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Abstract

We consider the denoising of a function (an image or a sig-
nal) containing smooth regions and edges. Classical ways
to solve this problem are variational methods and shrink-
age of a representation of the data in a basis or in a frame.
We propose a method which combines the advantages of
both approaches. Following the wavelets shrinkage method
of Donoho and Johnstone, we set to zero all frame coeffi-
cients which are smaller than a threshold. Then the frame
representation involves both large coefficients correspond-
ing to noise (outliers) and some coefficients, erroneously set
to zero, leading to Gibbs oscillations in the estimate. We de-
sign a specialized (non-smooth) objective function allowing
all these coefficients to be selectively restored, without mod-
ifying the other coefficients. We also propose an approxima-
tion of this method which is accurate enough and very fast.
We present numerical experiments with signals and images
corrupted with white Gaussian noise, which are decomposed
into an orthogonal basis of Daubechies wavelets. The ob-
tained results demonstrate the advantages of our approach
over many alternative methods.

1 Introduction

We consider the restoration of an original (unknown) func-
tionuo(s) defined on a (possibly finite) domainΩ—an image
or a signal containing smooth zones and edges—from noisy
data v = uo + n, wheren represents a perturbation. In vari-
ational methods, the restored function is defined as the min-
imizer of an objective function which balances trade-off be-
tween closeness to data and a priori smoothness constraints,
see e.g. [14, 8, 2]

Fv(u) = λ

∫

Ω

|u(s)− v(s)|2ds +
∫

Ω

φ(|∇u(s)|) ds, (1)

where∇ stands for gradient,φ : IR+ → IR+ is called a
potential function andλ > 0 is a parameter.

Another family of methods is shrinkage estimators. Con-
sider a frame ofL2(Ω), say{w̃i}, for i belonging to an in-
dex setI. The corresponding frame operator̃W is defined
by (W̃v)[i] = 〈v, w̃i〉, ∀i ∈ I. The frame coefficients of our
noisy functionv are

y = W̃v. (2)

Let W be a left inverse of̃W and let{wi} denote the associ-
ated dual frame. Therefore,

v = WW̃v =
∑

i∈I

y[i] wi.

Given a symmetric functionτ : IR → IR, such that0 ≤
τ(t) ≤ t if t ≥ 0, the denoised function is defined as

vτ =
∑

i∈I

τ(y[i]) wi. (3)

The hard-thresholding method, introduced by Donoho and
Johnstone in [10] wheñW is an orthogonal wavelet trans-
form, corresponds to

τ(t) =
{

0 if |t| ≤ T,
t otherwise,

(4)

whereT > 0 is a threshold. Soft-thresholding, introduced
also in [10], corresponds toτ(t) = 0 if |t| ≤ T andτ(t) =
t− Tsign(t) otherwise. Both soft and hard thresholding are
asymptotically optimal in the minimax sense ifΩ is of finite
cardinality,n is white Gaussian noise of standard deviation
σ and

T = σ
√

2 loge #Ω. (5)

Refinements of these methods have been proposed in order
to adapt thresholding to the scale of the coefficients [11].
On the other hand, many other shrinkage functionsτ have
been derived by considering the denoising of the frame co-
efficients as a maximum a posteriori estimation [20, 3, 1].
Then the restored coefficients minimize a cost-function sim-
ilar to (1), namely

F (x) = ‖y − x‖2 +
∑

i

λiφ(|xi|),



where φ corresponds to the priors on{xi} and {λi} are
weights related to the scale. Notice thatφ′ = τ at everyt
whereφ is differentiable. An useful class of priors is given
by φ(t) = |t|α for 0 < α ≤ 2. The relationship between
shrinkage methods for wavelets and variational methods of
the form (1) has also been investigated in [7].

