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Abstract Generally motion segmentation algorithms often follow the

same methodology(i) Given an estimation of motion pa-
We developed a method to segment a vector field and retrieameters, segmentation is performed based on static analy-
parameters of the segmented region simultaneoulsy witkis (ii) Then given an estimation of the segmentation, mo-
vector homogeneity defined by an identical direction critden parameters are estimated according to a motion model,
rion. The method was applied to motion segmentation fgif) Steps(i) and (ii) are alternated until convergence. The
objects in translation. The proposed criterion is based on tpectation-Maximization (EM) algorithm fits in this de-
notion of dominant direction of a set of vectors. It states thatription. A modified version of the classical EM method
every vector within a region must have a direction as closeveas developed by [14] for motion segmentation. It uses a
possible to the dominant direction of the region. A maximab-called perceptual organization of data for static analysis
area constraint was added since the criterion is minimizedstep(i).
on any subset of a valid segmentation. Differentiation of thée propose a vector field segmentation method using a vec-
criterion in a dynamic scheme framework led to a regiotsr field model based on the notion of dominant direction of
based active contour segmentation method. The dominarget of vectors [11]. It allows to segment regions contain-
direction of the active region represents the parameters ofithg vectors with the same direction (translating objects). It
region. It is continuously recomputed as the region evolweas developed in an energy minimization framework using
while the region evolution depends on its value. The algaetive contours and shape optimization theory. Segmenta-
rithm was successfully applied to a synthetic sequence aiwh and estimation of the vector field model parameters (the
is being applied to real data. dominant direction) are performed simultaneously.

2 Dominant direction of a set of vec-

tors
Vector field segmentation can be applied to optical flow seg-
mentation. Actually optical flow calculation and segmenthet us consider a set of non-zero vectorsyy, Va, ..., Vp,
tion can be performed simultaneously [12] by modifying tref R*. Let us find a vector, corresponding to the dominant
optical flow equation [6]: The authors represented the edg#ction among the: vectors. The following function was
between two regions with a different motion by a contouptroduced in [11]:
Then they use an active contour technique to segmentand;. B — R
compute simultaneously the optical flow. This segmentation u o= S (ViR =ut Y (ViVhu 1)
does not use any motion model. In order to be more robust a ) ] ]
motion model can be introduced. In [4] the authors proposéfereB is the unit sphere ilR? ({u € R, Ju| = 1}),a - b
a method to segment motion using a piecewise constant rgdhe inner product, and' is the transpose of. It must be
tion model and a piecewise affine motion model. Their mo@SSumed that the following symmetric, positides 2 matrix

1 Introduction

elization can be interpreted as an extension of the Mumford- n .
Shah model [8] where the image intensity homogeneity cri- M=)V, 2)
terion is replaced with a motion homogeneity according to i=1

a particular model. The piecewise constant model allowstas two distinct eigenvalues. Functidris maximized byv
segment translating objects. The piecewise affine modelatd —v wherev is a normalized eigenvector corresponding
lows to segment rotating objects. to the highest eigenvalue 6f .



Now let us consider a vector field where (see Fig. 2)

V: D — R?

6m. Q) = w(m), waom(®) ®)
Vi(m 3

moe v=[ui) ] @ = 0:(0) ~bi(m) ©)
where D is a bounded domain oR2. We defined the bi(m) = el’w/(@ (10)

dominant directionp, of vector fieldV" within domain 02(Q) = e1,Wdom(f2) (11)

(©2 c R?, bounded) as a normalized eigenvector correspond-

ing to the highest eigenvalue of the following (symmetrigyhereq, b is the oriented angle between vectoand vector

positive,2 x 2) matrix b, and(ey, e) is the canonical basis &?2. Note that expres-
sion (7) is correct only because there are no zero vectors.

M(Q) = /Q Vm)V* (m)dm @)
4 Energy minimization

It must be assumed that () has two distinct eigenvalues.

