into the model. We studied a particular

form of quadratic energy whose minima consist of fingered

structures with parallel sides. We can control the width and

the number of arms formed. Using this energy as a base, we

designed an energy functional for the detection of roads8isting quadratic term so that it encourages road extensions
satellite imagery and tested it on real satellite images. Sif¥en more than it does at present.

ulations prove the efficiency of the model and illustrate the ; ic cjear that the use of higher-order energies is not lim-

effect of the incorporation of non-trivial geometrical interaqfed to line network detection in remote sensing data. One
tions between points of the contour. Algorithmically, thesc?ovious application of the models presented here is to bio-

model'_s presented new challengeS, n p_arUcuIar the needl(f)(@fical and medical imagery, where the geometry required is
a maximum of precision in the calculation of the force ar}ﬂ‘ten similar

the evolution of the contour.

Immediate future work is focused on the solution of the We are only just beginning to explore the modelling pos-
problems mentioned in connection with figure 4. We are dabilities of quadratic energies. Many open questions and re-
signing a quadratic ‘gap closure’ force that will overcomsearch directions(g.higher-than-quadratic functionals; ex-
the repulsion introduced by the existing quadratic term i@nsion to surfaces; probabilistic formulation and the link to
certain special circumstances. This force will also help field theory; parameter and model estimation; new level set
eliminate small remnant areas. We are also developing teehniques; computational efficiency) remain to be explored.
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