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Abstract

We present a novel method for the incorporation of shape in-
formation into active contour models, and apply it to the ex-
traction of line networks (e.g.road, water) from satellite im-
agery. The method is based on a new class of contour ener-
gies. These energies are quadratic on the space of one-chains
in the image, as opposed to classical energies, which are lin-
ear. They can be expressed as double integrals on the con-
tour, and thus incorporate non-trivial interactions between
different contour points. The new energies describe families
of contours that share complex geometric properties, with-
out making reference to any particular shape. Networks fall
into such a family, and to model them we make a particu-
lar choice of quadratic energy whose minima are reticulated.
To optimize the energies, we use a level set approach. The
forces derived from the new energies are non-local however,
thus necessitating an extension of standard level set meth-
ods. Promising experimental results are obtained using real
images.

1 Introduction

Active contours have been extensively used in computer vi-
sion since the original paper of Kassat al. [18]. They have
proved their efficiency in many application domains, includ-
ing image segmentation, video tracking, inpainting, and 3D
reconstruction. The idea is simple and attractive: define
an ‘energy’ functional on a space of curves in the image
domain, designed so that the (local) minima of the energy
delineate features or objects of interest in the image; then
find a minimum. The number of variations on this theme is
enormous. The original active contours were defined on the
space of parameterized open or closed curves in the image
domain [18, 8], and penalized irregularity, and low image
gradients under the curve. However the parameterization de-
pendence of these models is undesirable, and in consequence
most subsequent active contour models have been defined as
functionals on the space of equivalence classes of curves un-
der changes of parameterization. ‘Geometric’ or ‘geodesic’
active contours [23, 3, 4, 19] constitute one example. A met-

ric is defined on the image domain, and curve length in this
metric is then used as the energy functional. Region terms
were added to the energy, in [26, 5, 15] among others, to
facilitate the description of region properties, and to reduce
sensitivity to noise and clutter. On the algorithmic side, early
methods for finding a minimum used gradient descent on the
contour itself, but problems with parameterization and topol-
ogy change led to the adoption of level set methods [25],
which do not require the former and allow the latter.

In all these models, thea priori constraints on the con-
tour rely on elasticity (and sometimes rigidity) measures.
These geometrical constraints lead to curvature-based regu-
larization forces that are generic in the sense of encouraging
circles as the energy minima. Recently, several approaches
have been developed that incorporate more detailed geomet-
ric information about the target object.

Leventonet al. [22] incorporate shape information into
the evolution of geodesic active contours. The contour is
evolved in the direction of an estimated shape and pose. The
shape of the target object is represented by a signed distance
function, and deviations from the mean distance function are
penalized. Cremerset al. [11] modify the Mumford-Shah
functional to incorporate statistical shape knowledge. They
use an explicit parameterization of the contour as a closed
spline curve, and learn a Gaussian probability distribution
for the spline control point vectors. The statistical prior re-
stricts the contour deformations to the subspace of learned
deformations.

Paragios and Rousson [27] propose a functional that can
account for the global and local shape properties of the tar-
get object. A prior shape model is built using aligned train-
ing examples. A probabilistic framework uses the shape im-
age and the variability of shape deformations as unknown
variables. They seek a global transformation and a level set
representation that maximizes the posterior probability given
the prior shape model. Chenet al. [7] define an energy func-
tional depending on the gradient and the average shape of the
target object. The prior shape term evaluates the similarity of
the shape of the contour (modulo scale, rotation and transla-
tion) to that of the reference shape through the computation
of a distance function using the Fast Marching method of
Sethian [31].



If one were to summarize the way in which the above
methods describe shape, it would be as follows. Given one
or more training examples, and a shape representation, a
‘mean’ shape is computed. (For the difficulties inherent in
doing this, see [16].) In addition, a covariance matrix is ei-
ther assumed (to be the identity), or computed as the data
covariance of a finite number of ‘principal modes of vari-
ation’ of the shape. An energy/distance term can then be
constructed: it is essentially the logarithm of a Gaussian dis-
tribution, with the given mean and covariance. Plainly this
encourages the properties of the contour summarized by the
shape space, to approach the given mean.

