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Abstract

We developed a method to segment a vector field and retrieve
parameters of the segmented region simultaneoulsy with a
vector homogeneity defined by an identical direction crite-
rion. The method was applied to motion segmentation for
objects in translation. The proposed criterion is based on the
notion of dominant direction of a set of vectors. It states that
every vector within a region must have a direction as close as
possible to the dominant direction of the region. A maximal
area constraint was added since the criterion is minimized
on any subset of a valid segmentation. Differentiation of the
criterion in a dynamic scheme framework led to a region-
based active contour segmentation method. The dominant
direction of the active region represents the parameters of the
region. It is continuously recomputed as the region evolves
while the region evolution depends on its value. The algo-
rithm was successfully applied to a synthetic sequence and
is being applied to real data.

1 Introduction

Vector field segmentation can be applied to optical flow seg-
mentation. Actually optical flow calculation and segmenta-
tion can be performed simultaneously [12] by modifying the
optical flow equation [6]: The authors represented the edges
between two regions with a different motion by a contour.
Then they use an active contour technique to segment and
compute simultaneously the optical flow. This segmentation
does not use any motion model. In order to be more robust a
motion model can be introduced. In [4] the authors proposed
a method to segment motion using a piecewise constant mo-
tion model and a piecewise affine motion model. Their mod-
elization can be interpreted as an extension of the Mumford-
Shah model [8] where the image intensity homogeneity cri-
terion is replaced with a motion homogeneity according to
a particular model. The piecewise constant model allows to
segment translating objects. The piecewise affine model al-
lows to segment rotating objects.

Generally motion segmentation algorithms often follow the
same methodology:(i) Given an estimation of motion pa-
rameters, segmentation is performed based on static analy-
sis; (ii) Then given an estimation of the segmentation, mo-
tion parameters are estimated according to a motion model;
(iii) Steps(i) and(ii) are alternated until convergence. The
Expectation-Maximization (EM) algorithm fits in this de-
scription. A modified version of the classical EM method
was developed by [14] for motion segmentation. It uses a
so-called perceptual organization of data for static analysis
in step(i).
We propose a vector field segmentation method using a vec-
tor field model based on the notion of dominant direction of
a set of vectors [11]. It allows to segment regions contain-
ing vectors with the same direction (translating objects). It
was developed in an energy minimization framework using
active contours and shape optimization theory. Segmenta-
tion and estimation of the vector field model parameters (the
dominant direction) are performed simultaneously.

2 Dominant direction of a set of vec-
tors

Let us consider a set ofn non-zero vectors,V1, V2, . . . , Vn,
of R2. Let us find a vector,v, corresponding to the dominant
direction among then vectors. The following function was
introduced in [11]:

J : B → R
u 7→ ∑n

i=1(u · Vi)2 = ut
∑n

i=1(ViV
t
i )u (1)

whereB is the unit sphere inR2 ({u ∈ R2, |u| = 1}), a · b
is the inner product, andut is the transpose ofu. It must be
assumed that the following symmetric, positive,2×2 matrix

M =
n∑

i=1

ViV
t
i (2)

has two distinct eigenvalues. FunctionJ is maximized byv
and−v wherev is a normalized eigenvector corresponding
to the highest eigenvalue ofM .



Now let us consider a vector field

V : D → R2

m 7→ V (m) =
[

V1(m)
V2(m)

]
(3)

where D is a bounded domain ofR2. We defined the
dominant direction,v, of vector fieldV within domainΩ
(Ω ⊂ R2, bounded) as a normalized eigenvector correspond-
ing to the highest eigenvalue of the following (symmetric,
positive,2× 2) matrix

M(Ω) =
∫

Ω

V (m)V t(m)dm (4)

It must be assumed thatM(Ω) has two distinct eigenvalues.
By extensionv is called the dominant direction ofΩ.

3 Energy of a vector field within a do-
main

Let us consider a vector field,V , such that for allm in D,
V (m) is different from zero. Let us consider all domainsΩ
included inD verifying the following property:M(Ω) has
two distinct eigenvalues. We look for domains containing
vectors with the same direction. Similarly we can say that
vectors contained by such a domain must have the same di-
rection as the dominant direction of the domain. We defined
the energy of domainΩ, or equivalently the energy of its
boundary∂Ω, as follows:

J1(Ω) =
∫

Ω

|w(m)× wdom(Ω)|2 dm (5)

wherea × b is the cross product,w(m) is equal toV (m)
divided by its norm, andwdom(Ω) is the dominant direction
of Ω. If Ω contains vectors with the same direction, any
vectorw within Ω can represent the dominant direction and
J1 is equal to zero. Note that in this case any subset ofΩ
has an energy equal to zero. Since our purpose was to find
the largest domain,Ωhom, containing vectors with the same
direction (see Fig. 1), we added a maximal area constraint