A major problem with these methods is that shrinked co-
efficients entail oversmoothing of edges, coefficients set to
zero yield Gibbs oscillations in the vicinity of edges, while
coefficients which remain corrupted (calledoutliers) gener-
ate artifacts with the shape of the functionswi of the frame.
Even ifφ accounts faithfully for the distribution of the coef-
ficientsxi, the local features of the restored function, such as
the presence of edges and smooth regions, are not properly
addressed. Hence the idea to combine the useful information
contained in the large coefficientsy[i] with pertinent prior
smoothness constraints [12, 15, 6, 9].

We focus on post-processing noisy coefficientsyT ob-
tained by hard thresholding,

yT [i] = τ(y[i]), (6)

whereτ is the function given in (4) for a loosely chosenT ,
smaller than (5) in order to have a richer information con-
tent. In such a case, the main problems to deal with are(a)
to selectively shrink the outliers and(b) to restore the thresh-
olded coefficients yielding Gibbs oscillations. Notice that,
although these two phenomena are different by nature, they
share the property to be local in the sense that they concern
isolated zones of coefficients. In [17], a new family of objec-
tive functions is considered which allows outliers to be selec-
tively removed, without modifying the other samples. Fol-
lowing this idea, we design a (non-smooth) objective func-
tion Fy specially adapted to deal with problems(a)-(b). We
restrict our attention toconvex objective functionsin order to
guarantee the uniqueness of the minimum. The effectiveness
of our method is demonstrated by comparing our results with
existing image de-noising schemes.

2 A specialized objective function

Our input data set isyT , defined as in (6):

yT [i] =
{

y[i] if i ∈ I1,
0 if i ∈ I0,

(7)

where

I0 = {i ∈ I : |y[i]| < T}

andI1 = I \ I0. The restored function, denotedû, is defined
as

û =
∑

i∈I

x̂[i] wi = Wx, (8)

wherex̂ minimizes an objective functionFy of the form

Fy(x) = Ψ(x) + Φ(x), (9)

Ψ(x) =
∑

i∈I1

ψi (|x[i]− y[i]|) +
∑

i∈I0

ψi (|x[i]|) ,

Φ(x) =
∫

Ω

φ(|∇(Wx)(s)|) ds.

HereΨ is a data-fidelity term andΦ is a regularization term.
Some general requirements are that{ψi} andφ areC1, con-
vex, increasing functions fromIR+ to IR+. Below we discuss
how the information inyT must be considered. Recall that
the original unknown function is denoteduo.

• I1 addresses two types of coefficientsy[i]:

– Large coefficients which bear the main features
of the sought-after function. They verifyy[i] ≈
(W̃uo)[i] and must be kept intact.

– Outliers are characterized by|y[i]| À |(W̃uo)[i]|.
They must be removed and replaced by values ac-
cording to the priors conveyed byΦ.

• The coefficientsy[i] for i ∈ I0 are usually high-
frequency components which can be

– Noise coefficients, if(W̃uo)[i] ≈ 0. These coeffi-
cients must remain zero.

– Coefficients which correspond to edges and which
are erroneously set to zero. They generate Gibbs
oscillations and need to be restored, based on the
priors conveyed byΦ.

We will specify{ψi} andφ in (9) in such a way that mini-
mizersx̂ of Fy achieve these goals. All requirements onû
are formulated in terms of the minimizersx̂ of Fy.

2.1 The regularization term Φ

This term brings the priors about the local features of the
restored function. Its role is critical on the regions corre-
sponding to wavelet coefficients which are either outliers
or are erroneously set to zero. The images and signals we
wish to restore are supposed to involve smooth regions and
edges. To this end, we focus onedge-preservingconvex po-
tential functionsφ which have been studied by many authors
[18, 5, 14, 4, 8]. An essential distinction between these po-
tential functions is the differentiability oft → φ(|t|) at the
origin. Since [16], it is known that ift → φ(|t|) is non-
smooth at zero, restored images and signalsWx̂ involve
constant regions. Such a property does not correspond to
real-world images and signals. In contrast, ifΦ is smooth,
they contain smoothly varying regions and possibly edges.
We hence focus on potential functionsφ of the latter kind,
which means thatφ′(0+) = 0. Examples of such functions



are [13, 5, 4, 8, 21]

φ(t) =
√

α + t2, (10)

φ(t) = t(1+α), 0 < α ≤ 1,

φ(t) = log(cosh (αt)),

φ(t) =
{

t2/2 if |t| ≤ α,
α|t| − α2/2 if |t| > α,

whereα > 0 in order to haveφ′(0+) = 0.

