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Abstract abnormalities in medical data. The purpose of this work is

to extend this to dynamic shapes. This is fundamental for
A framework for computing shape statistics in general, agglidies such as those involving gait, behavior, growth pat-
average in particular, for dynamic shapes is introduced in thégns, and all problems involving motion, deformations, and
paper. Given a metrid(-,-) on the set of static shapes, théme-varying shapes.
empirical mean olg\f static shapesj;,...,Cy, is defined  Gjven N dynamic shapes (¢),...,['n(t) (¢ stands for
by arg ming & >-,_, d(C, C;)*. The purpose of this paperihe time parameter, see Figure 1), we want to fiict), the
is to extend this shape average work to the cas&/aly- empirical mean of these shapes. This basic computation will
namic shapes and to give an efficient algorithm to compue ysed throughout this paper as an example of how to per-
it. The key concept is to combine the static shape statigrm statistics on dynamic shapes. One idea could be to sim-
tics approach with a time'alignment Step. To align the t|nﬂﬂy perform static average amoﬂg(tl)’ L. 7FN(tl)s for
scale while performing the shape average we dyg®amic each time instancs, process that is clearly not efficient for
time warping adapted to deal with dynamic shapes. Th&ery king of data. Indeed, the initial shape series might not
proposed technique is independent of the particular chojgetime-aligned (e.qg., due to different growth rates in med-
of the shape metrid(-,-). We present the underlying conica| applications and different motion speeds in gait analy-
cepts, a number of examples, and conclude with avariatiog@b_ The dynamic shapes need to be properly aligned be-
formulation to address the dynamic shape average problegpe any kind of shape statistics technique is appligthis
We also demonstrate how to use these results for compa@gxacﬂy the role of thelynamic time warpingDTW), see
different types of dynamics. Although only average is aggure 1. This process is commonly used in speech recogni-
dressed in this paper, other shape statistics can be similgg in order to time-align speech patterns to account for dif-
obtained following the framework here proposed. ferences in speaking rates across speakers. It has also been
used by a number of authors for gait analysis, but limited
to the 1D path obtained by the tracking of particular joints.
In this work we propose to combine DTW with results on
Understanding shape and its basic empirical statistics is ﬁ‘g-lt'c shape analysis to compute basic ;ta}tlstlcs on dynamic

apes. The framework here proposed is independent of the

ortant both in recognition and analysis, with a licatiorts F ; ) : X .
P 9 y PP :%Frtlcular choice of static shape metric. This work deals with

1 Introduction

ranging from medicine to security to consumer photograp te time inst hile th tension t i
The basic metrics and statistics of static shapes have bee pe'cte IMe Instances, while the extension to a continuous
ég@ework is discussed in the conclusions section.

subject of numerous fundamental studies in recent years,
for example [1, 3, 4, 6, 8, 13, 15, 16] and references therein.

In particular, given a metric on the set of static shapes (djs- . .
tance between two samples), the empirical mean shape oﬁ Static Shape Averagmg

static shapes, as well as other basic statistics, can be defined ) )
and computed. These are then used for diverse shape stutfigd/der to compute the mean 0f static shapes, a distance

from the recognition of particular objects to the detection 8 the set of the shapes is necessary (for examples of such

metrics see [3, 7, 13, 14] and references therein). Once the
*PM performed this work while visiting the University of MinnesotametriC is given the empirical mean shape can be defined:
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Definition 1 Let d(-,-) be a distance on the set of shapes4. A limitin the maximum amount of warp is fixed by

and C1,...,Cy, N static shapes. The empirical mean ] ) . .
M(Ch,...,Cy) is given by |f(k)—g(k)| < Q, @ beingthe given “window width
N In the example in Figure 2, thame warping functionare:
M(Cy,...,Cn) = argminz d(C,C;)*
i=1

_ _ f:i1—-1 2—-2 3—-3, 4—4

The goal of thls paper is tq pr_esent a natur_al and easy to 55 6—6 7—6 86
compute extension of this definition for dynamic shapes. Be-
fore doing this, let us briefly recall the second fundamental
component of our approach, dynamic time warping. 5—3, 6—4, 7—>5 8—-6

g:1—-1, 2—2 3—-2 42

At first glance, it would seem as D(f, g) would have

3 Dynamic Time Warping to be evaluated for a prohibitively large number of possible
paths. Fortunatelydynamic programmindprings this prob-
Dynamic time warping (DTW) is principally used in speeclgm under control by noting that the best path frm1)
recognition to time-align speech patterns in order to accoli@tany given point is independent of what happens beyond
for differences in speaking rates across speakers. A distalfi@ point. Hence, if we calD (i, jx) the total cost of the
between two speech patterns can then be computed by B§igt path fron(1,1) to (i, ji), this is the cost of the point
technique in order to be able to compare them (see [dfk-Jx) itself plus the cost of the cheapest path to it:

