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Abstract

We study the question of integrating prior shape knowledge
into level set based segmentation methods. In particular,
we investigate dissimilarity measures for shapes encoded
by the signed distance function.

We consider extensions and improvements of existing
measures. As a result, we propose a novel dissimilarity
measure which constitutes a pseudo-distance. Compared to
alternative approaches, this measure is symmetric and not
biased toward small area. Based on this pseudo-distance,
we propose a shape prior for level set segmentation meth-
ods which is pose invariant. In numerical experiments, we
demonstrate that the resulting prior permits the segmenta-
tion of corrupted versions of a familiar object which is inde-
pendent of the pose of the object. Moreover, we demonstrate
the advantage of the symmetric formulation of the dissimi-
larity measure when segmenting corrupted images of known
objects which consist of multiple components.

1. Introduction
Since their introduction by Osher and Sethian [10], level set
based contour evolutions have become increasingly popular
in image segmentation (cf. [1, 7, 11]). A central research
question is how to incorporate higher-level prior shape in-
formation into such segmentation processes [8, 13, 4, 12].

Leventon et al. [8] associated each of a set of training
shapes with a uniquely defined level set function via the
signed distance function, generated a vector representation
of each level set function by sampling it on a regular grid,
and imposed a prior on the shape of the level set function
during the segmentation process. The resulting shape prior
was shown to strongly improve segmentation results ob-
tained on 2D and 3D medical images with a geodesic active
contour model. In particular, it was shown that imposing
the prior on the level set function rather than on the em-
bedded boundary is in accordance with the “philosophy” of
the level set approach because it retains the capacity of the
evolving boundary to undergo topological changes. More-
over, invariance to the pose of the object is obtained by
local optimization of pose parameters. Yet, the above ap-

proach had two drawbacks: Firstly, the prior was added to
the evolution equation rather than introduced on the varia-
tional level consistent with a proper probabilistic formula-
tion. And secondly, the statistical model is defined on a grid
of finite size which is not intrinsic to the given problem.

Rousson and Paragios [12] incorporated a shape prior at
the variational level. They proposed a shape energy which
consists of the squared distance between the evolving level
set function and a reference level set function integrated
over the part of the image domain where the former is pos-
itive. Again the image domain is discretized on a grid and
a (spatially independent) statistical variation around the ref-
erence shape is permitted. Separate parameters to account
for the 2D pose of the object are included in the cost func-
tional. Gradient descent on this shape energy is added to the
evolution equation of the geodesic active regions. The re-
sulting segmentation process is capable of segmenting cor-
rupted versions of a learnt object.

The present work builds up on the above approach and
tries to overcome the following drawbacks: Firstly, the re-
striction of the energy integral to the positive part of the
level set function induces a bias toward small shapes. The
authors in [12] discard the resulting area shrinking term
from the evolution equation, arguing that their model al-
ready contains such an area shrinking term. Secondly, the
underlying shape dissimilarity measure is not symmetric
with respect to the compared shapes. Due to the restric-
tion of the shape discrepancy measure to the positive part
of the evolving shape, all shape discrepancies outside the
evolving shape are neglected. Such priors are therefore not
well-suited to encode multi-component shapes.

In particular, we address the following questions:

• Can one formulate a dissimilarity measure on shapes
encoded by the signed distance function which does
not suffer from a bias toward small area of the shapes?

• What are the limitations of a shape prior which is based
on an asymmetric dissimilarity measure?

• Can one formulate a shape dissimilarity measure
which fulfills the requirements for a distance measure
– in particular symmetry and the triangle inequality?



In the following sections, we will present answers to the
above questions. To this end we will briefly review the
level set formulation of the Mumford-Shah functional pro-
posed by Chan and Vese [2]. We will then iteratively con-
struct a shape dissimilarity measure which is to incorporate
the above requirements. As a result, we obtain a pseudo-
distance defined for shapes represented by their signed dis-
tance function. By construction, it is symmetric and not
biased toward small area. We discuss the advantages of
a symmetric formulation for shape priors encoding multi-
component objects. We show that the proposed measure
does not fulfill the triangle inequality.