2.2 Conditions for a minimum

Given a vectorx, its transposed will be denotedxT . Con-
siderFy as given in (9) whereψ1, ψ0 andφ areC1, convex,
increasing functions fromIR+ to IR+ andφ′(0+) = 0. Then
Fy reaches its minimum at̂x if and only if

∀i ∈ I1,

x̂[i] = y[i] ⇒ |∂iΦ(x̂)| ≤ ψ′i(0
+), (11)

x̂[i] 6= y[i] ⇒ ∂iΦ(x̂) = −ψ′i(|(x̂− y)[i]|) (x̂− y)[i]
|(x̂− y)[i]| ;(12)

∀i ∈ I0,

x̂[i] = 0 ⇒ |∂iΦ(x̂)| ≤ ψ′i(0), (13)

x̂[i] 6= 0 ⇒ ∂iΦ(x̂) = −ψ′i(|x̂[i]|) x̂[i]
|x̂[i]| , (14)

where∂iΦ(x) = ∂Φ/∂x[i] (x) reads

∂iΦ(x) =
∫

Ω

φ′(|∇Wx|) (∇wi)
T ∇Wx

|∇Wx| ds.

Notice thatΨ is smooth only ifψ′i(0
+) = 0, ∀i.

2.3 The data-fidelity term

The shape ofΨ will be determined in order to deal with two
simple but revealing situations.

Wavelet-shaped artifacts. Let ek[k] = 1 andek[i] = 0
if i 6= k, and1l be a constant vector. Suppose that on a
neighborhood of the indexk, our input datayT , obtained by
(7), are of the form

yT = W̃1l + δek, (15)

wherey[k] = δ > 0 is an outlier. The function denoised by
hard-thresholding is

WyT = WW̃1l + δWek = 1l + δwk.

Clearly, it contains an artifact with the shape ofwk. Smooth-
ing the outliery[k], without destroying the other coefficients,
means thatFy is minimized by an̂x such that

x̂ = W̃ (1l + x̂[k] wk) with x̂[k] ≈ 0, (16)

even if δ is arbitrarily large. Suppose henceforth thatx̂ is
as given in (16).Clearly, k ∈ I1. By (8), our estimate is
û = Wx̂ = 1l + x̂[k] wk ≈ 1l.

1. Since|x̂[k]| 6= δ, thenx̂[k] satisfies (12), hence

∂kΦ(x̂) = ψ′k(|x̂[k] − δ|), (17)

where we notice that̂x[k]− δ < 0 and

∂kΦ(x̂) =
∫

Ω

φ′(|x̂[k] ∇wk|) |∇wk| ds. (18)

The outlier cannot be penalized unlessψ′k(t)≥ψ′k(0+)
for t ∈ IR+. The right side of (17) is hence positive.
The fact thatφ′(t) = 0 only if t = 0 in (18) shows that
x̂[k] 6= 0.

2. Sincex̂[j] = 0, for all j ∈ I1 \ {k}, by (11) we have
∣∣∣∣
∫

Ω

φ′(|x̂[k] ∇wk|) (∇wj)
T ∇wk

|∇wk|

∣∣∣∣ ds ≤ ψ′k(0+).

Sincex̂[k] 6= 0, the left-side in the expression above
is strictly positive. This inequality cannot be satisfied
unlessψk is such that

ψ′k(0+) > 0. (19)

Hencet → ψk(|t|) is non-smooth at0.

