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Abstract

The extraction of significant cardiac functional parameters
such as ejection fraction and wall thickening depends on re-
liable detection of myocardial contours. However, the man-
ual contour tracing process is cumbersome, time-consuming,
and operator-dependent. These limitations have motivated
the development of automated segmentation techniques for
accurate and reproducible left ventricular (LV) segmenta-
tion. In this paper, we present our automatic LV myocardial
surface extraction method, which combines a fuzzy affinity-
based region segmentation approach with energy minimizing
dynamic programming, and the elastically adaptive physics-
based deformable model framework. We have applied this
technique on MR data from eight asymptomatic volunteers
with very encouraging qualitative and quantitative results.

1 Introduction

Cardiovascular disease (CVD) is the primary cause of death
in the United States for the past eight decades [1]. In the most
common form, CVD causes reduced blood flow to the my-
ocardium causing anomalous cardiac function. Thus, clin-
ical diagnosis, treatment, and follow-up of CVD requires
accurate spatio-temporal visualization of the entire heart.
Recent advances in Cardiac Magnetic Resonance Imaging
(CMRI) make it possible to take the 3D images of the heart in
desirable orientations over the entire cardiac cycle describing
the internal structure and motion of the heart. Thus, CMR is
ideal for the baseline assessment, as well as for follow up
of clinical progression and for monitoring the effect of treat-
ment in patients with heart failure [3]. CMR’s 3D approach
for non-symmetric ventricles and it’s superior image quality
make it preferred technique for volume and ejection fraction
(EF) estimation in heart failure patients [2]. The high reso-
lution multi-phase 3D cardiac examinations produce a large
amount of data (typically 200 to 300 images per patient) to
be analyzed for a comprehensive patient study. In order to
diagnose a cardiac function abnormality, physicians are in-
terested in delineating the endocardium and the epicardium.
This enables them to measure the percent of blood being

pumped out by the LV per heart beat (EF) and the wall thick-
ening properties over the cardiac cycle, which are good clin-
ical indicators of the global and local cardiac function. How-
ever, interpreting and analyzing the large amount of data to
derive clinically useful information is quite a formidable task
for any cardiologist. Automatic extraction of useful physio-
logical information from 4D cardiac image data, to analyze
cardiac morphology and function, requires high level image
segmentation techniques. Most of the research towards auto-
mated segmentation of CMRI data mainly consists of three
major approaches: 1) positioning of the boundary near the
strongest local image features using the principle of energy
minimization [15, 9, 19, 6] (these methods rely on user in-
teraction for initialization of the shape and location of the
object’s boundaries), 2) three-dimensional analysis for func-
tional analysis of cardiac images [5, 20, 10, 16, 13], and 3)
incorporation of a priori knowledge regarding shape and dy-
namics of the heart for image segmentation like AAM [12]
and AAMM [21] (these methods could be biased towards a
“too normal” pattern of the LV and its dynamics). Research
is ongoing on developing hybrid segmentation methods for
the extraction of LV endocardial boundary surfaces by com-
bining edge, region and shape information [14, 8, 7, 17].

Recent developments in cine imaging using steady state
free precision sequences - balanced fast field echo (bFFE)
- provide high intrinsic myocardial to blood pool contrast.
However, these CMR images are inherently fuzzy in nature
due to heart dynamics and partial voluming effect. The endo-
cardium is composed of trabeculae carneae, which are pro-
jections of myocardial muscle into the LV cavity forming the
endocardial boundary. The partial voluming effect causes
the intensity level near the endocardium to be in between
that of myocardium and the blood pool. This effect is pro-
nounced near the apex of the heart, where trabeculae carneae
are numerous and densely packed. Also the papillary mus-
cles, which are conical projections of the myocardial mus-
cle, have the same intensity response as the myocardium (in
CMR). Thus, to delineate the papillary muscles attached to
the LV endocardium and to obtain an accurate endocardial
boundary one needs to use a priori information. Hence, the
high contrast between the myocardium and the blood pool
alone is not sufficient for automatic segmentation of the my-



ocardium. Similarly, poor intensity contrast between the my-
ocardium and air-filled lungs makes the automatic epicardial
boundary detection a significant challenge. In addition, there
is a drop in the blood intensity from the base to the apex of
the heart due to coil intensity falloff.