Subsequently, the proposed measure is incorporated as a
shape prior into the level set formulation of the Mumford-
Shah functional. We derive corresponding Euler-Lagrange
equations and show numerical results which demonstrate
the capacity of the prior to compensate for corrupted image
information when segmenting a familiar object. In partic-
ular, we show the effect of separately optimizing pose pa-
rameters. Moreover, we demonstrate the advantage of the
symmetric formulation of the shape dissimilarity measure
by segmenting corrupted versions of a known object which
consists of several components.

2. The Model of Chan and Vese

In several papers, Chan and Vese (cf. [2]) detailed a level set
implementation of the Mumford-Shah functional [9], which
is based on the use of the Heaviside function as an indicator
function for the separate phases.

Since we are focused on modeling shape priors, we
will restrict ourselves to the case of the piecewise con-
stant Mumford-Shah model and a single level set function
φ : Ω → R to embed the segmenting boundary

C = {x ∈ Ω |φ(x) = 0}. (1)

A piecewise constant segmentation of an input imagef
with two gray valuesc1 andc2 can be obtained by minimiz-
ing the functional [2]:

Ecv(c1, c2, φ) =
∫
Ω

(f − c1)2 H(φ) dx

+
∫
Ω

(f − c2)2
(
1−H(φ)

)
dx

+ ν

∫
Ω

|∇H(φ)| dx, (2)

with respect to the scalar variablesc1 andc2 modeling the
gray value of the two phases and with respect to the embed-
ding level set functionφ modeling the interface separating

these phases.H(φ) denotes the Heaviside function:

H(φ) =

{
1, φ ≥ 0

0, else
(3)

While the first two terms in (2) aim at maximizing the gray
value homogeneity in the two separated phases, the last term
aims at minimizing the length of the boundary given by the
zero-crossing ofφ.

The Euler-Lagrange equation for this functional can be
implemented by the following gradient descent:

∂φ

∂t
= δε(φ)

[
ν div

(
∇φ

|∇φ|

)
− (f−c1)2 + (f−c2)2

]
, (4)

where the scalarsc1 andc2 are updated in alternation with
the level set evolution to take on the mean gray value of
the input imagef in the regions withφ > 0 andφ < 0,
respectively:

c1 =
∫

f(x)H(φ)dx∫
H(φ)dx

, c2 =
∫

f(x)(1−H(φ))dx∫
(1−H(φ))dx

. (5)

The implementation in [2] is based on a smooth approxima-
tion of the delta functionδε(s) = H ′

ε(s), which is chosen to
have an infinite support:

δε(s) =
1
π

ε

ε2 + s2
. (6)

In particular, a discretization with a support larger than zero
permits the detection of interior contours – for example if
one wants to segment a ring-like structure, starting from an
initial contour located outside the ring.

3. A Unique Shape Representation

Two favorable properties of the implicit level set represen-
tation (1) over explicit contour representations are its in-
dependence of a particular parameterization, and the fact
that the topology of the boundary is not constrained, such
that merging and splitting of the contour during evolution
is facilitated. When integrating a prior on the shape of the
boundaryC, one would like to retain these properties. To
this end, one can impose a prior directly on the level set
functionφ.

As argued in [8], this requires that the level set function
φ associated with a given contourC be uniquely defined.
For this reason they suggest to encode each shape by the
signed distance function, i.e. setting the value of the func-
tion φ at a given point to the distance to the nearest contour
point, positive inside the contour and negative outside. In
particular, this means that|∇φ| = 1 almost everywhere.



4. Measuring Shape Dissimilarity
Let us assume that two shapesC1 andC2 are given in terms
of their signed distance functionsφ1 andφ2. How can we
measure their dissimilarityd(φ1, φ2)? A natural choice is
to measure the deviation in the sense ofL2:

d2(φ1, φ2) =
∫
Ω

(φ1 − φ2)2 dx. (7)

For an extensive discussion of related distance measures we
refer to [3]. Yet, the measure (7) has an important draw-
back: It depends on the choice of the domainΩ. In particu-
lar, if one considers the same two shapes but simply extends
the domain of integrationΩ, then the measure of dissimilar-
ity changes.

In order to remove this undesirable property, Rousson
and Paragios [12] suggested to restrict the integration to the
part of the image plane, whereφ1 is positive:

d2(φ1, φ2) =
∫
Ω

(φ1 − φ2)2 H(φ1) dx. (8)

For an alternative restriction of the domain of integration
driven by a dynamic recognition process, we refer to [5].

