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Abstract
We present a new fast approach for segmentation of ob-
ject with missing boundaries based on the Subjective Sur-
face [15] combined with the Fast-Marching algorithm [17].
The Subjective-Surface [15] deals with constructing percep-
tually meaningful interpretation from partial image data by
mimicking the human visual system. However, initialization
of the surface is critical for the final result, and its main
drawback is very slow convergence and a huge number of
iterations required. In this paper, we address those two prob-
lems. We first show that the governing equation for the sub-
jective surface flow can be re-arranged in an AOS implemen-
tation, providing a near real time solution to the shape com-
pletion problem in

���
and � � . Then we devise a new ini-

tialization paradigm based on the Fast-Marching algorithm
[17]. We compare the original method with our new algo-
rithm on several examples of real 3D medical images, thus
revealing the improvement achieved.

1 Introduction
The Subjective-Surface [15] deals with constructing percep-
tually meaningful interpretation from partial image data.

One advantage of this method toward Level-Sets [13] is its
ability to complete missing boundaries. The approach takes
a more general view of the segmentation problem: rather
than following a particular interface which one attempts to
steer to desired image features, as in [2, 12, 3], it evolves
a initial “point-of-view” surface toward a piecewise con-
stant surface, by sharpening it around edges and connecting
segmented boundaries across the missing information, thus
mimicking the human visual system.

Another advantage is that it does not need re-initialization
of a distance function, as detailed in [6]. However, the final
segmentation relies on the quality of the initialization of the
“point-of-view” surface, and the convergence process is very
slow, with lots of iterations required.

In this paper, our goal is to provide a solution to both prob-
lems.

Actually, evolving an interface toward image features - as
in the Level-Sets formalism - usually presents a numerical
integration of a parabolic PDE with one dimension in scale

and two/three dimensions in space. In many instances, nu-
merical integration of these PDEs is the most time consum-
ing operation. This is because the scale step is limited by
conditional stability of explicit schemes.

One technique to overcome this computing cost, the Ad-
ditive Operator Splitting (AOS), has been introduced by We-
ickert et al. [19] for the nonlinear diffusion flow and later
applied by Goldenberg et al. [5] and Kuhne et al. [8] to im-
plement a fast version of the geodesic contour model. A sim-
ilar work has been done by Malladi and Ravve [10], where
the authors applied the AOS method to anisotropic diffusion
of gray level, and vector-valued imagery with the so-called
Beltrami flow [18].

In this paper, we first show that the governing equation
for the subjective surface flow can be re-arranged in an AOS
implementation, providing a near real time solution to the
shape completion problem in

���
and � � .

Then we devise a new initialization paradigm based on the
Fast-Marching algorithm [17]. The “point-of-view” surface
is now a function of the crossing times of a front propagated
in the image domain with the Eikonal equation, based on a
speed function related to the grey-level information in this
domain. This surface has already been sharpened near the
image features, and thus needs less iterations to be evolved
to the final piecewise constant surface. We compare the orig-
inal method with our new algorithm on several examples
of real 3D medical images, thus revealing the improvement
achieved.

In Section 2, we present and rearrange the governing equa-
tion for the subjective surfaces. In Section 3, we introduce
the new initialization method, based on the Fast-Marching
algorithm. Before concluding the article, we show in Sec-
tion 4 some 2D and 3D results of numerical simulation for
completing missing boundaries.

2 The Subjective Manifolds

2.1 Principle

In this Section, we consider the Subjective Manifolds
method for segmentation of images with missing boundaries
introduced in [15]. As in [7], we view segmentation as the
evolution of an initial reference manifold under the influ-



ence of local image features. Let us consider a 3D manifold���	��
��������������
�������������
defined over the domain � of

a volumetric image � ��
�������� � . The differential area of the
graph

�
in the Euclidean space is given by! �#"#$ %'&(��)+*'&(��,-*'&.��/0*

(1)

We begin by defining a simple edge indicator function act-
ing on � 1 ��
�������� �2" %%'&436587:9<; 5= > * (2)

where �@? is the initial image with missing boundaries �BA con-
volved with a Gaussian kernel of scale C , and D in equa-
tion (2) is a gradient scaling factor.