As mentioned above, the automation of the LV segmenta-
tion includes challenges related to the automatic localization
of the LV in CMR scans, the inherently fuzzy nature of the
MR scan due to heart dynamics, and the presence of the pap-
illary muscles inside the LV cavity. We have developed a
new segmentation technique for the myocardial segmenta-
tion of the bFFE short axis cardiac CMR data, which over-
comes these challenges successfully. Our method uses a re-
gion dynamics map along with Hough transform to automat-
ically localize the LV. Then, the intensity-based fuzzy affin-
ity map is combined with the energy minimizing dynamic-
programming approach to automatically extract the myocar-
dial contours. Finally, an elastically adaptive physics-based
deformable model provides the 3D myocardial surface.

Conceptually our approach towards automatic myocardial
segmentation is very closely related to hybrid segmentation
approach followed in [14, 8, 7]. Our main contributions are
the following: 1) automatic estimation of the seed region of
the LV using a region dynamics map; 2) automatic robust LV
seed propagation using intensity-based fuzzy affinities and
adaptive fuzzy connectedness; 3) extension of cost function
to include energy terms from intensity-based fuzzy affinity
and radial continuity; and 4) development of a new class
of forces derived from intensity gradients, fuzzy-affinities
and dynamic programming-based contour data for elasti-
cally adaptive physics-based deformable model. Thus, our
method doesn’t require user interaction at both the LV iden-
tification and the myocardial segmentation phases.

Our method for the automatic LV myocardial boundary
detection has the following features: 1) it provides spatially
and temporally continuous contours; 2) it is patient-specific;
3) it is non-invasive; 4) it doesn’t require any external con-
trast enhancement agents. We have compared the results of
our method against the results obtained with manual delin-
eation performed by experienced radiologists (St. Luke’s
Episcopal Hospital) with very encouraging results. These
initial results demonstrate the feasibility of using our au-
tomatic LV myocardial segmentation to compute the EF in
clinical practice.

2 Method

In this section, we present our automatic LV myocardial sur-
face extraction method, which combines the “fuzzy affinity”-
based segmentation approach with energy minimizing dy-
namic programming and the elastically adaptive physics-
based deformable model framework. Specifically, we ac-
quire bFFE cine images of the heart. Then, a region dy-
namics map, which is a difference of the near end-diastolic
phases’ basal slices, is used to automatically localize the
heart in the data. The detection of circular regions using

the Hough transform in the region dynamics map is used to
estimate the location of the LV in the basal slice. The ini-
tial estimation of the LV region provides intensity statistics
for the LV blood and myocardium. This LV localization at
basal slice is then propagated along the entire end-diastolic
volume and along time with the help of the fuzzy affinity-
based LV blood classification and adaptive fuzzy connect-
edness. The automatically localized LV centroids serve as
origins to transform each slice of CMR data into polar co-
ordinates. The myocardium is then segmented in the basal
slice, in polar coordinates, using intensity-based fuzzy affini-
ties. Radial shape constraints are imposed using a dynamic
programming approach to detect the myocardial contours.
Next, the estimated mean endo- and epicardial radii and my-
ocardium intensity statistics are used to propagate the my-
ocardial segmentation along the entire end-diastolic volume.
Similarly, we propagate the myocardial contours along the
time axis to segment the entire cine data. Finally, these my-
ocardial boundaries are used to initialize an elastically adap-
tive deformable model of the LV. The remainder of this sec-
tion describes our technique in more detail.

2.1 Data Acquisition

Studies were performed on the eight subjects (6m/2f) with
normal sinus rhythm, with consent. Volunteers were imaged
on a 1.5T commercial scanner (Philips Gyroscan NT-Intera)
using Vector-cardiographic gating. The bFFE short-axis se-
quence was acquired to cover the entire LV. The acquisi-
tion parameters for a cine bFFE sequence were, TE/TR/flip:
3.2/1.6/55 deg; 38-40 msec temporal resolution. Figs. 1(a,b)
depict the data from the eighth bFFE slice of phase-1 and
phase-3 (Subject-6).