3. Having x̂[k] in (17) independentof the value ofδ re-
quires thatψ′k(t) is constant for allt > 0. Since
ψ′k(t) ≥ ψ′k(0+) by the convexity ofψk, (19) leads
to

ψk(t) = λkt, ∀t ∈ IR+, k ∈ I1, λk > 0. (20)

4. It follows that (17) reads|∂kΦ(x̂)| = λk. We have
x̂[k] ≈ 0 provided thatφ′ has steep increase near
to zero. E.g., whenφ is of the form (10), we have
x̂[k] =

√
α/C, whereC is the unique solution of the

equation

∫

Ω

|∇wk|2√
|∇wk|2 + C

ds = λk.

Clearly,x̂[k] decreases to zero whenα ↘ 0.

5. Similarly, for all j ∈ I0, x̂j = 0 means that
∣∣∣∣
∫

Ω

φ′(|x̂[k] ∇wk|) (∇wj)
T ∇wk

|∇wk|

∣∣∣∣ ds ≤ ψ′j(0
+).

(21)
Using the same arguments as in item 2 above, we de-
duce thatψj must satisfy

ψ′j(0
+) > 0.

Gibbs effect. Consider now a coefficientyT [j] = 0 corre-
sponding to a large(W̃uo)[j]. SinceyT contains no infor-
mation on the true value of this coefficient, the best choice is
thatx̂[j] fits the prior, i.e. that it minimizesΦ. Consequently,
we require that∂jΦ(x̂) is as close as possible to zero. On the



other hand,̂x[j] must satisfy (4), since we wish thatx̂[j] 6=
0 = yT [j]. Combining these two requirements entails that
the right-hand side of (4) must be as close as possible to
zero. Noticing thatψ′j(t) ≥ ψ′j(0

+) > 0 for all t ∈ IR+

and using (15), we will chooseψ′j(t) = ψ′j(0
+) = λj > 0,

for all t ∈ IR+, i.e.

ψj(t) = λjt, ∀t ∈ IR+, j ∈ I0.

2.4 The objective function

Taking together all these elements,Ψ in (9) reads

Ψ(x) =
∑

i∈I1

λi |(x− y)[i]|+
∑

i∈I0

λi |x[i]| . (22)

Let us sumarize: given the coefficientsyT obtained by hard
thresholding as given in (7), the restored functionû reads
û = Wx̂ wherex̂ minimizes

Fy(x) =
∑

i∈I1

λi |(x− y)[i]|+
∑

i∈I0

λi |x[i]| (23)

+
∫

Ω

φ(|∇Wx|) ds.

This functionFy is non-smooth for everyx such thatx[i] =
yT [i] for somei. Using the results of [17], we can expect that
minimizersx̂ of Fy involve many indexesi ∈ I1 for which
x̂[i] = y[i] exactly, and that likewise,̂x[i] = 0 for many
i ∈ I0. It can be deduced that the smoothing of aberrant
coefficients, as well as the restoration of erroneously thresh-
olded coefficients, is stable with respect to small perturba-
tions of the input data.

We have observed that the minimizersx̂ of Fy are very sta-
ble with respect to the choice of the parameters{λi}. This
can be explained by the fact that sinceFy is nonsmooth, min-
imizersx̂ are located at “kinks” which are stable with respect
to parameters and data. Some orientations for the choice of
λi can be derived from the conditions for minimum (11)-
(14). Let us come back to the data considered in (15) and
focus on an indexk ∈ I1 relevant to an outlier. Notice that
many edge-preserving functionsφ satisfy‖φ′‖∞ ≤ 1. Intro-
ducing this in (18) shows that

|∂kΦ(x)| ≤
∫

Ω

|∇wk| ds, ∀x, ∀y.

In 4 in § 2.3 we saw that|∂kΦ(x̂)| = λk. If λk is larger than
the right-side of the expression given above, for anyyT [k]
we can write that|∂kΦ(x̂ + (yT [k]− x̂[k])ek)| ≤ λk which
means that̂x[k] = yT [k], i.e. that the outlier atk cannot be
removed. In this way, we find that it is necessary that

λk <

∫

Ω

|∇wk| ds, ∀k ∈ I1. (24)

Whenk addresses frames of the same scale,
∫
Ω
|∇wk| ds is

constant. Thus (24) provides an upper bound for each scale.