J(Ω) =
∫

Ω

|w(m)× wdom(Ω)|2 dm

+λ

∫

D/Ω

dm (6)

whereλ is a real number andD/Ω is the region outsideΩ
included inD. Therefore minimizingJ should allow to find
a domain as large as possible containing vectors with direc-
tions as close as possible with each other. Eq. (6) can be
rewritten as

J(Ω) =
∫

Ω

sin2(θ(m,Ω))dm

+λ

∫

D/Ω

dm (7)

where (see Fig. 2)

θ(m,Ω) = ̂w(m), wdom(Ω) (8)

= θ2(Ω)− θ1(m) (9)

θ1(m) = ̂e1, w(m) (10)

θ2(Ω) = ̂e1, wdom(Ω) (11)

whereâ, b is the oriented angle between vectora and vector
b, and(e1, e2) is the canonical basis ofR2. Note that expres-
sion (7) is correct only because there are no zero vectors.

4 Energy minimization

Minimization of energy (7) can be done using a steepest
descent algorithm. In this case computation of the energy
derivative is required. However this energy derivative with
respect to domainΩ cannot be determined directly because
the set of domains included inD does not have a structure of
vectorial space. Therefore the differentiation with respect to
Ω is replaced with a differentiation with respect to variable
τ whereτ is the second argument of the following function

T : R2 × R+ → R2

(m, τ) 7→ T (m, τ) (12)

with the following properties

T (Ω0, 0) = Ω0 (13)

T (Ω0, τ) = Ω(τ) (14)

Tτ (m) is aC1-diffeomorphism (15)

Tm(τ) is aC1-function onR+ (16)

whereΩ0 is an initial domain with an energy usually not
minimal. More information on that differentiation frame-
work can be found in [5, 7, 13]. In particular the following
proposition was proven:
Proposition 1Let us consider the following function

F (τ) =
∫

Ω(τ)

k(m,Ω(τ))dm (17)

Ωhom

D

Figure 1: Domain containing vectors with the same direc-
tion.



whereΩ(τ) is equal toT (Ω0, τ) with Ω0 being a domain
included inD andk is a smooth function. We have

F ′(τ) =
∫

Ω(τ)

∂k

∂τ
(m,Ω(τ))dm

−
∫

∂Ω(τ)

k(x1(s), x2(s),Ω(τ))(v ·N)ds

(18)

whereF ′ is the shape derivative ofF , ∂k
∂τ is the shape deriva-

tive of k with x1 andx2 fixed, s is the curvilinear abscissa
on ∂Ω(τ), v is the velocity of∂Ω(τ) (v is a short notation
for v(m,Ω(τ))), andN is the inward unit normal to∂Ω(τ)
(N is a short notation forN(m,Ω(τ))). The mathematical
definitions of the shape derivatives are as follows

F ′(τ) = lim
dτ→0

F (Ω(τ) + vdτ)− F (Ω(τ))
dτ

(19)

∂k

∂τ
(m,Ω(τ)) =

lim
dτ→0

k(m,Ω(τ) + vdτ)− k(m,Ω(τ))
dτ

(20)

v(m,Ω(τ)) =
∂T

∂τ
(m, τ) (21)

Applying this result to our minimization problem, the pur-
pose is to choosev in order to ensure the fastest decrease of
J .

4.1 Energy derivative

We used Eq. (18) to compute the derivative of (7). First
Eq. (7) is rewritten using variableτ .

J(τ) =
∫

Ω(τ)

sin2(θ(m,Ω(τ)))dm

+λ

∫

D/Ω(τ)

dm (22)

e1

e2

wdom

w

θ θ2

θ1

Figure 2: Anglesθ, θ1, andθ2 on the unit circle.

Then the result of proposition 1 is applied:

J ′(τ) =
∫

Ω(τ)

2 sin θ cos θ
∂θ

∂τ
dm

−
∫

∂Ω(τ)

sin2 θ(v ·N)ds

+λ

∫

∂Ω(τ)

(v ·N)ds (23)

=
∫

Ω(τ)

sin 2θ
∂θ

∂τ
dm

−
∫

∂Ω(τ)

sin2 θ(v ·N)ds

+λ

∫

∂Ω(τ)

(v ·N)ds (24)

whereθ is a short notation forθ(m,Ω(τ)).

4.1.1 Computation of ∂θ
∂τ

The purpose is to express∂θ
∂τ as a function ofv.