2.2 LV Localization using
a Region Dynamics Map

The cine bFFE sequence allows motion detection within tho-
racic cavity, and the heart being most dynamic organ can be
detected based on its motion. Furthermore, circularity of the
LV can be utilized to detect the LV in CMR scan. To that end,
we take the pixel by pixel intensity difference between the
same basal slice of the LV at two different near end-diastolic
phases to construct a region dynamics map of the thoracic
cavity and then perform edge detection (Fig. 1(c)).

(a) (b) (c) (d)

Figure 1: (a,b) Slice 8 from phase-1 and 3 (Subject-6). (c)
Region dynamics map a-b. (d) Detected circle for the esti-
mation of the LV region.



The absence of papillary muscles attached to the endo-
cardium in the basal slice results in a circular LV boundary.
Other circular structures in the thoracic cavity are suppressed
in a difference image due to their static nature. Thus, we ob-
serve a prominent circular region belonging to the LV in the
thoracic cavity. Application of Hough transform easily de-
tects the circle belonging to the LV boundaries (Fig. 1(d)).
The center of this LV circle provides us the initial seed point
for the LV and also for automatic cropping of CMR data to
retain the area related to LV alone. The three primary tis-
sues present in the cropped scans are the bright blood, gray
myocardium, and dark air-filled lungs. Therefore, we use
a greedy EM algorithm for Gaussian mixture learning [23]
to fit a mixture of five Gaussians to the histogram (three for
each tissue type, one for the partial voluming between blood
and myocardium, and one for the partial voluming between
myocardium and air). Thus, the local region just around the
LV circle provides the initial sample statistics for the LV
blood and the myocardium (Fig. 2).

(a) (b) (c) (d)

Figure 2: (a) Slice 8 (Subject-5). (b) Gaussians for the
myocardium and the blood. (c,d) Classified blood and my-
ocardium.

This seed point and intensity statistics are then used for the
initialization of entire LV cavity at the end-diastolic phase
and also along all the phases.

2.3 Automatic Detection of
Center Axis of the LV

Once the LV is localized in the data, we use the statistical
information regarding intensity of the LV blood to classify
parts of the data having similar intensity statistics. The fuzzy
nature of the CMR data is accommodated for, by using fuzzy
membership functions for the intensity-based classification
purposes [22]. The membership function is based on the de-
gree of intensity space adjacency globally and it classifies
objects with similar intensities in the image data. The def-
inition for a fuzzy affinity assumes intensity homogeneity
function to be Gaussian in nature:

µκ(c, d) = e−
1
2 [

1
2 (f(c)+f(d))−m1

s1
]2 ,

wherem1 ands1 are the mean and standard deviation of
the intensity of the target region.

The CMR data is a stack of planes parallel to each other.
Although scattered over different slices, this data is con-
nected to each other in terms of 3D spatial connectivity and
normalized intensity similarity. We combine the intensity-
based global pixel affinities with a priori knowledge regard-

ing the slice by slice (or phase by phase) intensity, shape
and size variations of the LV to detect the center axis of the
LV. The basal LV localization is propagated along the entire
volume by minimizing a cost function. The cost function
is comprised of slice (or phase) specific intensity statistics,
distance of the LV centroid to the previous slice (or phase)
seed point, and the size variation compared to the size in the
previous slice (or phase). The center axis’ curvature infor-
mation can be used as a tie breaker, if required. The cost
function can be defined as follows:

µS(p, n) = β1µI(p, n) + β2µD(p, n) + β3µZ(p, n),
whereµS(p, n) indicates overall cost of given region being
a target region,µI(p, n), µD(p, n), µZ(p, n), represent the
cost due to intensity, distance from previous centroid and
size of the region,p indicates predicted value for the tar-
get region in the current slice based on previous slices’ (or
phase’s) statistics, andn is the corresponding current value
for detected regions in current slice.