This edge indicator

1
will stretch and shrink a metric ap-

propriately chosen so that the edges act as attractors under
particular flow. With the metric

1
applied to the space, we

obtain a definition of the volume of the manifold as�FEG"IH J 1 $ %'&(� ) * &(� , * &.� / * ! 
 ! � ! �
(3)

Considering the internal gradient functionK ��
�������� �L" %%'&.��) * &.��, * &.��/ * (4)

the minimizing flow for the volume functional is then given
by the steepest descent of equation (3), namelyM �M�N " 12OQP � K O ���K & O � PRO 1

(5)

which can be expressed in terms of partial derivatives asS�TS�U2V W TYX�XBZ[T]\^`_'T]\ab_'ced@_2T ^�^ Z[T]\X _2T]\a�_'c�d0_2T afa Z[T]\X _2T]\^`_'c�dc�_2TYX \ _gT ^ \ _2T a \_ h \ T X T ^ T X ^ h \ T X T a T X a h \ T ^ T a T ^�ac�_'T X \ _gT ^ \ _2T a \ (6)_ W X T X _ W ^ T ^ _ W a T a
Initially,

�6��
�������b� N "ji+�
is an inverse distance function

to a point or to a finite sector of a straight line:��kl" m$ � * ��
�������� �`&.npo * (7)

where
�

is the distance function, m is the initial scaling fac-
tor, and

nqo
is the smoothing parameter. The value on the

boundary is equal to the minimum of
�rk

.
The process of segmentation is realized in several steps:

1. we select a fixation point and build an initial volume;

2. this “point-of-view” volume is evolved according to
equation (6);

3. we pick the level-set that describes the desired object.

Figure 1: Subjective contours results on synthetic images
with missing boundaries.

This flow is quite effective in segmenting objects with miss-
ing boundaries in 2D and 3D, as shown in figure 1. Since
it deals with complex topologies and is implemented with
a PDE, it is natural to compare this flow to the Classi-
cal Level-Sets implementation [13] of the Active Contours
Model [12, 3]. In particular, on the problem of complet-
ing missing boundaries, we can focus on the work of Para-
gios [14] adapting the Gradient-Vector-Flow method of [20]
to the Level-Sets method. The subjective manifolds does not
need to filter the gradient vector field, and does not need
any re-initialization of the distance function [6, 1]. But its
main drawback is (very) slow convergence and the number
of iteration required. We are going to derive a semi-implicit
scheme similarly to that used for the Beltrami flow in [10].

2.2 The AOS method
As suggested by Weickert in [19], with the help of the inter-
nal gradient function of equation (4) the first term of equa-
tion (5) can be split into the additive form:OsP � K O ���K " %Kut M � K ��)+�M 
 & M � K ��,��M � & M � K ��/v�M � w

The completion flow of equation (6) becomes:��x2"Q�ey ) &(y , &zy / ���
where {||||||||} ||||||||~

y ) ��" 1K M � K ��)+�M 
 & M � 1 ��)+�M 
 � 1 M * �M 
�*y , ��" 1K M � K ��,��M � & M � 1 ��,��M � � 1 M * �M � *y / ��" 1K M � K ��/v�M � & M � 1 ��/v�M � � 1 M * �M ��*
(8)

where

1
is the edge indicator function (2), and we replace�� )��E �0�� ) by
�� ) 3 �E �0�� ) > � �E � \ �� ) \ in equations (5). Therefore

the resulting linear system will be a tri-diagonal matrix, thus
more stable than a system with no value on the diagonal.

This new form of equation (6) hides the mixed derivatives
and leads to the AOS approach.



Applying the backward difference formula to the equa-
tion (8) we get����� � � ���n N "Q��y ) &(y , &zy / � � ��� � (9)

Using � ��� � on the right side of equation (9) makes the inte-
gration scheme implicit and unconditionally stable, namely� � � n N �ey ) &(y , &zy / �<� � ��� � " � � (10)

where
�

is the identity matrix. Before proceeding in time, we
calculate the values of the edge indicator function

K
in equa-

tion (4), using the known values of �r� . Thus, the scheme
is only semi-implicit. Although

K
depends on the gradient

of � , we treat it like a given function of
��
���F�

, making the
governing PDE “quasi-linear”.

