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Abstract

A framework for computing shape statistics in general, and
average in particular, for dynamic shapes is introduced in this
paper. Given a metricd(·, ·) on the set of static shapes, the
empirical mean ofN static shapes,C1, . . . , CN , is defined
by arg minC

1
N

∑N
i=1 d(C,Ci)2. The purpose of this paper

is to extend this shape average work to the case ofN dy-
namic shapes and to give an efficient algorithm to compute
it. The key concept is to combine the static shape statis-
tics approach with a time-alignment step. To align the time
scale while performing the shape average we usedynamic
time warping, adapted to deal with dynamic shapes. The
proposed technique is independent of the particular choice
of the shape metricd(·, ·). We present the underlying con-
cepts, a number of examples, and conclude with a variational
formulation to address the dynamic shape average problem.
We also demonstrate how to use these results for comparing
different types of dynamics. Although only average is ad-
dressed in this paper, other shape statistics can be similarly
obtained following the framework here proposed.

1 Introduction

Understanding shape and its basic empirical statistics is im-
portant both in recognition and analysis, with applications
ranging from medicine to security to consumer photography.
The basic metrics and statistics of static shapes have been the
subject of numerous fundamental studies in recent years, see
for example [1, 3, 4, 6, 8, 13, 15, 16] and references therein.
In particular, given a metric on the set of static shapes (dis-
tance between two samples), the empirical mean shape ofN
static shapes, as well as other basic statistics, can be defined
and computed. These are then used for diverse shape studies,
from the recognition of particular objects to the detection of
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abnormalities in medical data. The purpose of this work is
to extend this to dynamic shapes. This is fundamental for
studies such as those involving gait, behavior, growth pat-
terns, and all problems involving motion, deformations, and
time-varying shapes.

GivenN dynamic shapesΓ1(t), . . . ,ΓN (t) (t stands for
the time parameter, see Figure 1), we want to findM(t), the
empirical mean of these shapes. This basic computation will
be used throughout this paper as an example of how to per-
form statistics on dynamic shapes. One idea could be to sim-
ply perform static average amongΓ1(t1), . . . ,ΓN (t1), for
each time instancet1, process that is clearly not efficient for
every king of data. Indeed, the initial shape series might not
be time-aligned (e.g., due to different growth rates in med-
ical applications and different motion speeds in gait analy-
sis). The dynamic shapes need to be properly aligned be-
fore any kind of shape statistics technique is applied.1 This
is exactly the role of thedynamic time warping(DTW), see
Figure 1. This process is commonly used in speech recogni-
tion in order to time-align speech patterns to account for dif-
ferences in speaking rates across speakers. It has also been
used by a number of authors for gait analysis, but limited
to the 1D path obtained by the tracking of particular joints.
In this work we propose to combine DTW with results on
static shape analysis to compute basic statistics on dynamic
shapes. The framework here proposed is independent of the
particular choice of static shape metric. This work deals with
discrete time instances, while the extension to a continuous
framework is discussed in the conclusions section.

2 Static Shape Averaging

In order to compute the mean ofN static shapes, a distance
on the set of the shapes is necessary (for examples of such
metrics see [3, 7, 13, 14] and references therein). Once the
metric is given, the empirical mean shape can be defined:

1The topic of time alignment appears also in video (see for example [2]
and references in there). The goals and techniques used there are completely
different from the ones here presented. The use of our proposed framework
for video alignment is the subject of future research.



Definition 1 Let d(·, ·) be a distance on the set of shapes
and C1, . . . , CN , N static shapes. The empirical mean
M(C1, . . . , CN ) is given by

M(C1, . . . , CN ), arg min
C

N∑
i=1

d(C,Ci)2

The goal of this paper is to present a natural and easy to
compute extension of this definition for dynamic shapes. Be-
fore doing this, let us briefly recall the second fundamental
component of our approach, dynamic time warping.

3 Dynamic Time Warping

Dynamic time warping (DTW) is principally used in speech
recognition to time-align speech patterns in order to account
for differences in speaking rates across speakers. A distance
between two speech patterns can then be computed by this
technique in order to be able to compare them (see [9]).
DTW can be adapted to deal with other types of signals as
done in this paper for shapes.