By extensiorv is called the dominant direction 6F Minimization of energy (7) can be done using a steepest

descent algorithm. In this case computation of the energy
3 Energy of a vector field within a do- derivative is required. However this energy derivative with
. respect to domaif cannot be determined directly because
main the set of domains included In does not have a structure of
) i ) vectorial space. Therefore the differentiation with respect to
Let us consider a vector field], such that for alin in D, ) i replaced with a differentiation with respect to variable

V(m) is different from zero. Let us consider all domalds . \herer is the second argument of the following function
included inD verifying the following property:M (§2) has

two distinct eigenvalues. We look for domains containing T: R2Zx Rt — R2
. - . . (12)
vectors with the same direction. Similarly we can say that (m,7) +— T(m,7)
vectors contained by such a domain must have the same di-
rection as the dominant direction of the domain. We definadth the following properties
the energy of domaif, or equivalently the energy of its
boundaryos?, as follows: T(0,0) = Qo (13)
) T(Qo,7) =Q(7) (14)
J1(Q) = /Q [w(m) X Waom ()" dm (%) T, (m) is aC-diffeomorphism (15)
T,.(7) is aC*-function onR™ (16)

wherea x b is the cross producty(m) is equal toV (m)

divided by its norm, andvqom (£2) is the dominant direction \here (), is an initial domain with an energy usually not
of €. If © contains vectors with the same direction, anyjinimal. More information on that differentiation frame-
vectorw within £2 can represent the dominant direction angork can be found in [5, 7, 13]. In particular the following
J1 is equal to zero. Note that in this case any subse? ofproposition was proven:

has an energy equal to zero. Since our purpose was 1o figposition 1 Let us consider the following function
the largest domairty,..,, containing vectors with the same

direction (see Fig. 1), we added a maximal area constraint F(r) = / k(m, Q(r))dm 17)

Q(r)
JQ) = / w(m) X waom ()| dm
Q
D
A dm (6) |
D/Q
/ .

where ) is a real number and /2 is the region outsid€ [ ~0 \ /1 /

included inD. Therefore minimizing/ should allow to find o ~

a domain as large as possible containing vectors with direc- \ i T O

tions as close as possible with each other. Eg. (6) can be .

rewritten as \ = -~

J(Q) = /Qsin2(0(m,ﬂ))dm

+)\/ dm 0 E|gure 1: Domain containing vectors with the same direc-
D/O tion.



whereQ(r) is equal toT'(2y,7) with Qy being a domain Then the result of proposition 1 is applied:
included inD andk is a smooth function. We have

ok J(r) = / 2sin90059?dm
Fl(r) = / 2= (m, Q(r))dm () T
o) O 2
7/ sin® (v - N)ds
= [ k(). aals). ) 0 Nds o0(r)
oQ(r)
+A v+ N)ds 23
(18) aQ(T)( ) (23)
.o ,00
whereF"” is the shape derivative @, % is the shape deriva- = o sin 26 or dm
tive of k with z; andx, fixed, s is the curvilinear abscissa )
on 08(7), v is the velocity ofd€2(7) (v is a short notation 7/ sin? O(v - N)ds
for v(m, Q(7))), andN is the inward unit normal té2(7) oQ(r)
(N is a short notation fotV (m, Q(7))). The mathematical _
definitions of the shape derivatives are as follows A 00() (v N)ds (24)

F(Q(1) +vdr) — F((7)) whered is a short notation fof (1, 2(7)).

/ _ .
Fi(r) = 255, dr (19)
i eld
%(ﬂ% Q(r)) = 4.1.1 Computation of 3
or . .
lim k(m, Q(1) + vdr) — k(m, Q(7)) 20) The purpose is to expre§§ as a function of.
dr—0 dr 09 (0 — 0
oT —_ = 90> — 01) (25)
U(ma Q(T>) = 7(m7 T) (21) or or
o _ %% (26)
- or or
Applying this result to our minimization problem, the pur- _ 96 27)
pose is to choose in order to ensure the fastest decrease of or
J. sincef; does not depend on. Furthermore we have (by
definition)
. . | cosfy
4.1 Energy derivative Wdom = [ i 0 } (28)
We used Eq. (18) to compute the derivative of (7). Firdherefore 5 56
Eq. (7) is rewritten using variable Whom = Wdom _ OY2 (29)
om or or
T wheret is the vector tangent to the unit, counterclockwise-
I = /Q(T) sin”(0(m, (r)))dm oriented circle:
{: —sin (92 (30)
+A dm (22) cos 0
D/Q(r)