In contrast, we would like to introduce shape information
that is not specific to a particular or single object, but that
rather defines a large class of shapes that share a ‘family’
resemblance. To give an example pertinent to the work pre-
sented here: what is it that all road networks have in com-
mon geometrically? Clearly they are not Gaussian variations
around a mean parameterized by a few simple geometrical
quantities. On the other hand, they clearly share a number
of properties, some of which lead us to apply the word ‘net-
work’ to them.

To model such shape families, we propose a newclassof
active contour models. In these models, the contour inter-
acts with itself. That is, the models describe interactions or
correlations between different points of the contour, some-
thing entirely absent from conventional models. These in-
teractions in their turn allow the incorporation of non-trivial
geometric information into prior terms, and in particular the
description of shape families such as networks. If used as
data terms, they allow the description of more complex rela-
tions between the contour and the image.

1.1 One-chains

In order to clarify the nature of the new models, it is helpful
to use the notion of a ‘one-chain’. The space of one-chains
C1(X) in a manifoldX is the space of all formal linear com-
binations of curves in that manifold. Active contour ener-
gies are functionals on this space. In practice however, we
are interested only in closed one-chains with binary coeffi-
cients, which correspond to closed curves with no repeated
segments, so that minimization of the energy is constrained
to this subset,̃C1(X).

Single integrals of quantities along a curve are then linear
functionals onC1(X): the integral along two curves taken
together is the sum of the integrals along each of them taken
separately. Almost all previous models use energies that are
linear in this sense.1 The consequence is that these ener-
gies are local: they can describe interactions only between
infinitesimally separated points of the contour, because an
integral is essentially a sum over single points.

It is however possible to definehigher-orderfunctionals

1All those previous energies that are not linear are nevertheless built of
linear functionals, in the sense of being products or quotients [17, 15] of
them.

onC1(X). These functionals are expressed asmultiple inte-
grals (two in the case of quadratic energies) and can hence
describe interactions between arbitrary points of the curve,
because the multiple integral constitute a sum over all tuples
of points (pairs in the case of quadratic energies).

Such higher-order functionals can be used to define
higher-order active contours. As explained above, these
models bear the same relation to conventional active con-
tours as polynomials bear to linear functions, and enlarge
the range of possible models in a similar fashion. (As we
will see in the next section, there are only two Euclidean-
invariant linear energies, but a whole function space full of
Euclidean-invariant quadratic energies.)

The above can be seen from another point of view. Given
an energyE on some setV , we can (at least formally) define
a probability distribution as the normalized negative expo-
nential ofE: Pr(v) = Z−1 exp−E(v). If the setV is a
vector space, and ifE is a linear functional, we have an ex-
ponential distribution. For an exponential distribution, the
components ofv in any basis are independent. In the case of
one-chains on a manifoldX, this means that the points of the
contour are independent. Apart from the trivial dependency
of closure, this independence necessarily survives the condi-
tioning of the probability distribution on membership of the
subsetC̃1(X) (although it no longer makes sense to describe
it as exponential, sincẽC1(X) is not a vector space).

By contrast, if the energyE is quadratic or higher-order,
the components ofv are not necessarily independent (and
even if they are, the behaviour is still not linear). Corre-
lations now exist between the components. Focusing on the
quadratic case, the distribution becomes Gaussian onC1(X).
It is not however ‘Gaussian’ oñC1(X). Indeed such a de-
scription would not make sense sincẽC1(X) is not a vec-
tor space, and it is thus important to realize the great differ-
ence between the Gaussian distributions used in the works
cited earlier, and the Gaussian distribution resulting from a
quadratic active contour.

To see the difference, consider by analogy a two-
dimensional vector space,i.e. the plane (analogous to
C1(X)), and a curve in that space (analogous toC̃1(X)). The
works cited above approximate a probability distribution on
the curve by choosing a point (the ‘mean’) and construct-
ing a Gaussian distribution in some coordinate distribution
centred on that point, essentially treating the curve as if it
were an infinite straight line. In contrast, the Gaussian dis-
tribution resulting from a quadratic active contour energy is
analogous to a Gaussian distributionon the plane, which is
then restricted to the curve by conditional probability. The
nature of the distribution on the curve can then be very much
more complicated than in the previous case, and indeed the
two notions of ‘Gaussian’ have little to do with one another.