The measure (8) of dissimilarity has two drawbacks
which will be addressed in this paper, namely it depends
on the size of shapeφ1, and it is not symmetric.

5. An Area-invariant Measure
The dissimilarity measure (8) depends on the size of the
area in whichφ1 is positive. Indeed, gradient descent min-
imization of this measure with respect toφ1 results in the
equation:

∂φ1

∂t
= −2 (φ1 − φ2) H(φ1)− (φ1 − φ2)

2
δ(φ1). (9)

Whereas the first term movesφ1 towardφ2 (as desired), the
second term aims at minimizing the area of the shape which
is clearly an undesired property.

A straight-forward remedy is to normalize with respect
to the area whereφ1 is positive:

d2(φ1, φ2) =
∫
Ω

(φ1 − φ2)2 h(φ1) dx, (10)

where the normalized Heaviside function is defined by:

h(φ) =
H(φ)∫

Ω

H(φ) dx
. (11)

Rather than summing the squared difference of the two level
set functions over the area of positiveφ1, we propose to
averageit over this area.

Figure 1: Limitations of asymmetric dissimilarity
measures.The measures defined in (8) and (10) are not
symmetric with respect toφ1 andφ2. As a consequence,
for the above examples, the measures produce exactly
the same dissimilarityd(φ1, φ2). They entirely neglect
the second component ofφ2 in the right image. Corre-
sponding shape priors are therefore unsuited to encode
shapes with multiple components.

Indeed, the corresponding Euler-Lagrange evolution
equation is given by:

∂φ1

∂t
= −2 (φ1 − φ2) h(φ1) (12)

− δ(φ1)∫
H(φ1)dx

[
(φ1−φ2)

2 −
∫

(φ1−φ2)
2
h(φ1)dx

]
.

Due to the area-invariant formulation of the cost functional,
the area shrinking term in the evolution equation is compen-
sated.

6. A Symmetric Formulation
The measures (8) and (10) are not symmetric, that is in gen-
eral:

d(φ1, φ2) 6= d(φ2, φ1). (13)

The requirement of symmetry for a shape prior may not ap-
pear very relevant at first glance. Yet, one can easily con-
struct examples where the symmetry violation becomes ap-
parent. Figure 1 shows a 1-D example of a shapeφ1 which
is compared to two other shapesφ2 – one which is simply
connected (left) and one which contains two components
(right). The measures (8) and (10) give exactly the same for
the two cases: They associate the shapesφ1 andφ2 only
partially thereby ignoring the second component ofφ2.

A remedy is to symmetrize the measure (10):

d2(φ1, φ2) =
∫
Ω

(φ1 − φ2)2
h(φ1) + h(φ2)

2
dx. (14)

This symmetrized dissimilarity measure averages the
squared deviation of the level set functions not only over
the area whereφ1 > 0 but also over the area whereφ2 > 0.
In particular, it is therefore capable of estimating shape dis-
similarities such as the one in Figure 1, which are due to a
variation in the second shape.



Figure 2: Violation of the triangle inequality. For the
distance measure defined in equation (14), the left exam-
ple fulfills the triangle inequality (exactly), whereas the
right example does not. Due to the slight modification
of φ2, the distance betweenφ2 andφ3 becomes smaller
(by the shaded area). Therefore this constellation vio-
lates the triangle inequality. Consequently, the distance
defined in (14) is merely apseudo-distance.

One may argue that the second shape does not vary in
an application of shape priors in segmentation. It corre-
sponds to the learnt shape which is fixed, while only the
first shape evolves. Yet, the asymmetric shape measures
(8) and (10), when integrated as a shape prior in a seg-
mentation process, will only maximize the overlap of the
evolving level set function with components ofφ2 in areas
whereφ1 > 0. All other shape discrepancies with respect
to φ2 are completely ignored. As a consequence, shape pri-
ors based on the above dissimilarity measures will generally
fail to perform well when segmenting known objects with
several components. A particular example of segmenting
multi-component objects is discussed in Section 10.3 – see
Figures 6 and 7. Moreover, a comparison in Figure 8 shows
that the asymmetric approaches (8) and (10) are not suited
to propagate shape discrepancy information outside the ini-
tial shape area.