Taking the inner product of (29) withleads to

692 oy —Sil’leg
W = Wdom * |: cos 0 (31)
Let us recall the dominant direction matrix (using the nor-

malized vector fieldw, instead of the original vector field,

V)
M(T) = w(m)wt(m)dm 32
o= et (32)
wherew is
w = [ Z; ] (33)
Therefore

C
Figure 2: Angled), 6#,, andd- on the unit circle. M(r) = [ b ] (34)



where

a = / widm (35)
Q(7)

b = / widm (36)
Q(7)

c = / wiwodm (37)
Q(r)

According to section 2, a possible choice foy,,, is (the
other choice being the opposite vector)

1 c
Wdom = 38
d \/()\max — a)2 + 62 |: )\max —a :| ( )

where\,.« is the highest eigenvalue af and is equal to

)\max -

atbt @ P
2

Note that if A« iS equal toa andc is equal to zero then

4.1.2 Expression ofJ’ as a function ofv

By combining (24), (27), and (42)]’ can be expressed as a
function ofv

J(r) = / sin 26 —sinﬁg/ a(v- N)ds
Q(7) oQ(r)

—|—cos92/ ﬂ(v-N)ds)dm
9(7)

—/ sin?@(v - N)ds
o9(r)

—|—/ A(v - N)ds (43)
oQ(7)
= / (—asinfy 4+ Bcosb)(v- N)ds
oQ(T)
X / sin 20dm — sin? f(v - N)ds
Q(7) oQ(7)

+ /{;‘Q(T) A(v - N)ds (44)

= / v - </ sin 29dm>
oQ(r) Q(7)

(—asinfy + Bcosfy) —sin® 0 + A

Nds

expression (38) is not valid. In this case the following ex- (45)

pression is used

1 Amax — b
Waom = max 40
¢ ()\max - b)2 + 02 |: ¢ :| ( )

Since we assumed that matex has two distinct eigenval-
ues itis not possible to havg,., equal toa and equal td at

5 Evolution equation

The purpose being to minimizé velocity v must be cho-

sen such that the energy decreases with maximum efficiency
(J' in (45) must be negative with the highest possible ab-
solute value). According to the Cauchy-Schwarz inequality
this value is

the same time. Therefore there is always a valid expression

for waom.
Proposition 2 There existsa(m, (7)) and 5(m, (7)),
two real numbers, such that

Joa a(v- N)ds
/ — Q(T) 41
Wdom [ 20(r) B v - N)ds ( )

A proof can be found in the appendix.

Using proposition 2 Eq. (31) can be rewritten as

9 _ —sineg/ a(v- N)ds
or 290(7)

+ cos b /{;Q( )ﬁ(v - N)ds (42)

</ sin 29dm> (asin @y — 3 cos 03)
Q(r)

+sin?0 — A\|N = uN (46)
o

wherea and 8 depend on vector field) and domairf2(r)
(Their expressions are not given here because they are quite
complicated and hard to interpret. They can be deduced from
Eq. (35), (36), (37), and the equations of the Appendix).
Therefore we have the following evolution equation

or =v=puN 47)

or

whereI'(7) is a short notation fob2(7). Eqg. (47) is the
active contour ([2, 3, 9, 10]) evolution equation of the pro-
posed segmentation method which segmentation criterion is
the homogeneity of a vector field in term of direction. Given



a value of parametek, the segmentation algorithm alter-
nately solves for the contour (Eq. (47)) and for the dominant
direction within the contour (Eq. (38) or (40)) until mutual
|
convergence. - ;) b=\,
(S §
)

6 Application to the segmentation of a

translating object
Figure 3: The two images of the sequence with a still back-
6.1 Context ground

In a greyscale video sequende, ¢ > 0) let us suppose that
an object has a motion of translation. Let us suppose that the
optical flow was estimated

%*)fﬁfl : D — R?

m Viet41,1(m) (48)
Viestr1,2(m)

We assume that;_.,,1(m) is a non-zero vector for alh Pl A\

and allz. Therefore the object domain should minimize cri- L‘ L L

terion (7) using the proposed active contour method. Note JEy s ‘J

that the initial contour must include an area containing vec- -

tors with the same direction wide enough with respect to the L r

contour area so that the dominant direction is meaningful. 1

6.2 Optical flow estimation

In the following examples the optical flow was estimated by
a block matching method with a block size 6t 4 pixels

and a maximum displacement of 5 pixels in each direction.
The matching criterion was the zero-mean normalized sum
of squared differences (ZNSSD).