On the other hand, (21) is guaranteed if

λj ≥
∣∣∣∣
∫

Ω

(∇wj(s))
T ∇wk

|∇wk| ds

∣∣∣∣ , ∀j ∈ I0, ∀k ∈ I1.

(25)
If either j andk correspond to different scales, or ifj and
k are quite distant, the integral above is close to zero. So,
for every j ∈ I0, the inequality above is tested only for a
restricted number of indexesk ∈ I1.

Parameters when{wk} is a wavelet basis. We consider
henceforth a wavelet basis generated by2d − 1 mother
waveletswm for m ∈ {1, . . . , 2d − 1}, defined onΩ ⊂ IRd.
Let j andκ denote the scale and the space (or time) param-
eters, respectively. In such a case,I is an arrangement of all
indexes(j, κ,m) andwk in (24) is of the form

wm
j,κ(s) = 2−

dj
2 wm(2−js− κ).

Using a change of variables, the upper bound in (24) is
∫

Ω

|∇(wm
j,κ)| ds = 2( d

2−1)j

∫

Ω

|∇wm| ds.

This suggests we take

λm
j,κ = 2( d

2−1)jλm
1 , ∀(j, κ, m) ∈ I1,

whereλm
1 ≤ ∫

Ω
|∇wm(s)| ds.

Similarly, (25) leads to

λm
j,κ = 2( d

2−1)jλm
0 , ∀(j, κ, m) ∈ I0,

where for allm′ ∈ {1, . . . , 2d−1} and for all(j, k) 6= (0, 0),

λm
0 ≥

∣∣∣∣
∫

Ω

(∇(wm′
k,j))

T ∇wm

|∇wm| ds

∣∣∣∣ .

3 Experiments

3.1 Minimization scheme

Since the kernel of the gradient operator∇ is the set of all
constant functions,u 7→ ∫

Ω
φ(|∇u|) ds is constant in the

direction of the mean value ofu. It is strictly convex in every
other direction provided thatφ is strictly convex as well.̃W
being a wavelet transform, the mean value of any estimate
û = Wx̂ is supported by a single wavelet coefficient. It is
therefore determined byΨ and equals the mean value ofvτ .
We conclude thatthe minimizer̂x = Wû of Fy is unique.

We computêx using a subgradient descent scheme. Put
x0 = yT and, for allk ∈ IN, compute

xk+1 = xk − tkgk,

wheregk is a subgradient ofFy at xk and tk > 0. Using
classical results on minimization methods (see [19]), we can
prove that, ifΩ is finite, limk→∞ tk = 0 and

∑∞
k=0 tk = ∞,

then
lim

k→∞
xk = x̂.



3.2 Denoising of a signal

We consider the restoration of the 512-length original signal
in Fig. 1 from the data shown there, contaminated with white
Guassian noise with standard deviationσ = 10. The restora-
tion in Fig. 2 is obtained using the sure-shrink method [11]
and the toolbox WaveLab. The result displayed in Fig. 3 is
the minimizer of a functionFv of the form (1) whereφ is as
given in (10), forα = 0.1 andλ = 0.01. Smooth zones are
rough, edges are slightly smoothed and spikes are eroded,
while some diffused noise is still visible on the signal.

The restorations presented next are based on thresholded
wavelet coefficients:̃W is an orthogonal basis of Daubechies
wavelets with 8 vanishing moments andyT is obtained ac-
cording to (7). The optimalT , as given in (5), readsT = 35.
The wavelet-thresholding estimateWyT is shown in Fig.
4. It involves important Gibbs artifacts, as well as wavelet-
shaped oscillations due to aberrant coefficients. Using the
same coefficientsyT , we calculated the minimizer̂x of Fy

as given in (23) whereφ is as given in (10),α = 0.05,
λj,κ = 0.5 × 2j/2 if (j, κ) ∈ I0 andλj,κ = 1.5 × 2j/2

if (j, κ) ∈ I1. The resultant restoration̂u = Wx̂, shown
in Fig. 5, involves sharp edges and well denoised smooth
pieces.