When the two signals(A,B) to be matched are defined as
sampled time functions,A = a1, . . . , aL;B = b1, . . . , bM ,
the basic problem in DTW is to find twotime warping func-
tionsf andg such that

T∑
t=1

d(af(t), bg(t))2

is minimized (hered(·, ·) stands for the function measuring
the discrepancy between two samples).

Computing these warping functions can be viewed as the
process of finding a minimum-cost path through the lattice
of points(ai, bj)(i,j)∈{1,...,L}×{1,...,M}, starting from(1, 1)
and ending at(L,M) (see Figure 2),2 where the cost of a
path is defined by:

D(f, g) ,
T∑

t=1

d(af(t), bg(t))2

andf andg are subject to the following constraints:

1. f andg must be monotonic:

f(k) ≥ f(k − 1) andg(k) ≥ g(k − 1)

2. f andg must match the endpoints ofA andB:

f(1) = g(1) = 1, f(T ) = L andg(T ) = M

3. f andg must not skip any points:

f(k)− f(k − 1) ≤ 1 andg(k)− g(k − 1) ≤ 1

2Note that we useai andbi both to denote the time positions and their
corresponding values, the distinction clearly provided by the context.

4. A limit in the maximum amount of warp is fixed by

|f(k)−g(k)| ≤ Q, Q being the given “window width”

In the example in Figure 2, thetime warping functionsare:

f : 1 → 1, 2 → 2, 3 → 3, 4 → 4
5 → 5, 6 → 6, 7 → 6, 8 → 6

g : 1 → 1, 2 → 2, 3 → 2, 4 → 2
5 → 3, 6 → 4, 7 → 5, 8 → 6

At first glance, it would seem as ifD(f, g) would have
to be evaluated for a prohibitively large number of possible
paths. Fortunately,dynamic programmingbrings this prob-
lem under control by noting that the best path from(1, 1)
to any given point is independent of what happens beyond
that point. Hence, if we callD(ik, jk) the total cost of the
best path from(1, 1) to (ik, jk), this is the cost of the point
(ik, jk) itself plus the cost of the cheapest path to it:

D(ik, jk) = d(ik, jk)2 + min
legal(ik−1,jk−1)

D(ik−1, jk−1)

By the subscript “legal(ik−1, jk−1)” we mean the minimum
over all permissible predecessors of(ik, jk). By constraints
1 and3 above, there are only three legal predecessors:(ik −
1, jk), (ik, jk − 1) and(ik − 1, jk − 1). Therefore we need
to consider only three possibilities per lattice point (this if
further constrained by point 4 above).

Dynamic programming for solving the DTW problem
(finding f andg) then proceeds in incremental stages (see
[9] for the complete algorithm), achieving an optimal time
complexity ofO(P Q) (P is the number of initial frames
andQ the “window width” from constraint4). It means that
we need to computed(·, ·), the distance between two static
shapes, onlyO(P Q) times.

4 Dynamic Shapes Averaging

With the basic concepts on the mean of static shapes and dy-
namic time warping, we are now ready to describe the frame-
work for dynamic shape average.

4.1 Basic Idea

We first define a dynamic shape as a sequence of static
shapes (represented by any possible characterization):

Definition 2 Let S be a set of static shapes (using any ex-
isting representation). A dynamic shapeΓ is an ordered se-
quence of static shapes(C1, . . . , CT ) ∈ ST (T ∈ N is the
length of the dynamic shape).

Although the above definition is given for discrete times,
it can be extended to continuous space.

The idea now is to combine dynamic time warping and
static shape averaging:



Definition 3 Given d(·, ·), a distance on the set of static
shapes, andΓ1(t1), . . . ,ΓN (tN ), N dynamic shapes of re-
spective lengthTi (i.e. ti = 1, . . . , Ti), their empirical mean
is defined as

for 1 ≤ t ≤ T : Γ̂(t) ,M(Γ1(f1(t)), . . . ,ΓN (fN (t)))

wheref1, . . . , fN areN time-warping functions given by

(f1, . . . , fN ) = arg min
f1,...,fN

T∑
t=0

µ(Γ1(f1(t)), . . . ,ΓN (fN (t)))

with
µ(C1, . . . , CN ) =

∑
1≤i<j≤N

d(Ci, Cj),

andM(C1, . . . , CN ) is the mean of static shapes (see Def.1).