DTW can be adapted to deal with other types of signals as.,. . L. . . .
P P g D(i, ji) = d(ir, ju)* +  min  D(ig—1,jr—1)

done in this paper for shapes. legal(is—1,jx—1)
When the two signal§A, B) to be matched are defined as o _ o .
sampled time functionsd = ay,...,az; B = by, ..., bas, By the subscript “legalix—1, jx—1)" we mean the minimum

the basic problem in DTW is to find twiime warping func- OVer all permissible predecessors(df, ji). By constraints
tions f andg such that 1 and3 above, there are only three legal predecesgogs-

1, jk)s (ix, jr — 1) @and (i — 1, jr — 1). Therefore we need

T to consider only three possibilities per lattice point (this if
Z d(agy, ber))” further constrained by point 4 above).
t=1 Dynamic programming for solving the DTW problem

finding f andg) then proceeds in incremental stages (see
9] for the complete algorithm), achieving an optimal time
omplexity of O(P Q) (P is the number of initial frames
d@ the “window width” from constraint). It means that
e need to computé(-, -), the distance between two static
shapes, onlY(P Q) times.

is minimized (herel(-, -) stands for the function measurin
the discrepancy between two samples).

Computing these warping functions can be viewed as
process of finding a minimum-cost path through the latti
of points(a;, b;) ¢ jye{1,....Lyx{1,...,m} Starting from(1, 1)
and ending atL, M) (see Figure 2%, where the cost of a
path is defined by:

4 Dynamic Shapes Averaging

N 2
D(f,9)= Z d(ag ), by(r)) With the basic concepts on the mean of static shapes and dy-
=1 namic time warping, we are now ready to describe the frame-
and f andg are subject to the following constraints: work for dynamic shape average.
1. f andg must be monotonic: 4.1 Basic ldea
f(k) > f(k—1)andg(k) > g(k — 1) We first define a dynamic shape as a sequence of static

shapes (represented by any possible characterization):

2. f andg must match the endpoints df and B: e ) )
Definition 2 Let S be a set of static shapes (using any ex-

f(1)=g(1) =1, f(T)=Landg(T)=M isting representation). A dynamic shapes an ordered se-
quence of static shapég);,...,Cr) € ST (T € Nis the

3. f andg must not skip any points: length of the dynamic shape).

i k1) < 1 anda(k k1) <1 Although the above definition is given for discrete times,
fk) = f(k —1) < 1andg(k) — g(k —1) < it can be extended to continuous space.

2Note that we use; andb; both to denote the time positions and their The idea now is to combine dynamic time warping and
corresponding values, the distinction clearly provided by the context. ~ Static shape averaging:




Definition 3 Givend(-,-), a distance on the set of statidVe opt to replace every second pairfih by its static aver-

shapes, and';(¢1),...,'n(tn), N dynamic shapes of re-age , then we do the same for the pairdin(see Figure 3).
spective lengtfT; (i.e.t; = 1,...,T;), their empirical mean Each replacement decreases the length by one.
is defined as Therefore T, the length of the mean shaph the jumps,

f B2 MEAG), . Taa@)

or1<t<T:I'(t)= 1(/1(¢)), ..., I'n(fn(E

T’:T_@_@:T +7|E1|_‘E2|
wherefi, ..., fy are N time-warping functions given by 2 2 1 2
T T,_T+T2—T1_T2+T1
(fi,-ooofn) = argmin y pu(T1(f1(8)), ., Tn(fn(2)) ' 2 2
FofN o The length of the final mean shape is then the average of
with the length of the two initial shapes.
w(Ch,...,Cy) = Z d(Cy, C;) In the general casé\ dynamic shapes), it is also intuitive

that we would like the length of the final mean shape to equal
. ) the average of the lengths of ti¢ initial dynamic shapes.
andM (Ch, ..., Cy) is the mean of static shapes (see Def. Ry erefore we now generalize the pairing process described

‘above. Define, foranyl c {1,...,N}:

1<i<j<N

In words, we start by finding (via DTW) optimal time
correspondences between static shapes and after that We a0 fip T .