The new energies require new minimization techniques
too. Higher-order energies lead to non-local forces: the force
at a point in the contour depends on the global configuration
of the contour and not just on its infinitesimal neighbour-



hood. The computation of the force thus involves integrals
over the contour. We will use a level set approach, and in the
process we will extend standard methods to handle non-local
forces in a way similar to, but necessarily more precise than,
that used for incompressible (i.e.area preserving) flows.

In sections 2 and 3, we describe the new class of active
contour energies and present the level set method we use to
minimize them. In section 4, we apply a particular quadratic
energy functional to the extraction of line networks in satel-
lite imagery. In section 5, we present experimental results.
We summarize and conclude in section 6.

2 Energy Functional

We first discuss conventional linear energies to establish con-
cepts and notation, and then the construction and nature of
quadratic energies.

2.1 Linear Energies

Let Ω be a bounded subset ofR2, andI : Ω → R be an
image. The discussion below applies to general1-chains,
but for ease of presentation, we will consider a mapC :
S1 → Ω. Given a metricg and a functionf on Ω, both
of which may depend onI, the following linear functional
on the space of1-chains can be defined:

E(C) =
∫

S1
?C∗g C∗f . (1)

Here,C∗ is pullback byC, C∗g is therefore the metric on
S1 induced byC, and?C∗g is the associated Hodge star.
This equation manifests the invariance of the energy both
to changes of coordinates onΩ andS1, and to changes inC
that result in the same geometric curve inΩ (diffeomorphism
invariance). By choosing a coordinatep on S1, we find the
more familiar expression

E(C) =
∮

dp |~t(p)|g f(C(p)) , (2)

where~t(p) = C ′(p) is the tangent vector toC at p, and
|v|g is the norm of the vectorv in the metricg. The form
of functional in equations (1) and (2) encompasses most of
the models that have been used in the past. Another linear
possibility is to integrate a1-form A (intuitively, a vector
field) over the1-chain:

E(C) =
∫

S1
C∗A =

∮
dp ~t(p) ·A , (3)

wherev ·A is the ‘inner product’ of the1-form A and vector
v. The area of the interior of a1-chain is one example.

If the metric, function and1-form do not depend on the
image, it is natural to enforce Euclidean translation and rota-
tion invariance. This forcesf to be constant,g to be invari-
ant (i.e.Euclidean) andA to calculate the interior area. Thus

there are only two linear terms compatible with Euclidean
invariance: length and area.2

2.2 Quadratic energies

The formal construction of quadratic energies proceeds as
follows. Given two1-chainsC andD in Ω, one can define
their product,C ⊗ D, a 2-chain in Ω2. (In the case that
C : S1 → Ω, this construction gives the mapC × C :
T 2 → Ω2, whereT 2 = S1 × S1 is the 2-torus.) We
thus have a map⊗ : C1(Ω) × C1(Ω) → C2(Ω2), where
Cp(X) is the space ofp-chains in the manifoldX. A lin-
ear functional onC2(Ω2) becomes a bilinear functional on
C1(Ω) × C1(Ω) by this construction. In turn, by definition,
such a bilinear functional is, when composed with the diago-
nal mapC1(Ω) → C1(Ω)×C1(Ω) : C 7→ (C, C), aquadratic
functional onC1(Ω).

Thus to construct a quadratic functional on the space of
1-chains inΩ, we must construct a linear functional on the
space of2-chains inΩ2. As in section 2.1, we can do this
in two ways. Given a metric and a function onΩ2, we may
define a functional on2-chains analogous to equation (1).
These functionals are interesting to consider, but space re-
quirements prevent us from discussing them further here.
Alternatively, we may define a2-form F onΩ2, and use the
analogue of equation (3):

E(C) =
∫

T 2
(C × C)∗F . (4)

The product structures ofC×C andT 2 mean that this func-
tional can always be written (in terms of coordinates(p, p′)
onT 2) as

E(C) =
∫

T 2
dp dp′ ~t(p) · F (C(p), C(p′)) ·~t(p′) , (5)

whereF (x, x′), for each(x, x′) ∈ Ω2, is a matrix. The
operatorF allows us to model a non-trivial interaction be-
tween different contour points. Note that this interaction is
not Markov since the interaction is mediated by the embed-
ding rather than the embedded space. The forces derived
from the energy in equation (5) are non-local: the force at a
point is determined by an integral over the contour.