Figure 4: Optical flow (still background)

by block matching. Figure 8 shows the segmentation result
with A equal to 0.1.

The active contour evolution was implemented using a

smoothing B-splines contour representation [1].

6.3 Implementation

6.4.3 Sponge translation on a still background
6.4 Results hong g
6.4.1 Translation on a still background Figure 9 shows the two images of the sequence. Figure 10

shows the optical flow computed by block matching. Fig-

A face was translated by two pixels in each direction on : :
. . ) _ e 11 shows the segmentation result witkequal to 0.05.
still, noisy background. Since the vector field on the bacg’i-1 9 g

ground is composed of zero vectors, the proposed method
cannot be applied directly. Therefore the zero vectors were
first replaced with random vectors. Figure 3 shows the two
images of the sequence. Figure 4 shows the optical flow
computed by block matching. Figure 5 shows the segmenti

tion result with\ equal to 0.01. . ‘
6.4.2 Translation on a translating background

The sequence is the same as the sequence of section 6.4nttial contour Intermediate contour  Final contour
except that the background was also translated by two pixels

in the horizontal direction. Figure 6 shows the two imagédgure 5: From initial contour to final contour (still back-
of the sequence. Figure 7 shows the optical flow compu@gund)




Figure 9: The two images of the sequence

Figure 6: The two images of the sequence with a translating
background
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Figure 10: Optical flow

on an optical flow estimation. Therefore an homogeneous
object (the optical flow inside the object is equal to zero)
cannot be segmented.
Simultaneous segmentation of several translating objects is
Figure 7: Optical flow (translating background)  possible even if their translations have different directions.
However there must be one active contour per direction
(therefore it is equivalent to segmenting each object one af-
ter the other) because the common dominant direction of two
Both the dominant direction computation and our energpjects with different translations do not make sense.
definition involve a normalized vector field. This has two
disadvantagedi) A vector with a small norm having a ran-
dom direction within a coherent region (a “noise” vector) has
as much influence on the dominant direction computation as
a vector with a large norm having a coherent direct{@h;t
is not possible to make the distinction between a translati
object and the background if the background is translating}?rgbknOWIedgememS
the same direction as the object (even if the translations have
very different amplitudes).
Another limitation of the proposed method is that it depen

Initial contour  Intermediate contour  Final contour

6.5 Discussion

Ege optical flow estimations were provided by Muriel Gas-
taud and Thomas Andr and the smoothing B-spline imple-
mentation was done by &tkric Precioso, Laboratoire I3S.

_ o . ~Initial contour  Intermediate contour  Final contour
Figure 8: From initial contour to final contour (translating

background) Figure 11: From initial contour to final contour



Appendix
The purpose is to prove proposition 2. (1
We use (18) and (35), (36), (37) to compute

[2

a = —/ wi(v- N)ds (49)
oQ(r) [3]

Vo= —/ w3 (v - N)ds 50 |,
80(7) (4]

d = —/ wiwsz(v - N)ds (51)
aQ(r) (5]

Then (38) is equal to (a similar calculation can be done USs)
ing (40))
[71

(S
]

i _% [(/\max - a)2 + 02]_ X
2 [(/\max - a)()‘max - Cl)/ + CCI] c
+¢ [(Amax — @)? + 2]~

=

(8]

I
Wdom

wjw

— 2 [Mmax —a)?2 + 2] 2 x

2 [(Amax — @) Amax — @)/ + '] Amax — a) (9]
L +<)\max - a)/ [()\max - Cl)2 + CQ} 2 i
(52) 110
Using (39) we have
_ _ 11
)\max_a:b2a)+ (b2a)2+c2 (53) [ ]

Differentiating (53) using (49), (50), and (51) we obtain  [12]

2 .2
/ (WL Y2y 0 N)ds
29(r) 2

1 b—abd —d
2 2

(13]

(14]

which can be rewritten as

Amax — @) = / <M)
a9(r) 2
b—a

1

(p e

c
wiws | (v- N)ds

(e

(55)

Combining (51), (52), and (55) we can conclude that there
existsa(m, 9Q(7)) and3(m, 0Q(7)) such that

faQ(T) a(v- N)ds
faﬂ(r) B(v- N)ds

/
Wiom =

(56)
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