. - . = t),I(t+1 ()= fi(t+1) = A

compute the average of these static shapes per time instance? {T@,LE+ D) LAE) = it +1) e A}

The warping is such that the metric is minimized. and, foranyi € {1,...,N}:
This definition suggests to consider the “distance” be-
tween two dynamic shapes as follows (there is no triangle A 2{AcC{l,...,N}|ic A}

inequality here): , , i

Then the following relations, wherg is the length of the
Definition 4 Given two dynamic shapds, and I';, their mean shapithoutjumps, hold for any € {1,...,N}:
“distance” is given by

. T=Ti+ Yy |Eal

1 AcA;
6(T1,Ta) = o Y d(Tu(f(1), Ta(f2(1))), ©
t—0 and N

whered(-,-) is the_ selef:ted metrjc for sta_ltic shapes afid T— %ZTl = % Z |A| - |E 4l
and f, are the optimal time warping functions. i=1 Ac{1,..,N}

This definition will be used later to compare human md-e right hand term of the previous equality can be elim-
tions. inated by the following process: For every subsgktof

{1,..., N}, we choose a numbér% of pairs belong-

4.2 Basic Improvements ing to £4.2 Then we replace each pair by their static aver-

age.The length of the final mean shape is then the average of
With the simple use of DTW, the mean shape’s lerigthill  the length of theV initial shapes. Figure 4 shows the mean
be greater than or equal to the maximum of the individughape for simple initial shapes and fr= 3.
time lengths{T},...,Tn}. Therefore, the dynamic mean
shape will always be longer than the initial shapes (in Figure
2T, = 6,T, — 6,T = 8). In order to correct this, we add® Examples
jumps in the final path.

WhenN = 2, define, fori € {1,2}, For our experiments,we represented a static skiajpy its
distance function)(z) = min,c¢ ||z — y|| and we used the
E; é{(f(m f(t +1) | filt) = fi(t + 1)} following simple metric on the set of static shapes:

wherel'(-) is the dynamic mean shape (from Definition 3).

E, is th(e) set of vertical segments aift} the set of hor- d(C1,C2) = \//Q (¥1(w) = ¥2(w))? dw

izontal segments in the graph representing the final path.

In Figure 2,E; = {(I'(6),T'(7)),(I'(7),T'(8))} and B2 = wherey;(z) is the distance function to the shape For this
{(T'(2),T(3)), (T'(3),T(4))}. These segments are responsitistance(, the average shape, is the zero level set of
ble for the increase of the final length. Indeed, we have the 1

simple relation T is the length of the mean shapéthout @(x) = §(¢1(x) + o(x))

jumps) :

T=T +|Ei| =T+ |Es| 3We choose these pairs uniformly spread in time.



As mentioned in the introduction, the framework henghere f; are thetime warping functionsand H represents
introduced is independent of the particular choice of tiseme constraints on them (such as continuity, monotonicity,
static metricd(+, -), and we have selected this simple one facceleration, etc). To this we can add time domain landmarks
demonstration purposes only. (e.g., by splitting the domain). These topics are the subject

The segmentation of the input pictures is done by simglécurrent efforts in our group.
thresholding ([12, 10]), and the distance functigrfor each
shapeC; is computed with the fast marching method (f
details, see [5, 11, 17]). Figure 5 shows an example (grn:eeeferenCeS
frame) of an initial dynamic shape. [1] F.L. Bookstein. Size and shape spaces for landmark data in two di-

In figures 6 and 8, we present a number of frames from MensionsStatistical Sciencel:181-242, 1986.
two initial video clips (dynamic shapes), followed by sam4{2] Y. Caspi and M. Irani. Parametric sequence-to-sequence alignment.
pled frames from the average dynamic shape computed with- IEEE Transactions on Pattern Analysis and Machine Intelligence
out using DTW, and finally sampled frames from the averadé] G. Charpiat, 0. Eaugeras, and R. Keriyen. Approxi.njations of shape
dynamic shape computed with our technique. Figures 7 and metrics and application to shape warping and empirical shape statis-

9 sh th di DTW h tics. Technical report, INRIA-RR-4820, 2003.
showhe corresponding grapns. [4] T.Cootes, C. Taylor, D. Cooper, and J. Graham. Active shape models:

' In .Figure. 10, we presept some frames from three ini-" Their training and applicationComputer Vision and Image Under-

tial video clips (three walking men), followed by sampled  standing 61(1):38-95, 1995.