In words, we start by finding (via DTW) optimal time-
correspondences between static shapes and after that we
compute the average of these static shapes per time instance.
The warping is such that the metric is minimized.

This definition suggests to consider the “distance” be-
tween two dynamic shapes as follows (there is no triangle
inequality here):

Definition 4 Given two dynamic shapesΓ1 and Γ2, their
“distance” is given by

δ(Γ1,Γ2) =
1
T

T∑
t=0

d(Γ1(f1(t)),Γ2(f2(t))),

whered(·, ·) is the selected metric for static shapes andf1
andf2 are the optimal time warping functions.

This definition will be used later to compare human mo-
tions.

4.2 Basic Improvements

With the simple use of DTW, the mean shape’s lengthT will
be greater than or equal to the maximum of the individual
time lengths{T1, . . . , TN}. Therefore, the dynamic mean
shape will always be longer than the initial shapes (in Figure
2, T1 = 6, T2 = 6, T = 8). In order to correct this, we add
jumps in the final path.

WhenN = 2, define, fori ∈ {1, 2},

Ei ,{(Γ̂(t), Γ̂(t+ 1)) | fi(t) = fi(t+ 1)}

whereΓ̂(·) is the dynamic mean shape (from Definition 3).
E1 is the set of vertical segments andE2 the set of hor-
izontal segments in the graph representing the final path.
In Figure 2,E1 = {(Γ̂(6), Γ̂(7)), (Γ̂(7), Γ̂(8))} andE2 =
{(Γ̂(2), Γ̂(3)), (Γ̂(3), Γ̂(4))}. These segments are responsi-
ble for the increase of the final length. Indeed, we have the
simple relation (T is the length of the mean shapewithout
jumps) :

T = T1 + |E1| = T2 + |E2|

We opt to replace every second pair inE1 by its static aver-
age , then we do the same for the pairs inE2 (see Figure 3).
Each replacement decreases the length by one.

Therefore T’, the length of the mean shapewith the jumps,
becomes:

T ′ = T − |E1|
2

− |E2|
2

= T1 +
|E1| − |E2|

2

T ′ = T1 +
T2 − T1

2
=
T2 + T1

2
The length of the final mean shape is then the average of

the length of the two initial shapes.
In the general case (N dynamic shapes), it is also intuitive

that we would like the length of the final mean shape to equal
the average of the lengths of theN initial dynamic shapes.
Therefore we now generalize the pairing process described
above. Define, for anyA ⊂ {1, . . . , N}:

EA ,{(Γ̂(t), Γ̂(t+ 1)) | fi(t) = fi(t+ 1) ⇐⇒ i ∈ A}

and, for anyi ∈ {1, . . . , N}:

Ai ,{A ⊂ {1, . . . , N} | i ∈ A}

Then the following relations, whereT is the length of the
mean shapewithout jumps, hold for anyi ∈ {1, . . . , N} :

T = Ti +
∑

A∈Ai

|EA|

and

T − 1
N

N∑
i=1

Ti =
1
N

∑
A⊂{1,...,N}

|A| · |EA|

The right hand term of the previous equality can be elim-
inated by the following process: For every subsetA of
{1, . . . , N}, we choose a number|A|·|EA|

N of pairs belong-
ing toEA.3 Then we replace each pair by their static aver-
age.The length of the final mean shape is then the average of
the length of theN initial shapes. Figure 4 shows the mean
shape for simple initial shapes and forN = 3.