Next we consideryT , obtained by (7) forT = 23. These
coefficients have a richer information content, but the rele-
vant estimateWyT , seen in Fig. 6, manifests Gibbs arti-
facts and many wavelet-shaped artifacts. Below we compare
restorations whereFy is of the form (9) for different choices
of ψi. In spite of the considerations developed in§ 2.3,
it seems intuitive to takeψj,κ(t) = λj,κt2 in (9). Such a
restoration is displayed in Fig. 7 whereα = 0.05 λj,κ = 0.1
if (j, κ) ∈ I0, andλj,κ = 0.2 if (j, κ) ∈ I1. The Gibbs oscil-
lations are well removed but, because of the quadratic form
of ψj,κ for (j, κ) ∈ I1, outliers overcontribute toFy and bi-
ases the estimate. Another possibility which may seem rea-
sonable is to cancel the term indexed byI0, i.e. to consider
ψj,κ(t) = 0 for (j, κ) ∈ I0. The result can be seen in Fig. 8
whereψj,κ(t) = 0.2 t for all (j, κ) ∈ I1 andα = 0.05. Once
again, the thresholded coefficients are well restored but we
observe that leaving too much freedom to these coefficients
prevents the method from removing the outliers efficiently.
Fig. 9 illustrates the proposed method:Fy is of the form
(23) with φ as given in (10), and the same parameters as in
Fig. 5, namelyα = 0.05, λj,κ = 0.5×2j/2 if (j, κ) ∈ I0 and
λj,κ = 1.5 × 2j/2 if (j, κ) ∈ I1. In this restoration, edges
are neat and polynomial parts are well recovered. Fig. 10 il-
lustrates how restored coefficientsx̂ are placed with respect
to yT and the coefficients of the original signal̃Wuo. In par-
ticular, we observe how erroneously thresholded coefficients
are restored and how outliers are smoothed.

3.3 Denoising of an image

In this experiment we consider the denoining of the256 ×
256 picture of Lena, Fig. 11 (a), from noisy data ob-
tained by adding white Gaussian noise with standard de-
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0
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Figure 1: Original signal (dotted line) and noisy data (solid
line).

1 250 500

0

100

Figure 2: Denoising using the Donoho-Johnstone’sSure-
shrinkmethod.

1 250 500

0

100

Figure 3: Denoising by minimizingFv as given in (1) where
φ(t) =

√
0.05 + t2 andλ = 0.01.
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Figure 4: Denoising using wavelets thresholding with
Donoho-Johnstone’s optimal thresholdT = 35.
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Figure 5: Denoising by restoration of the wavelet coeffi-
cients relevant to Fig. 4 usingFy in (23) with φ(t) =√

0.05 + t2, λj,κ = 0.5 × 2j/2 if (j, κ) ∈ I0, λj,κ = 1.5
if (j, κ) ∈ I1.
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Figure 6: Denoising using wavelets thresholding with an
under-optimal thresholdT = 23.
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Figure 7: Restoration of the wavelet coefficients relevant to
Fig. 6 by minimizingFy in (9) with φ(t) =

√
0.05 + t2,

ψi(t)=0.1t2 if i∈I0 andψi(t)=0.2t2 if i∈I1.
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Figure 8: Restoration of Fig. 6 usingFy in (9) whereφ(t) =√
0.05 + t2, ψi(t) = 0 if i ∈ I0 andψi(t) = 0.2t if i ∈ I1.
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Figure 9: The proposed method: restoration of Fig. 6 using
Fy in (23) with φ(t) =

√
0.05 + t2, λj,κ = 0.5 × 2j/2 if

(j, κ) ∈ I0 andλj,κ = 1.5× 2j/2 if (j, κ) ∈ I1.
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Figure 10: Magnitude of wavelet coefficients:∗ signal re-
stored by the proposed method (Fig. 9),◦ original signal,×
thresholded noisy signal (Fig. 6).