7. A Pseudo-distance
Let S be the space of all signed distance functions asso-
ciated with a particular shape on the domainΩ. Then the
measured : S×S → R defined in (14) constitutes a pseudo-
distance, i.e. the requirements of positive semi-definiteness
and symmetry are fulfilled:

• d(φ1, φ2) ≥ 0 and d(φ1, φ2) = 0 ⇔ φ1 = φ2.

• d(φ1, φ2) = d(φ2, φ1)

The requirement that the considered spaceS only contains
those signed distance functions which are associated with a
particular shape onΩ guarantees that for eachφ ∈ S, the
positive domain{x ∈ Ω |φ(x) > 0} (i.e. the shape) is not
empty. This requirement is necessary for the first property
to hold: If the two functions are identical in the domain
where they are positive, then by the requirement of a dis-
tance function they are the same (almost) everywhere.

The last requirement for this measure to qualify as a dis-
tance, namely the triangle inequality, is not fulfilled. For
simplicity, we give a counterexample in dimension 1. Fig-
ure 2, left side, shows the level set functionsφ1, φ2 andφ3

associated with three shapes. A simple calculation shows
that for the measured defined in (14) we have:

d(φ1, φ3) = d(φ1, φ2) + d(φ2, φ3). (15)

For this constellation the triangle inequality is still fulfilled.
Now letφ̃2 be a modification of the shapeφ2 which includes
an (infinitesimally small) second component – see Figure 2,
right side – then the distanced(φ2, φ3) decreases while the
two other distances remain essentially the same. Therefore
we have

d(φ1, φ3) > d(φ1, φ̃2) + d(φ̃2, φ3). (16)

This violates the triangle inequality and shows that the mea-
sured defined in (14) is merely apseudodistance.

The violation of the triangle inequality is obviously
linked to the fact that the proposed dissimilarity measure
only takes into account areas of the image plane where one
of the level set functions is positive. On the other hand,
this restriction to the positive part was introduced in order
to make the measure independent of the domain of integra-
tion. How one can formulate dissimilarity measures which
combine the latter requirement with that of the triangle in-
equality is an open problem.

8. A Euclidean Invariant Shape Prior
In the following, we will propose a shape prior which is
based on the pseudo-distance defined in (14) and which in-
corporates invariance with respect to the group of Euclidean
transformations of a given shape, in a way similar to the one
proposed in [8, 4, 12] for similarity transformations.

At this point, we only consider a single training shape.
Yet, extensions to incorporate a statistical shape variation
such as the ones presented in [8, 12] are conceivable.

Let φ0 be the distance function associated with a given
training shape. Then we define a shape energy by

Es(φ, µ, θ) = d2
(
φ(x), φ0 (Rθx + µ)

)
, (17)

where we allow for a Euclidean transformation of the refer-
ence shape given by a translationµ ∈ R2 and an orthogonal
matrix Rθ ∈ R2×2 which accounts for rotation by an angle
θ ∈ [0, 2π].

In order to obtain a segmentation process which takes
into account both the intensity information of the input im-
age and the prior shape knowledge, we propose to minimize
the joint energy:

E(φ, c1, c2, µ, θ) = Ecv(φ, c1, c2) + α Es(φ, µ, θ). (18)

This variational integration of shape prior and image infor-
mation is equivalent to Bayesian a posteriori maximization.



Figure 3: Segmentation of a corrupted input image without and with shape prior. The object of interest is the
dancer shown on the left. The second frame shows the input image and initial contour. The frames on the right show
the segmentation results without and with shape prior. The shape model permits to reconstruct missing parts of the
object.

9. Energy Minimization
In order to minimize the functional (18) with respect to the
dynamic variables, we alternate between an update of the
constantsci given in (5) and a gradient descent with respect
to the level set functionφ and the pose parametersµ andθ.

The latter are given by:

∂φ

∂t
= −∂Ecs

∂φ
− (φ− φ0)

(
h(φ) + h(φ0)

)
(19)

− δ(φ)

2
∫
H(φ)dx

[
(φ−φ0)

2 −
∫

(φ−φ0)
2
h(φ)dx

]
,

where the first (the data driven) term is given in (4). The
optimization of the pose parametersρ = {µ, θ} is given by
equations of the form:

∂ρ

∂t
= −

∫
(φ− φ0)

(
h(φ) + h(φ0)

)
∇φt

0

∂g

∂ρ
dx (20)

− 1

2
∫
H(φ)dx

∫ [
(φ−φ0)

2−(φ−φ0)
2
]
δ(φ0)∇φt

0

∂g

∂ρ
dx,

where the expressionsg(x, θ, µ) = Rθx + µ and

(φ− φ0)2 =
∫

(φ− φ0)2h(φ0) dx (21)

were introduced for simplification. As above, we approxi-
mate the delta function in (19) and (20) by the dilated one
given in equation (6).