If the 2-form F does not depend on the image, then we
again require the energy to be Euclidean invariant. This re-
sults in the form

E(C) = −
∮ ∮

dp dp′ ~t(p) ·~t(p′) Ψ(|C(p)− C(p′)|) ,

(6)

where|x−y| is the Euclidean distance between pointsx and
y in Ω. The functionΨ weights the interactions between dif-
ferent points of the curve according to their distance, and

2We will not consider here energy terms that depend on the curvature.
These involve lifting the1-chainC to the tangent bundle ofΩ, but otherwise
the mechanics of the construction of functionals is the same as here.



dmin epsilon

Figure 1: The functionΨ

must be chosen carefully since it defines the geometrical
content of the model. In order to eliminate uncontrollable
size effects,Ψ(x) should tend to zero asx tends to infinity,
meaning that two far away points do not interact. It should
also be chosen so that the integral converges. Otherwise, any
choice ofΨ is possible, but the detailed behaviour to be ex-
pected from any particular choice is far from obvious and
remains to be studied.

In the experiments shown later, we use the following form
for Ψ:

Ψ(x) =





1 if x < dmin − ε
0 if x > dmin + ε
1
2 (1− x−dmin

ε − 1
π sin(π x−dmin

ε ) otherwise
,

(7)

where the parametersdmin andε are illustrated on figure 1.
This choice describes a ‘hard core’ potential between ev-

ery pair of points with anti-parallel tangent vectors. One
of its effects is to prevent two points with anti-parallel tan-
gent vectors from approaching closer thandmin. On the
other hand, pairs of points with parallel tangent vectors are
favoured, thus encouraging straight lines to lengthen. The
energy minima that result consist of elongated structures
(‘arms’) of a fixed minimum width that tend to grow. The
arms are mutually repulsive, so that they distribute them-
selves over the domainΩ, and have a limited branching num-
ber.

In an earlier model [29], we used another functionΨ:

Ψ(x) = sinh−1(1/x) + x−
√

(1 + x2) . (8)

This function is also decreasing, behaving as1/2x when
x >> 1 and as ln(2/x) whenx < 1, the latter behaviour pre-
venting the integral from diverging. This choice also favours
the formation of thin elongated structures, but the divergence
of Ψ asx tends to zero causes stability difficulties in calcu-
lating the force numerically. Moreover, due the relatively
slow decrease ofΨ over a long range, the width of the arms
varies considerably more than with theΨ in equation (7).

The growth away from a circle towards a labyrinthine
structure with elongated ‘arms’ can be understood as fol-
lows. A linear analysis of the stability of the circle to small
sinusoidal perturbations shows that above a certain angu-
lar wavelength, the perturbations, rather than being damped
back to zero, are amplified, their size and their spatial fre-
quency around the initial circle being controlled by theΨ
function. Thus instead of smoothing all irregularities, as in
the linear case, this energy allows some of them to develop,
and hence encourages complex shapes. An uncontrollable
instability at all frequencies is prevented by the fact that the
‘bumps’ corresponding to two peaks in the sinusoid cannot
approach closer thandmin. Once created, the bumps elongate
into arms with parallel sides, thus decreasing the energy, al-
though this nonlinear behaviour can no longer be described
within the linear approximation used to study stability. In an
infinite domain it seems likely that the energy is not bounded
below, and that the arms will continue to grow and to ramify
indefinitely. In a finite domain such as an image, this cannot
happen due to the repulsion between the arms.

One can view the formation of complex shapes as a case of
‘symmetry breaking’. The minima of the Euclidean invariant
linear functionals described above, being circles, possess the
same symmetries as the energy, but the same is not true in
general of quadratic energies. Although the energy may be
Euclidean invariant, the minima in general possess no sym-
metries.