Note that equation (10) includes a large bandwidth ma-
trix, because all equations, related to new pixel values �`��� �
are coupled. Our aim is to decouple the set in equation (10)
so that each row and each column of pixels can be handled
separately. For this, we re-arrange the equations into the fol-
lowing form:� ��� � " � � � n N ��y ) &zy , &(y / �8�e� � � � (11)

Of course, we do not intend to invert the matrix to solve
the linear set. This is only a symbolic form used for further
derivation. For a small value of

n N
, the matrix in the brackets

on the right side of Equation (11) is close to the identity
�
.

Thus, its inverse can be expanded into the Taylor series in
the proximity of

�
:
� � � n N ��y ) &Qy , &uy / �<� � ��� � &n N ��y ) &�y , &�y / �
, where the linear term is retained and

the high order terms are neglected. Introducing this form
into equation (11), we get� ��� � " %� ������ )�� ,v� /@� � � & � n N y � � � � (12)

Introducing the notations
��"�� � & � n N y ) � ��� , � "� � & � n N y , � ��� and � "�� � & � n N y / � ��� the solution is

simply � ��� � " �I& � & �� (13)

In order to get an implicit scheme, we apply the differen-
tial matrix operators

y )
,
y ,

and
y /

to ����� � , namely for

:
� � & � n N y ) � � � �s" ��� . Following the procedure of ex-

panding the matrix inverses into Taylor series and applying
the linearization for small

n N
, we finally obtain the equation

sets for
�

as follows:
� � � � n N y�)����s" � � .

This leads, for the differential operator in



to the semi-
implicit linearized numerical scheme described by the fol-
lowing equation�lm6� �b� � � & � %'&�� m�� & m`� �<���b� � m`� �b� � � " � ��
with {} ~ m6� "¢¡�£ x¤ £ X \ 3 1 � � � & 1 �R¥R¦ h c¥R¦ >m � " ¡�£ x¤ £ X \ 3 1 � � � & 1 �0¥R¦ _�c¥0¦ >

These equations can be solved with the Dirichlet boundary
conditions along the contour of the computational box; these
and other details are described in [10].

Considering the Courant-Friedrich-Levy (CFL) condition
[9] for the explicit scheme, int the case of an anisotropic
cubic grid the maximum time step allowed should be�* 3 �£ ) \ � £ , \ � £ / \ > . The unconditionally stable scheme that
we are using here enables us to multiply this time step by
an acceleration factor § . As we see, the implicit scheme is
always stable, but for §�¨ª© i , the resulting accuracy may
be insufficient for certain applications.

To achieve the optimum accuracy for minimum computa-
tion time, we apply non-uniform scale step, assuming that
more coarse steps are allowed at the initial stage of march-
ing and finer steps are required toward the end. The steps
in scale make a decreasing geometric progression. The last
scale step is kept the same for all problems considered, and
it corresponds to the acceleration factor 10. The average ac-
celeration factor § changes at every step, and is constrained
to be greater than 10. The average acceleration factor yields
the same total number of steps « as if this factor was kept
constant: « " ¤ o¬ where  is the total scale of marching.

3 Initializing with the Fast-Marching
In this section, we want to build a new initialization frame-
work for the point-of-view volume. This manifold deforms
slowly under the action of the flow (6).

3.1 The Fast-Marching algorithm
Considering ®°¯ i

, the Eikonal equation:± O³² ± " ® (14)

is the stationary case of the Hamilton-Jacobi equation. It
computes the front propagation in a media ® defined over the
image domain, with a speed ´ " �µ Classic finite difference
schemes for this equation tend to overshoot and are unstable.
Sethian [16] has proposed a method which relies on a one-
sided derivative that looks in the up-wind direction of the
moving front, and thereby avoids the over-shooting of finite
differences. At each voxel

��¶]�¸·+��¹b�
, the unknown crossing-

time
N

of the front satisfies:��ºq»-¼�½ N � ² � � � � ¾�� ¿ � N � ² � � � � ¾�� ¿ ��iFÀv� * &��ºq»-¼�½ N � ² � � ¾ � � � ¿ � N � ² � � ¾ � � � ¿ ��iFÀv� * &
(15)��ºq»-¼�½ N � ² � � ¾�� ¿ � � � N � ² � � ¾�� ¿ � � ��iFÀv� * " Á® *� � ¾�� ¿ .

giving the correct viscosity-solution
N

for
² � � ¾�� ¿

. The im-
provement made by the Fast-Marching is to introduce order
in the selection of the grid points, leading to an algorithm
in Â �¸ÃÅÄÇÆ�ÈÉÃQ�

for
Ã

grid points. This order is based on
the fact that information is propagating outward, because the
time

N
can only grow due to the quadratic equation (15).