frames from the mean dynamic shape computed without us} J. Helmsen, E. G. Puckett, P. Collela, , and M. Dorr. Two new meth-

ing DTW, and finally with our technique. ods for simulating photolithography development in Jtoc. SPIE
Using Definition 4, we can compare different dynamics, ~Microlithography X253, 1996.

such as running vs. walking men. As observed in the tablél 'é"js-'Dryf,‘\?” agd E Yégﬂgfd'asm'snca' Shape Analysidohn Wiley

below, this function is five times greater between one running ons, Tew York, :

men and one Walking men than between two running or tV\B] D. G. Kendall. Shape manifolds, procrustean metrics and complex
projective spaces. Bulletin of the London Mathematical Society

walking men. 16:81-121, 1984.
[8] M. Miller and L. Younes. Groups actions, homeomorphisms and
5(.’ .)/1()6 walk1l | walk2 | runl | run?2 matching: A general frameworldnternational Journal of Computer
walk 1 0 1.3 5.6 6.3 Vision, 41(1/2):61-84, 2001.
walk 2 1.3 0 5.9 6.7 [9] T. ParsonsVoice and Speech ProcessingcGraw-Hill, 1987.
runl 5.6 5.2 0 1.1 [10] P. K. Sahoo, S. Soltani, A. K. C. Wong, and Y. C. Chen. A survey
of thresholding techniquesComputer Vision, Graphics, and Image
run2 6.3 6.7 1.1 0 Processing41(2):233-260, February 1988.

[11] J. A. Sethian. A fast marching level-set method for monotonically
advancing frontsProc. Nat. Acad. S¢i93:4:1591-1595, 1996.

[12] L. G. Shapiro and G. C. Stockma@omputer Vision Prentice Hall,

2001.
':arrfl\éeslhf;?::\\llvvg;k dfgécgii)rézrmltnfﬂsspr:aaggr S'tl'af::eSttl)CaSsig]i(;jg%al]s C. G. Small.The Statistical Theory of Shap8pringer, 1996.
to combine shape alignment with previously developed idd4d S: Scatto and A. J. Yezzi. Deformotion: Deforming motion, shape
. ) . . average and the joint registration and approximation of structures in
from static shape studies. The shape alignment is based 0Njmages. international Journal of Computer Visiors3(2):153-167,
dynamic time warping. The framework is independent of the 2003.
metric between static shapes. [15] A. Toga.Brain Warping Academic Press, 1998.

A number of directions are suggested by the line of r@s] A. Trouve and L. Younes. Diffeomorphic matching problems in
search here initiated. First of all, other more advanced static one dimension: Designing and minimizing matching functionals. In
shape metrics need to be used, including those that incorpo- ECCV'00 pages 573-587, 2000.
rate landmarks, found to be fundamental for medical aph] J. N. Tsitsiklis. Efficient algorithms for globally optimal trajectories.
cations [15]. Once these advanced metrics are incorporated 'EEE Transactions on Automatic Contyd0:1528-1538, 1995.
into our framework, we can proceed with more exhaustive
experimentation, including 3D dynamic shapes. Of partic-
ular interest are the analysis and recognition of gait and the
study of growth in medical applications.

In this paper we limited ourselves to the case of discrete
time. In the continuous case, a variational formulation to ad-
dress the dynamic shape average problem can be formulated
as

6 Conclusion

arg min /O S0, Taf(8)? + H(fi()dt

va& 1§’L§N
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Figure 4: Example of mean shape, with jumps, for simple
Figure 1: A simple example showing the importance of timgitial shapes andv = 3.
alignment when performing shape statistics. The first two
rows show two dynamic shapEs(¢) andl'y(¢). The follow-
ing two rows show their mean: a) Computed without DTW-
alignment, b) Computed with enhanced DTW-alignment.
We clearly observe the need for the DTW step.
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Figure 2: Dynamic time warping example.
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Figure 3: Example of the introduction of jumps in DTW for
N =2.



Figure 7: Graph corresponding to the DTW for the running
sequences.
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Figure 6: Example of two walking men. The two dynami §
shapes are given first, followed by the mean without DT
(third row), and finally the mean with DTW (last row). Note
how the lack of time alignment creates topological erroi

) . t=59 t=100
not present in the average when DTW is used.

Figure 8: Same as Figure 6 for two hands in motion.



Figure 9: Graph corresponding to the DTW for the han
sequences.

Figure 10: Example of three walking men. The three dy-
namic shapes are given first, followed by the mean without
DTW (fourth row), and finally the mean with DTW, our pro-
posed technique (last row). Once again, note the significant
improvement when the time-warping is added to the shape
statistics process.