Due to coil intensity falloff, the average intensity of the
LV blood pool drops off as we move towards the apex of
the heart, making simple spatial 3D connectedness ineffec-
tive. In order to accommodate for the decreasing intensity,
decreasing LV size and the higher degree of curvature of
the LV near the apex, we pre-compute seeds for LV for ev-
ery slice using the above cost function and then perform LV
blood segmentation on each slice individually. The intensity
falloff is tackled by updating the intensity statistics for ev-
ery slice. The LV blood intensity statistics from the basal
slice is used to classify the blood pool regions in the next
slice using intensity-based global pixel affinities. The new
seed in the next slice is then identified using the cost func-
tion. The LV blood pool intensity statistics are updated based
on the new LV blood pool region, which also provides the
size estimate of the LV. Then this seed, size, and intensity
statistics are used in the next slice and similarly we get the
new seed, size, and intensity statistics. Once we have inten-
sity statistics, size, and seed for the previous and the current
slice we can predict the seed, size, and the statistics for the
next slice. In some cases, due to inconsistent breath hold,
intensity prediction is not accurate enough. In those cases
we correct it with estimated Gaussian for the blood in the
next slice. However, EM-based blood intensity estimation
is not accurate in basal slices as flow artifacts in LV result
in two different Gaussians for the LV blood. The predic-
tion is followed by the computation of the new cost function
based on predicted and current values, thus propagating the
seed through the end-diastolic LV volume. These LV regions
are further refined using adaptive fuzzy connectedness-based
image segmentation [18] to get better LV blood classification
and hence better estimation of centroids.

This approach helps us overcome the challenges posed in
automatically detecting LV blood pool in the entire volume.
The advantage of this method is that even though the seed
does not fall in the LV region due to high curvature, the com-
putation of affinity over the entire image along with the cost
function provides an estimate of where the LV is located in



(a)

(b)

Figure 3: (a) End-diastolic slices (Subject-6) overlaid with
automatically propagated LV blood pool regions. (b) LV
blood propagation from the end-diastolic to the end-systolic
phase (Subject-6).

the next slice. Fig. 3 depicts results of LV propagation using
this method along the LV volume and along time.

2.4 Segmentation of the Myocardium

All the end-diastolic bFFE slices are then converted into po-
lar coordinates using the previously identified LV centroids
as the center of origin (Fig. 4 (a)). The intensity-based
fuzzy affinities for myocardium are computed in polar coor-
dinates using myocardium intensity statistics obtained from
estimated Gaussian for myocardium (Fig. 4 (b)). The fuzzy
membership helps classify pixels on the endocardial bound-
ary affected by partial voluming.

(a) (b) (c) (d) (e)

Figure 4: Contour extraction in polar coordinates. (a) Slice 8
(Subject-6) polar image, (b) myocardial affinity map, (c) ex-
tracted endocardial contour, (d) binarized myocardial affinity
map, and (e) extracted epicardial contour.

A gradient operator detecting a dark region above a bright
region is applied to these affinity images. Thus, we obtain
very good endocardial boundaries overcoming the presence
of papillary muscles to large extent (Fig. 4(c)). However, the
estimates for epicardial boundaries are not satisfactory due
to very low intensity contrast between the myocardium and
the air in the lungs. We overcome this problem by first bina-

rizing the myocardium affinity image (Fig. 4(d)) and then
detecting bright over dark edges to extract the epicardial
boundary (Fig. 4(e)). In addition, to obtain spatially continu-
ous endo- and epicardial contours we add a spatial continuity
constraint in polar coordinates.

2.5 Contour Smoothing Through Dynamic
Programming

The segmentation of CMR data typically poses two chal-
lenges: the determination of the tissue boundary, and the
delineation of the LV boundary. The partial voluming ef-
fect blurs the intensity distinction between the neighboring
tissue types. Thus, separability of tissues based on inten-
sity statistics alone is not accurate. In addition, the neigh-
boring tissues though of the same type need not belong to
the same anatomical structures (e.g., trabeculae carneae and
papillary muscles projecting out of the myocardium). Thus,
it is not possible to delineate the myocardium based on the
tissue border detection alone. The above mentioned chal-
lenges underline the need for incorporating a priori informa-
tion regarding the geometry of the LV to the intensity-based
segmentation.