∂θ

∂τ
=

∂(θ2 − θ1)
∂τ

(25)

=
∂θ2

∂τ
− ∂θ1

∂τ
(26)

=
∂θ2

∂τ
(27)

sinceθ1 does not depend onτ . Furthermore we have (by
definition)

wdom =
[

cos θ2

sin θ2

]
(28)

Therefore

w′dom =
∂wdom

∂τ
=

∂θ2

∂τ
~t (29)

where~t is the vector tangent to the unit, counterclockwise-
oriented circle:

~t =
[ − sin θ2

cos θ2

]
(30)

Taking the inner product of (29) with~t leads to

∂θ2

∂τ
= w′dom ·

[ − sin θ2

cos θ2

]
(31)

Let us recall the dominant direction matrix (using the nor-
malized vector field,w, instead of the original vector field,
V )

M(τ) =
∫

Ω(τ)

w(m)wt(m)dm (32)

wherew is

w =
[

w1

w2

]
(33)

Therefore

M(τ) =
[

a c
c b

]
(34)



where

a =
∫

Ω(τ)

w2
1dm (35)

b =
∫

Ω(τ)

w2
2dm (36)

c =
∫

Ω(τ)

w1w2dm (37)

According to section 2, a possible choice forwdom is (the
other choice being the opposite vector)

wdom =
1√

(λmax − a)2 + c2

[
c

λmax − a

]
(38)

whereλmax is the highest eigenvalue ofM and is equal to

λmax =
a + b +

√
(a− b)2 + 4c2

2
(39)

Note that ifλmax is equal toa andc is equal to zero then
expression (38) is not valid. In this case the following ex-
pression is used

wdom =
1√

(λmax − b)2 + c2

[
λmax − b

c

]
(40)

Since we assumed that matrixM has two distinct eigenval-
ues it is not possible to haveλmax equal toa and equal tob at
the same time. Therefore there is always a valid expression
for wdom.
Proposition 2 There existsα(m,Ω(τ)) and β(m,Ω(τ)),
two real numbers, such that

w′dom =

[ ∫
∂Ω(τ)

α(v ·N)ds∫
∂Ω(τ)

β(v ·N)ds

]
(41)

A proof can be found in the appendix.

Using proposition 2 Eq. (31) can be rewritten as

∂θ2

∂τ
= − sin θ2

∫

∂Ω(τ)

α(v ·N)ds

+cos θ2

∫

∂Ω(τ)

β(v ·N)ds (42)

4.1.2 Expression ofJ ′ as a function ofv

By combining (24), (27), and (42),J ′ can be expressed as a
function ofv

J ′(τ) =
∫

Ω(τ)

sin 2θ

(
− sin θ2

∫

∂Ω(τ)

α(v ·N)ds

+ cos θ2

∫

∂Ω(τ)

β(v ·N)ds

)
dm

−
∫

∂Ω(τ)

sin2 θ(v ·N)ds

+
∫

∂Ω(τ)

λ(v ·N)ds (43)

=
∫

∂Ω(τ)

(−α sin θ2 + β cos θ2)(v ·N)ds

×
∫

Ω(τ)

sin 2θdm−
∫

∂Ω(τ)

sin2 θ(v ·N)ds

+
∫

∂Ω(τ)

λ(v ·N)ds (44)

=
∫

∂Ω(τ)

v ·
[(∫

Ω(τ)

sin 2θdm

)

(−α sin θ2 + β cos θ2)− sin2 θ + λ

]
Nds

(45)

5 Evolution equation

The purpose being to minimizeJ velocity v must be cho-
sen such that the energy decreases with maximum efficiency
(J ′ in (45) must be negative with the highest possible ab-
solute value). According to the Cauchy-Schwarz inequality
this value is

v =

[(∫

Ω(τ)

sin 2θdm

)
(α sin θ2 − β cos θ2)

+ sin2 θ − λ

]
N = µN (46)

whereα andβ depend on vector fieldw and domainΩ(τ)
(Their expressions are not given here because they are quite
complicated and hard to interpret. They can be deduced from
Eq. (35), (36), (37), and the equations of the Appendix).
Therefore we have the following evolution equation

∂Γ
∂τ

= v = µN (47)

whereΓ(τ) is a short notation for∂Ω(τ). Eq. (47) is the
active contour ([2, 3, 9, 10]) evolution equation of the pro-
posed segmentation method which segmentation criterion is
the homogeneity of a vector field in term of direction. Given



a value of parameterλ, the segmentation algorithm alter-
nately solves for the contour (Eq. (47)) and for the dominant
direction within the contour (Eq. (38) or (40)) until mutual
convergence.

6 Application to the segmentation of a
translating object

6.1 Context

In a greyscale video sequence (It, t ≥ 0) let us suppose that
an object has a motion of translation. Let us suppose that the
optical flow was estimated

Vt→t+1 : D → R2

m 7→
[

Vt→t+1,1(m)
Vt→t+1,2(m)

]
(48)

We assume thatVt→t+1(m) is a non-zero vector for allm
and allt. Therefore the object domain should minimize cri-
terion (7) using the proposed active contour method. Note
that the initial contour must include an area containing vec-
tors with the same direction wide enough with respect to the
contour area so that the dominant direction is meaningful.