The Fast-Marching algorithm has been used for segmen-
tation purposes, in particular its good properties contributed
already to initialize and therefore accelerate the Level-Sets
methods in [11]. For a detailed study on the algorithm itself,
see [17], and for its applications to medical imaging see [4].

3.2 New point-of-view surface
The reason why we want to use the Fast-Marching algo-
rithm here is to replace the “point-of-view” volume initial-
ization. The Fast-Marching propagates a front in the image
domain, at a speed inversely proportional to a chosen “poten-
tial” function ® ��
������� �

. If this potential has low values in a
desired region, the crossing-time of voxels in this region are
going to be small, while in the neighborhood of this region
they will greatly increase, thus creating a “point-of-view”
which already contains a lot of information. The slope of
the crossing-time of the Eikonal equation will help drive the
initial surface to the final segmentation in a rapid manner.
In other words, using this method, we are providing a bet-
ter initial condition to the subjective surface flow. For this
purpose, we take a potential function defined by the edge
indicator function of equation (2)® ��
�������� �2" %%'&°3�587:98; 5= > * (16)

The new “point-of-view” manifold is computed using the
crossing-times

²
computed with the Fast-Marching algo-

rithm.
�

is now the inverse of a weighted distance function� k " m$ ² * ��
����F�&.npo * (17)

where
²

is the solution to the Eikonal equation (14), m is
the initial scaling factor, and

n o
is the smoothing parameter.

The value on the boundary is equal to the minimum of
� k

.
The new segmentation framework is now devised in the

following steps:

1. The user select a fixation point and build an initial vol-
ume;

2. the crossing-time of the Eikonal equation (14) are com-
puted on the image domain � ;

3. the “point-of-view” volume is derived from this time
map;

4. the user picks an iso-surface that describes roughly the
desired object;

5. the subjective Manifold flow is solved for a small num-
ber of iterations.

In figure 2, we can see the difference between the nor-
mal initialization of equation (7) on the first row, and using
the Fast-Marching as initialization with equation (17) in the
second row. In this test, we want to delineate the contour

of the brain displayed in the last column of figure 2. The
image has a lack of contrast near the sinus and in the hole
which is located on the skull. Therefore classical segmenta-
tion paradigm will fail to segment the contour of the brain.
For example the classic formulation of the geodesic active
contour [3] will probably lead to a bad segmentation in these
regions where there is absence of evidence. Subjective con-
tours are well-suited for this problem with missing bound-
aries, as illustrated in figure reffig:synthetic2D.

But the framework using the Fast-Marching is even bet-
ter suited to solving this problem: when the user has com-
puted the crossing-times with equation 14, he can initialize
the point-of-view surface as shown in figure 2 on the second
row. This point-of-view surface contains already a lot of in-
formation which enables to quickly converge and extract the
contour of the brain.

Considering an acceleration factor of
%0i+i

and the classi-
cal CFL condition, four iterations are now necessary to ob-
tain the results shown in the second row of figure 2. While
several other time-steps are necessary for the classical sub-
jective surface to match a possible result, the new framework
is already providing a correct result.

The final contour extracted is represented in both cases of
initialization on the last column of figure 2.

4 Completing Missing Boundaries

4.1 Results on 2D images

Ultrasound images are an interesting examples: despite the
improvements in terms of probe, reconstruction and speed
of acquisition, images are still very noisy. But the non-
invasiveness and low-cost specificities of this imagery is
much likely to make its importance and use continue to grow.

The subjective manifold technique is especially well-
suited for the segmentation of ultrasound images where
missing boundaries are very important since the signal is at-
tenuated in all except the probe direction. Two simple results
of segmentation obtained with this technique are displayed in
figure 3.