viation 20. The restoration in Fig. 12 (a) is obtained by
thresholding the wavelet coefficients, see (7), with respect
to Donoho-Johnstone’s threshold, given in (5), which now
readsT = 100. This image is very smooth, a lot of details
are lost, and Gibbs oscillations are visible near the edges. In
Fig. 12 (b) we show the result from total-variation restora-
tion which corresponds toFv of the form (1) withφ(t) = t
andλ = 0.03. As expected, this restoration exhibits a stair-
casing effect since it is constant on many regions. The im-
age in Fig. 13 (a) is obtained by thresholding the wavelet
coefficients with respect toT = 50. This T is smaller than
Donoho-Johnstone’s threshold and the image presents many
wavelet-shaped oscillations due to aberrant wavelet coeffi-
cients, as well as some Gibbs oscillations. It is used as input
data for the specialized objective functionFy given in (23),
whereφ is as given in (10). The restoration in Fig. 13 (b)
is obtained forλi = 0.5 if i ∈ I0, λi = 1.5 if i ∈ I0. This
image has a quite natural appearance, and edges and texture
are better preserved.

The numerical cost of variational methods become a real
burden when images have a large size. In order to circum-
vent this problem, we have tested an approximation of the
proposed method. LetyT be the wavelet transform of the
thresholded image. According to (11), the minimizerx̂ of
Fy satisfy

|∂iΦ(x̂)| ≤ λi, ∀i ∈ I1.

The idea of this approximation is to test for everyi ∈ I1

whether or not|∂iΦ(yT )| > λi. If |∂iΦ(yT )| ≤ λi, we take
simply x̂[i] = yT [i]. Otherwise, if|∂iΦ(yT )| > λi, we con-
sider thatyT [i] is an outlier. To restore such an outlier, we
can take for the relevant̂x[i] either the median or the mean of
the neighboring coefficients at the same scale. When outliers
arise in homogeneous regions, we can just setx̂[i] = 0. The
Gibbs oscillations are not considered in this approximated
method, so we havêx[i] = yT [i] = 0 for all i ∈ I0. The im-
age obtained by this method forT = 50 andλi = 5 for all
i ∈ I1, is displayed on Fig. 14 (a). Let us emphasize that the

(a) Original image. (b) Noisy image.

Figure 11: Original and noisy images.

(a) Wavelets thresholding with (b) Total-variation restoration:
the optimal theresholdT = 100. Fv as in (1) withφ(t) = t.

Figure 12: Classical denoising methods.

image of the errorvτ − û, presented in Fig. 14 (b), exhibits
the oscillations due to aberrant wavelet coefficients and that
it does not present any structural information. This approxi-
mated method being computationally fast, it can be extended
to translation invariant wavelets [9]. In Fig. 15 (a) we show
the restoration obtained by the standard translation invariant
wavelets thresholding, corresponding toT = 50 again. Al-
though its quality is improved with respect to the image in
Fig. 13 (a), it involves a lot of wavelet-shaped artifacts. This
image is used as input data to our fast approximated method.
The obtained restoration, shown in Fig. 15 (b), is of high
quality, since edges and details are nicely recovered.

4 Conclusion

We proposed a method to denoise images and signals by
restoring the thresholded frame coefficients of the noisy data.
The restored coefficients minimize a specially designed ob-
jective function which allows the erroneously thresholded
coefficients to be restored and the outliers to be removed,
without substantially modifying the remaining coefficients.
Our method is not sensitive to the probability distribution
of the noise. We present numerical experiments with or-
thogonal bases of Daubechies wavelets. These experiments
demonstrate the effectiveness of our method over alternative
denoising methods.



(a) Wavelets thresholding (b) Restoration of (a) by
with T = 50 the proposed method

Figure 13: The proposed method.

(a) Restoration of Fig. 13 (a) (b) Outliers detected
by the fast method by the fast method

Figure 14: Fast approximation of the proposed method.

(a) Translation invariant (b) Fast method adapted to
wavelet thresholding (T =50)translation invariant wavelets

Figure 15: Translation invariant wavelets.
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