10. Numerical Results
In this section, we will demonstrate several properties of
the proposed shape prior applied to segmenting a known
object in a corrupted input image. In particular, we will
show the improvements yielded by the normalization and
the symmetrization proposed in Sections 5 and 6. We will
also demonstrate the effect of the pose optimization.

10.1. Knowledge-driven segmentation
Figure 3 shows the basic property of the shape prior inte-
grated into the variational framework. The left image shows
the object of interest. The following images show segmen-
tation results obtained on a corrupted version of the object
– the initial contour, the segmentation without prior and the
segmentation with prior. The prior compensates for miss-
ing or corrupted image information and thereby permits to
reconstruct the object of interest.

10.2. Effect of pose optimization
The following examples are to demonstrate the effect of the
pose optimization in equation (20). To this end, we com-
pared segmentation results with pose optimization to ones
in which the pose optimization was selectively suppressed.
The first four images in Figure 4 show the evolution of the
boundary with a shape prior which was offset with respect
to the object in the image. During energy minimization both
the shape of the boundary and its pose are updated. In con-
trast, if translation optimization is suppressed then the final
result will have the same location as the training shape.

Figure 5 shows a similar comparison for the case of a
shape prior which is rotated with respect to the correct seg-
mentation. As above, the first four images show the bound-
ary evolution with simultaneous pose optimization. The last
image shows the final segmentation when the pose opti-
mization is suppressed: The segmentation fails to capture
the pose of the object in the image.

10.3. Encoding multi-component objects
As argued in Section 6, the advantage of the symmetric for-
mulation of the shape dissimilarity measure in (14) permits
the corresponding shape prior to encode shapes which con-
tain multiple components. Figure 6 shows the contour evo-



Evolution with translation invariance enabled. No translation.

Figure 4: Effect of translation optimization. Due to the simultaneous optimization with respect to the translatory
degrees of freedom, the evolving boundary is free to translate while still being restricted to the familiar shape (left
images). If the translation optimization is suppressed, then the contour will converge toward the learnt shape in exactly
the location of the latter (right image).

Evolution with rotation invariance enabled. No rotation.

Figure 5: Effect of rotation optimization. Due to the simultaneous optimization with respect to a rotation angle, the
evolving boundary is also free to rotate while still being restricted to the familiar shape (left images). If the translation
optimization is suppressed, then the contour will converge toward the learnt shape in exactly the rotation of the latter
(right image).

lution without shape prior obtained on a corrupted version
of a text. Although the length prior permits to cope with
noise, it cannot handle the cases of occlusion and missing
data.

Figure 7 shows the contour evolution obtained for the
same input image with a prior which encodes the entire
word “shape”. The prior permits to compensate for occlu-
sion and missing data. In particular, it permits to reconstruct
the letter ‘e’ which was entirely missing in the input image.
As discussed in Section 6, the asymmetric versions of the
dissimilarity measure given in (8) and (10) are not capable
of solving this task, since they only measure shape discrep-
ancies in areas where the evolving level set function is posi-
tive. The symmetrized version (14) on the other hand, takes
into accountall shape discrepancies between the evolving
shape and the template. Consequently it permits a complete
reconstruction of the object of interest.

10.4. A model comparison
To demonstrate the advantages of the proposed modifica-
tions explicitly, we performed the above task of reconstruct-

ing a corrupted version of the word “shape” based on the
three shape dissimilarity measures discussed in this paper.
Figure 8 shows the initial contour and the respective seg-
mentation results obtained for the asymmetric and unnor-
malized model (8), the asymmetric normalized model (10)
and the symmetrized and normalized model (14). For com-
parison, all parameters were kept constant. The results show
that the asymmetric models are not able to propagate the
shape discrepancy information to areas outside the initial
segmentation (i.e. to areas whereφ < 0). Therefore the
reconstruction is essentially restricted to the domain where
φ > 0 in the initialization – see second and third image in
Figure 8. This was discussed in Section 6. Moreover, one
can observe a slight area shrinking (in the second image
when compared to the third one) due to the lack of normal-
ization – see the discussion in Section 5.