5 Examples

For our experiments,we represented a static shapeC by its
distance functionψ(x) = miny∈C ‖x− y‖ and we used the
following simple metric on the set of static shapes:

d(C1, C2) =

√∫
Ω

(ψ1(ω)− ψ2(ω))2 dω

whereψi(x) is the distance function to the shapeCi. For this
distance,Ĉ, the average shape, is the zero level set of

ψ̂(x) =
1
2
(ψ1(x) + ψ2(x))

3We choose these pairs uniformly spread in time.



As mentioned in the introduction, the framework here
introduced is independent of the particular choice of the
static metricd(·, ·), and we have selected this simple one for
demonstration purposes only.

The segmentation of the input pictures is done by simple
thresholding ([12, 10]), and the distance functionψi for each
shapeCi is computed with the fast marching method (for
details, see [5, 11, 17]). Figure 5 shows an example (one
frame) of an initial dynamic shape.

In figures 6 and 8, we present a number of frames from
two initial video clips (dynamic shapes), followed by sam-
pled frames from the average dynamic shape computed with-
out using DTW, and finally sampled frames from the average
dynamic shape computed with our technique. Figures 7 and
9 show the corresponding DTW graphs.

In Figure 10, we present some frames from three ini-
tial video clips (three walking men), followed by sampled
frames from the mean dynamic shape computed without us-
ing DTW, and finally with our technique.

Using Definition 4, we can compare different dynamics,
such as running vs. walking men. As observed in the table
below, this function is five times greater between one running
men and one walking men than between two running or two
walking men.

δ(·, ·)/106 walk 1 walk 2 run1 run2
walk 1 0 1.3 5.6 6.3
walk 2 1.3 0 5.2 6.7
run1 5.6 5.2 0 1.1
run2 6.3 6.7 1.1 0

6 Conclusion

A novel framework for performing shape statistics in dy-
namic shapes was described in this paper. The basic idea is
to combine shape alignment with previously developed ideas
from static shape studies. The shape alignment is based on
dynamic time warping. The framework is independent of the
metric between static shapes.

A number of directions are suggested by the line of re-
search here initiated. First of all, other more advanced static
shape metrics need to be used, including those that incorpo-
rate landmarks, found to be fundamental for medical appli-
cations [15]. Once these advanced metrics are incorporated
into our framework, we can proceed with more exhaustive
experimentation, including 3D dynamic shapes. Of partic-
ular interest are the analysis and recognition of gait and the
study of growth in medical applications.

In this paper we limited ourselves to the case of discrete
time. In the continuous case, a variational formulation to ad-
dress the dynamic shape average problem can be formulated
as

arg min
Γ,fi

∫ T

0

∑
1≤i≤N

[d(Γ(t),Γi(fi(t))2 +H(fi(t)]dt

wherefi are thetime warping functions, andH represents
some constraints on them (such as continuity, monotonicity,
acceleration, etc). To this we can add time domain landmarks
(e.g., by splitting the domain). These topics are the subject
of current efforts in our group.
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Figure 1: A simple example showing the importance of time
alignment when performing shape statistics. The first two
rows show two dynamic shapesΓ1(t) andΓ2(t). The follow-
ing two rows show their mean: a) Computed without DTW-
alignment, b) Computed with enhanced DTW-alignment.
We clearly observe the need for the DTW step.

Figure 2: Dynamic time warping example.

Figure 3: Example of the introduction of jumps in DTW for
N = 2.

Figure 4: Example of mean shape, with jumps, for simple
initial shapes andN = 3.

Figure 5: From left to right: Initial image, segmented shape,
and distance function



Figure 6: Example of two walking men. The two dynamic
shapes are given first, followed by the mean without DTW
(third row), and finally the mean with DTW (last row). Note
how the lack of time alignment creates topological errors,
not present in the average when DTW is used.

Figure 7: Graph corresponding to the DTW for the running
sequences.

Figure 8: Same as Figure 6 for two hands in motion.



Figure 9: Graph corresponding to the DTW for the hands
sequences.

Figure 10: Example of three walking men. The three dy-
namic shapes are given first, followed by the mean without
DTW (fourth row), and finally the mean with DTW, our pro-
posed technique (last row). Once again, note the significant
improvement when the time-warping is added to the shape
statistics process.