Figure 3: Subjective contours results on ultrasound images



Figure 2: Comparing the Extraction of the contour of the brain in a CT slice, using the Subjective Surfaces with different
initializations: first row is initialized with equation (7) and second row is the initialization with the Eikonal equation (17).
The first column represent the initialization step; the second and third columns are the same representations at times

%0i+i
and

%0i+i�i
.

4.2 Results on 3D medical images

In figure 4 is displayed the segmentation result of our new
framework on a 3D CT scanner of the head, from which a
slice was extracted to study the impact of the Fast-Marching
initialization in figure 2. The cerebral tissues are not de-
picted in the grey-level information of the dataset. However,
the target here is to reconstruct the envelope of the brain,
avoiding leakage into the holes of the patient skull which re-
sult from previous surgery. This envelope could be used to
do registration with other acquisition of the patient head.

The initialization of this dataset is obtained by comput-
ing the Eikonal equation on the whole domain, starting from
any point centered inside the dataset. This process takes ap-
proximately 20 seconds on a laptop with a

%�Ê[Ë
MHz proces-

sor and
%
Go of RAM. The first row of figure 4 represents 3

views of the propagation front at crossing time ��� i (manu-
ally chosen). Notice that this manual selection is as simple
as clicking in one of the slices of the dataset, near the skull.

The second row represents the result of
%0i+i

iterations of
the Subjective Manifolds model, starting from the initializa-
tion given by the Fast-Marching .

Figure 5 contains three different axial slices of the 3D
medical dataset, represented together with the superimposed
contour of the segmentation obtained (in blue). The contour
clearly avoids the holes in the sinuses in the left axial slice,
and the holes in the skull in the middle and right slices, thus
depicting the boundaries of the brain while there is an ab-
sence of evidence on those boundaries.

This process takes
% �

seconds on the same computer. The

Figure 5: Intersection of the final isosurface with three dif-
ferent axial slices where boundaries are missing in the skull.

problem of leakage, due to the holes in the skull is overcome
by the Subjective Manifolds algorithm, by completing the
missing boundaries in interactive time.

The same methodology can be applied to extract the
contour of the heart in an ultrasound image, as shown in
figure 6. From left to right, the first image represents the
front initialized by the Fast-Marching algorithm, and then
progressively refined by the Subjective manifolds at timeN "�%0i+iF� � i�ib� � i+i . The total process does not exceed the
minute, for this example where the image dimensions are% © %ÍÌ % © %ÍÌ %0ib%

.

The first column of figure 7 represents two views of a vol-
ume of interest of a CT dataset of the brain. The first row
comprises segmentation results of the brain ventricles in this
dataset, using the Fast-Marching algorithm starting from a
seed point in each ventricle, where the speed of the front is
computed as a function of the image gray-levels, similarly



Figure 4: Segmentation of the Brain in a CT scanner: The 3d images in the first row are different views of the initial guess
obtained with the Fast-Marching algorithm; the corresponding images in the second row represent the final segmentation
after

%Ri�i
iterations of the Subjective Manifolds;

to the model used in [11]. Following previous examples,
the second row depicts the final segmentation obtained using
the Subjective manifolds. It is important to notice the dif-
ficulty of the problem in figure 7: there is no evidence of a
clear separation between the ventricles, explaining why our
method results in a single segmented object where they are
joined.

5 Conclusion
Based on the approach introduced by Weickert et al. [19], the
unconditionally stable difference scheme is developed for
the computation of subjective manifolds, which is a very effi-
cient segmentation algorithm for completing missing bound-
aries.

The implicit scheme leads to considerable saving of the
computational time as compared to the explicit scheme: up
to ten times and even more, depending on the value of the
scale step, with no visible loss of accuracy. This overcomes
the main drawback of the Subjective Surface method.

The second most important drawback being the initial-
ization of the ”point-of-view” surface, we introduce a new
framework based on the Fast-Marching equation [17]. Ini-
tializing this surface with the crossing time of the Eikonal

equation both enhances the result and reduce the computing
time, by giving an initial surface very close to the final result.

The new framework obtained is very efficient, since it
does not need to re-initialize a distance function [1], unlike
the classical Level-Sets implementation [13]. It completes
in real-time missing boundaries, as we show it on several
examples like synthetic images and real medical images.
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