6.2 Optical flow estimation

In the following examples the optical flow was estimated by
a block matching method with a block size of4 × 4 pixels
and a maximum displacement of 5 pixels in each direction.
The matching criterion was the zero-mean normalized sum
of squared differences (ZNSSD).

6.3 Implementation

The active contour evolution was implemented using a
smoothing B-splines contour representation [1].

6.4 Results

6.4.1 Translation on a still background

A face was translated by two pixels in each direction on a
still, noisy background. Since the vector field on the back-
ground is composed of zero vectors, the proposed method
cannot be applied directly. Therefore the zero vectors were
first replaced with random vectors. Figure 3 shows the two
images of the sequence. Figure 4 shows the optical flow
computed by block matching. Figure 5 shows the segmenta-
tion result withλ equal to 0.01.

6.4.2 Translation on a translating background

The sequence is the same as the sequence of section 6.4.1
except that the background was also translated by two pixels
in the horizontal direction. Figure 6 shows the two images
of the sequence. Figure 7 shows the optical flow computed

Figure 3: The two images of the sequence with a still back-
ground

Figure 4: Optical flow (still background)

by block matching. Figure 8 shows the segmentation result
with λ equal to 0.1.

6.4.3 Sponge translation on a still background

Figure 9 shows the two images of the sequence. Figure 10
shows the optical flow computed by block matching. Fig-
ure 11 shows the segmentation result withλ equal to 0.05.

Initial contour Intermediate contour Final contour

Figure 5: From initial contour to final contour (still back-
ground)



Figure 6: The two images of the sequence with a translating
background

Figure 7: Optical flow (translating background)

6.5 Discussion

Both the dominant direction computation and our energy
definition involve a normalized vector field. This has two
disadvantages:(i) A vector with a small norm having a ran-
dom direction within a coherent region (a “noise” vector) has
as much influence on the dominant direction computation as
a vector with a large norm having a coherent direction;(ii) It
is not possible to make the distinction between a translating
object and the background if the background is translating in
the same direction as the object (even if the translations have
very different amplitudes).
Another limitation of the proposed method is that it depends

Initial contour Intermediate contour Final contour

Figure 8: From initial contour to final contour (translating
background)

Figure 9: The two images of the sequence

Figure 10: Optical flow

on an optical flow estimation. Therefore an homogeneous
object (the optical flow inside the object is equal to zero)
cannot be segmented.
Simultaneous segmentation of several translating objects is
possible even if their translations have different directions.
However there must be one active contour per direction
(therefore it is equivalent to segmenting each object one af-
ter the other) because the common dominant direction of two
objects with different translations do not make sense.
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Initial contour Intermediate contour Final contour

Figure 11: From initial contour to final contour



Appendix

The purpose is to prove proposition 2.
We use (18) and (35), (36), (37) to compute

a′ = −
∫

∂Ω(τ)

w2
1(v ·N)ds (49)

b′ = −
∫

∂Ω(τ)

w2
2(v ·N)ds (50)

c′ = −
∫

∂Ω(τ)

w1w2(v ·N)ds (51)

Then (38) is equal to (a similar calculation can be done us-
ing (40))

w′dom =




− 1
2

[
(λmax − a)2 + c2

]− 3
2 ×

2 [(λmax − a)(λmax − a)′ + cc′] c

+c′
[
(λmax − a)2 + c2

]− 1
2

− 1
2

[
(λmax − a)2 + c2

]− 3
2 ×

2 [(λmax − a)(λmax − a)′ + cc′] (λmax − a)

+(λmax − a)′
[
(λmax − a)2 + c2

]− 1
2




(52)
Using (39) we have

λmax − a =
b− a

2
+

√
(
b− a

2
)2 + c2 (53)

Differentiating (53) using (49), (50), and (51) we obtain

(λmax − a)′ =
∫

∂Ω(τ)

(
w2

1 − w2
2

2
)(v ·N)ds

+
1√

( b−a
2 )2 + c2

[
b− a

2
b′ − a′

2
+ cc′

]

(54)

which can be rewritten as

(λmax − a)′ =
∫

∂Ω(τ)

((
w2

1 − w2
2

2

)


1 +

b−a
2√

( b−a
2 )2 + c2




− c√
( b−a

2 )2 + c2
w1w2

)
(v ·N)ds

(55)

Combining (51), (52), and (55) we can conclude that there
existsα(m,∂Ω(τ)) andβ(m,∂Ω(τ)) such that

w′dom =

[ ∫
∂Ω(τ)

α(v ·N)ds∫
∂Ω(τ)

β(v ·N)ds

]
(56)
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