11. Limitations and Future Work
The above framework has several limitations which we in-
tend to overcome in future work. Firstly, the shape prior
suggested here merely encodes a single shape. Extensions



Figure 6: Segmentation of text without shape prior.The length constraint on the boundary can only compensate for
small scale noise. It does not handle missing information or occlusions.

Figure 7: Segmentation of text with a multi-component shape prior. The shape prior encodes the entire word
“shape”. It compensates for missing parts and occlusion and thereby permits a reconstruction of the text. Note in
particular, that the letter ‘e’ is reconstructed although it was entirely missing in the input image. This property can
be directly attributed to the symmetric formulation in (14). The asymmetric dissimilarity measures in (8) and (10)
only minimize shape discrepancies from the learnt shape in areas where the evolving level set function is positive.
Therefore, they are not suited to perform the above task – see Figure 8.

to models encoding multiple training shapes have been pro-
posed in [8, 12]. Present work is focused on deriving prob-
abilistic shape models on the basis of the pseudo-distance
introduced in this paper.

Secondly, we want to remark that the pose optimization
presented in Sections 8 and 9 and evaluated in Section 10.2
– similar to the one proposed in [8, 4, 12] – is a local op-
timization scheme. This leads to the following limitation
which we observed in numerical implementations: If the
pose of the training shape and the object to be segmented
are too different (e.g. a relative rotation by an angleπ), then
the segmentation process will generally fail to converge to
the correct solution.

The numerical optimization of explicit pose parameters
introduces additional parameters to balance the respective
gradient descent equations (19) and (20). This is not only
tedious, but also prone to numerical instabilities. A closed-
form intrinsic elimination of the pose parameters is prefer-
able. For spline contours, such an approach was proposed
by Cremers et al. in [6]. Present work is focused on deriving
similar registration schemes for the level set framework.

12. Summary and Conclusions

We proposed a novel approach to integrate higher-level
shape priors into level set based variational segmentation
methods. To this end, we investigated dissimilarity mea-
sures for shapes encoded by the signed distance function.
Building up on an approach of Rousson and Paragios [12],
we propose a novel dissimilarity measure which improves
the latter in several ways:

Firstly, it is not biased toward small shape area. There-
fore one no longer needs to remove spurious area-shrinking
terms from the evolution equation.

Secondly, it is symmetric in the compared shapes. The
corresponding shape prior takes into account shape discrep-
ancies even in areas where the evolving level set function
is negative. Shape reconstructions are therefore no longer
limited to the initial shape domain. In particular, our for-
mulation permits to segment corrupted versions of known
objects which consist of several components.

We show that the constructed dissimilarity measure is in
fact a pseudo-distance. In particular, we give an example
for which the triangle inequality isnot fulfilled.



Initial contour
unnormalized and

asymmetric (8)
normalized and
asymmetric (10)

normalized and
symmetric (14)

Figure 8: Model comparison. The image on the left shows the initial contour. The images on the right show the
resulting segmentations obtained with a shape prior encoding the entire word “shape”, based on the unnormalized
and asymmetric dissimilarity (8), the normalized version (10) and the symmetrized and normalized version (14). For
comparison, all other parameters were kept fixed during minimization. Neither of the two asymmetric formulations
is capable of propagating shape discrepancy information outside the initial shape area (φ > 0) – this was discussed
in Section 6. Therefore the reconstructions in the second and third image are essentially restricted to the initial shape
domain shown in the left image. Note that the unnormalized version (2nd image) induces a slight area shrinking
compared to the normalized version (3rd image) – this was discussed in Section 5.

The proposed shape prior is invariant to 2D pose trans-
formations. This property is demonstrated numerically by
comparing segmentation results obtained with and without
pose optimization.

Finally, we discuss limitations of the present approach
regarding pose invariance and the encoding of multiple
training shapes. These are the focus of ongoing research.
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[6] D. Cremers, F. Tischḧauser, J. Weickert, and C. Schnörr. Dif-
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