3 Minimization of the energy

In order to minimize the energy, we will use gradient de-
scent, evolving the contour using the level set framework in-
troduced by Osher and Sethian [25]. As is well known, level
set representations handle changes of topology naturally, are
parameter free, and allow the simple expression of geometri-
cal quantities like curvature. If the contour propagates along
the outward normal direction with speedF (p), the level set
function obeys

∂φ

∂t
= F |∇φ| . (9)

We use the Fast Marching method [31] for the initializa-
tion of the functionφ as a signed distance function and the
Narrow Band algorithm [32] to evolveφ. This consists of
evolving the function only in the narrow band around the
zero level set for whichφ(x, y) < t, wheret is a threshold.
This results in significant gains in computational efficiency.

The functionF , initially defined only on the contour, is
required in equation (9) to be defined all overΩ. In the case
thatF on the contour can be expressed as a local functional
of φ, this is easily done by assuming that this definition holds
everywhere. For a quadratic energy however, the force at
each point of the contour is given by an integral over the
whole contour. To calculate the force at a pointx0 then, one
could extract the level set corresponding toφ(x0) and inte-
grate around it. This process would need to be repeated for



each point in the Narrow Band, and is thus not very efficient.
Another way would be to persevere with a pure level set ap-
proach, replacing

∮
dp by

∫
dx dy δ(φ, φ(x0))|∇φ| in the

expression of the force, as was done in [6] for incompress-
ible flows. We have found that this technique does indeed
work well for area preserving evolutions, but that it is not
precise enough for the case at hand. We rather adopted a
two-step method: in step one, theφ = 0 contour is extracted
and the force is computed at each point by integrating over
the contour. In step two, the force is extended over the Nar-
row Band. It proved necessary to be as precise as possible in
these computations. Many of the techniques we tried worked
well for area-preserving flows, which also involve integrals
over the contour, but failed when it came to quadratic func-
tionals. Note that the contour is used only to compute the
force, and not to evolve or represent the contour, so that we
lose none of the advantages of the level set method.

In step one, the goal is to extract a list of points{C(pi) =
(xi, yj)} representing the contour, given the values of the
functionφ at the grid points. This is done, as in [33], by us-
ing an Essentially Non Oscillatory polynomial interpolation
technique to find the zeros between each pair of neighbour-
ing grid points, coupled with a sophisticated contour tracing
algorithm. Any geometrical and image quantities needed to
compute the force at the contour points are bilinearly inter-
polated from the grid. We then compute the forceF at each
contour point using standard integration techniques.

In step two, we must extend the forceF from the zero
level set to each grid point in the Narrow Band. We do this
using the partial differential equation proposed in [28]. We
solve

Fτ + sgn(φ)
∇φ

|∇φ| · ∇F = 0 , (10)

where sgn is the sign function, subject to initial and boundary
conditions the same as those proposed in [1]. The steady-
state solution to equation (10) satisfies∇φ · ∇F = 0, i.e.
the variation ofF along the normals to the level sets is null.
The effect of the equation is thus to extend the force along
the normals to the level sets.

3.1 Reinitialization

In principle, the level set functionφ should be equal to the
signed distance function from the zero level set throughout
the contour evolution. In practice this is not true, and in order
to correct the situation, reinitialization is required. Again to
achieve maximum precision, we use the method proposed
by Sussman and Fatemi in [34]. We thus solve the following
partial differential equation forψ, the reinitialized level set:

ψt = sgn(φ)(1− |∇ψ|) + λ(ψ) , (11)

where the constraint functionalλ is determined by the condi-
tion that, in each cell of the grid, the area inside the contour
should be conserved. The aim is to prevent movement of
the zero level set, which is a frequent side-effect of simpler
reinitializations.

4 Application: line network detection

Automatic detection of line networks, and especially of road
networks, in satellite imagery has been studied for the last
fifteen years at least. Motivated by the increasing rate of
data acquisition and the growing importance of geographic
information systems, a wide variety of methods have been
developed to attack this problem. Despite all this attention,
extraction of line networks remains a challenge because of
the great variability of the objects concerned, and the conse-
quent difficulty in their characterization. The intensity of a
road can vary significantly from one road to another, for ex-
ample, while the presence of trees and buildings (‘geomet-
ric noise’) can obscure the network; junctions can be highly
complex; networks do not possess exactly the same proper-
ties in rural and urban areas; and so on.

We mention briefly various methods that have been devel-
oped for the detection of line networks. Early methods used
adapted operators such as edge detectors and morphologi-
cal operations [30, 12]. Probabilistic methods using stochas-
tic geometry and/or Markov random fields have been pro-
posed [2, 35, 20]. Other methods minimize the optimal path
between end points [9, 14]. Multi-scale approaches have
been considered in [10]. Active contour models include ’rib-
bon snakes’ [13, 21] and ‘ziplock snakes’ [24].

4.1 Energy Functional

There are two parts to any model, corresponding to the like-
lihood and the prior in probabilistic formulations: the prior
terms, which do not mention the data, and the data terms,
which do. Most models of road networks assume that the
radiometry of a road is slowly varying and that there is sig-
nificant contrast between roads and their environment, thus
constraining the data term. They also assume that road width
varies slowly with distance and that road curvature is small
compared to inverse road width, except at intersections, thus
constraining the prior terms.

The energy we will describe takes into account these
generic properties, but also, through the presence of
quadratic terms, other properties that are impossible to char-
acterize with linear functionals, such as the fact that the roads
form a network. The energy thus contains two parts:

E(C) = Eg(C) + λEi(C) , (12)

whereλ balances the contributions of the geometric partEg

and the data partEi. The geometric partEg is the sum of
three terms, two linear (length and area), and one quadratic:

Eg(C) =
∮

dp |~t|+ αA(C)

− β

∮ ∮
dp dp′ ~t ·~t′ Ψ(R(p, p′)) , (13)

whereΨ is defined in equation (7),R(p, p′) is the Euclidean
distance betweenC(p) andC(p′), andA(C) is the area of



the interior of the contour. The length term aims at minimiz-
ing the length of the contour and acts as a regularizing term.
The area term is introduced to control the expansion of the
fingered structure. It gives birth to a constant force in the
direction of the inward normal. The effect of the quadratic
term was discussed in section 2.

The image partEi is composed of two terms:

Ei(C) =
∮

dp ~n · ∇I

−
∮ ∮

dp dp′ ~t ·~t′ (∇I · ∇I ′) Ψ(R(p, p′)) ,

(14)

where~n is the unit outward normal to the contour. For clar-
ity, we use primed and unprimed variables to designate quan-
tities evaluated at pointsp (orC(p)) andp′ (orC(p′)) respec-
tively.

The first data term favours situations in which the outward
normal is opposed to the image gradient, or in other words,
in which the road is lighter than its environment. When this
is the case, it also favours larger gradients under the contour.
The second term is an example of a quadratic data term: it
describes a relation between the contour and the data that
cannot be incorporated into a linear functional. Its effect is to
favour situations in which pairs of points whose tangent vec-
tors are anti-parallel and which are not too distant from each
other (i.e. points on opposite sides of the road) lie on image
gradients that point in opposite directions and are large.

The energy in equation (12) is minimized using gradient
descent implemented via level sets as described in section 3.
Thus the contour evolution is determined by

∂C

∂t
= −δE

δC
(C) , (15)

whereδE/δC is the functional derivative ofE with respect
to C, i.e. it describes the change in energyδE due to a small
change in the curveδC. The resulting equation of motion is
then

~n · ∂C

∂t
= −κ− λ∇2I − α

+ 2λ

∮
dp′ (∇I ′ · ∇∇I · ~n′) Ψ(R(p, p′))

+ 2
∮

dp′ (~R · ~n′)(β + λ∇I · ∇I ′) Ψ′(R(p, p′)) ,

(16)

where~R = (C(p)−C(p′))/|C(p)−C(p′)|. The component
of ∂C/∂t along the normal has been taken, movement along
the tangent direction being equivalent to a diffeomorphism
of S1, the domain ofC, and thus irrelevant.

5 Experimental results

Ignoring the image terms completely, and evolving the con-
tour under the influence of the prior, purely geometric terms,

gives a good idea of the type of shapes favoured by the new
energy. Classical linear energies evolve from an arbitrary
shape towards a circle. If there is no area term, this circle will
shrink and vanish. The presence of the area term will cause
the circle to stabilize at a certain radius, where it will remain.
In contrast, as discussed above, the minima of the quadratic
energies are not circles. In fact, circles are unstable, “de-
caying” under evolution of the contour into, in our case, fin-
gered shapes that are well adapted to line network extraction,
demonstrating as they do elongated structures with parallel
sides and slowly varying width.

In figure 2 are shown several evolutions based on the geo-
metric termsEg only. The parameterdmin of theΨ function
controls the minimum width of the fingers, and in the ab-
sence of data terms, all fingers collapse down to this limit.
All the evolutions show the formation of fingered structures
with parallel-sided arms of constant width. The first three
rows of figure 2 show evolutions for different values of the
parameterdmin that controls the width of the arms. We chose
dmin = 3, 5, 7; the fingers formed are of the correct width.
The last two rows illustrate the role of the parameterα. In
the fourth rowα = 0.05, while α = 0.1 in the fifth row: the
larger the value ofα, the fewer the number of arms and the
sparser the network.

We have also tested the above model on real satellite im-
ages. The results on two images are shown in figure 3. The
images present several difficulties. There are regions of high
gradient corresponding to the borders of fields rather than to
roads. The fields are also objects with parallel sides. In the
first image of figure 3, there is a discontinuity in the road. In
both images, the roads are found.

Two important points need to be made here. The first con-
cerns initialization. This is always an issue for gradient de-
scent methods. The results may depend heavily on the ini-
tialization point, and indeed a number of methods used for
the detection of roads rely on an initialization very close to
the target. In contrast, we have found that starting from a
rounded rectangle covering the greater part of the image do-
main is sufficient for the new energies. This is not surprising.
Greater specificity in the prior term should eliminate many
candidate contours from consideration, thus smoothing the
energy surface, while at the same time deepening the mini-
mum corresponding to the true network. The method should
thus be less sensitive to initialization than less specific en-
ergies. The second point concerns termination. The results
shown above are local minima of the energy: they evolve no
further under more iterations.

Figure 4 shows another result. It is quite good, but the
errors it contains illustrate some of the outstanding issues
with the model. There is a piece of contour remaining that
does not correspond to a road, and the road to the bottom
right has not extended far enough. There is also a gap in the
road at the junction.



Figure 2: Geometrical evolutions for different values of the
parameterdmin (first three rows) andα (last two rows).

6 Conclusions

We have introduced a new class of active contour energy
functionals. These energies are quadratic on the space of
one-chains, in contrast to classical energies, which are lin-
ear. The new energies enable us to introduce complex geo-
metrical information into the model. We studied a particular
form of quadratic energy whose minima consist of fingered
structures with parallel sides. We can control the width and
the number of arms formed. Using this energy as a base, we
designed an energy functional for the detection of roads in
satellite imagery and tested it on real satellite images. Sim-
ulations prove the efficiency of the model and illustrate the
effect of the incorporation of non-trivial geometrical interac-
tions between points of the contour. Algorithmically, these
models presented new challenges, in particular the need for
a maximum of precision in the calculation of the force and
the evolution of the contour.

Immediate future work is focused on the solution of the
problems mentioned in connection with figure 4. We are de-
signing a quadratic ‘gap closure’ force that will overcome
the repulsion introduced by the existing quadratic term in
certain special circumstances. This force will also help to
eliminate small remnant areas. We are also developing the

Figure 3: Detection of roads in 2 satellite images.

existing quadratic term so that it encourages road extensions
even more than it does at present.

It is clear that the use of higher-order energies is not lim-
ited to line network detection in remote sensing data. One
obvious application of the models presented here is to bio-
logical and medical imagery, where the geometry required is
often similar.

We are only just beginning to explore the modelling pos-
sibilities of quadratic energies. Many open questions and re-
search directions (e.g.higher-than-quadratic functionals; ex-
tension to surfaces; probabilistic formulation and the link to
field theory; parameter and model estimation; new level set
techniques; computational efficiency) remain to be explored.



Figure 4: Result on a larger image
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