The gradients of the myocardium affinity image provide
boundaries located almost in the horizontal direction in the
polar coordinates. The optimal myocardial contour is the
contour which follows the high myocardial affinity and high
myocardial affinity gradient closely, while maintaining a
high degree of spatial continuity in the tangent direction.
The dynamic programming approach is used to detect the
horizontal myocardial edges by finding the optimal path be-
tween the two borders of the polar affinity image. Any pos-
sible boundary can be represented as a polyline withN ver-
tices(P1, P2, P3, ..., PN ) ∈ P . For a polyline to be a valid
boundary, it should have minimum cost for the cost function
Csum =

∑N
j=1 C(Pj). The cost function for the polar my-

ocardial affinity image is expressed as:
C(Pj) = −ωiaCia(Pj) − ωgaCga(Pj) − ωrCr(Pj−1, Pj),
whereωia, ωga, ωr are the weights for the myocardial affin-
ity valueCia, the myocardial affinity gradientCga, and the
radial distance between pixels on the polyline in adjacent
columnsCr. The affinity value term forces the boundary to
follow the homogeneous path through the pixels with high
myocardial affinity. The affinity gradient term is responsible
for moving the boundary towards the points having strong
myocardial affinity gradient in a direction perpendicular to
the boundary. The continuity term restricts the boundary
from taking big steps in radial direction between the adjacent
pixels along the horizontal boundary. This term imposes the
spatial continuity constraint, smoothing out the boundary in
the horizonal direction. The continuity term can be imple-
mented either as the linear or the second order continuity
term. The second order term allows smoother transitions of
the boundary in the vertical direction. The boundary detec-
tion by dynamic programming is computationally very effi-
cient since there is no need to do the exhaustive search for



the optimal solution. The weights of different terms in the
cost function are trained for particular application-specific
features.

(a)

(b)

Figure 5: (a) Extracted myocardial contours using dynamic
programming. (b) Projections of the fitted elastically adap-
tive deformable model for the end-diastolic phase (Subject-
6).

This results in spatially continuous endo- and epicardial
boundaries (Fig. 4 (c,e)). Fig. 5 (a) depicts the results ob-
tained for the myocardial boundaries mapped back into Eu-
clidean coordinate system.

2.6 Fitting of Elastically Adaptive
Deformable Model

Once 2D contours are detected in each slice, we employ
3D energy functionals derived from intensity, fuzzy affinity,
contour data, and 3D spatial continuity to obtain a minimal
energy surface pertaining to the myocardium. To extract and
reconstruct the myocardial surface from the 3D data, we em-
ploy an elastically adaptive physics-based deformable sur-
face model [11, 17]. The domain-specific prior knowledge
of the myocardial boundary is incorporated to optimize the
fitting of the deformable model. The elasticity parameters
of the deformable model are changed adaptively, depending
on the energy function values, allowing us to overcome 3D
discontinuities. The 3D deformable model of the LV and the
myocardium is initialized using the LV centroids and mean
endo- and epicardial radii information already available. The
model overcomes 2D discontinuities like contours not clos-
ing properly and dents in the contour due to papillary mus-
cles (Fig. 5 (b)). In addition, the model overrides the 3D
discontinuities that might be present in endo- and epicardial
boundaries mostly due to the papillary muscles, the low my-

ocardium to lungs contrast, and the high curvature of LV near
apex.

Figure 6: Extracted myocardial contours for the central slice
from the end-diastolic to the end-systolic phase (Subject-6).

The myocardial contours extracted at the end-diastolic
phase are then propagated along time (Fig. 6) till the end-
systolic phase (Fig. 7).

3 Results and Evaluation

In this paper, we present the validation of the 2D myocardial
contours before fitting the deformable model as the accuracy
of this data governs the final myocardial segmentation. We
compared these contours against the manually traced endo-
and epicardial boundaries. Comparisons were carried out for
only those slices in which automatically generated contours
were present.

The manual tracing by two experienced radiologists from
a St. Luke’s Episcopal hospital for the endocardial and epi-
cardial contours on each slice of the LV at the end-diastolic
and end-systolic phase using Easy Vision (Philips Medical
Systems, Release 5.0) served as the independent standard. A
separate post-processing workstation was used to extract en-
docardial and epicardial contours and compute the EF using
our algorithm.

There are two main parts in our validation process: 1) rep-
resentation of errors in an anatomy-centered frame of refer-
ence, and 2) geometric error computations.

Anatomy-Centered Frame of Reference: We use a 17-
segment LV model for reporting the distribution of different
local geometric errors for the myocardial contour extraction
in short-axis images [4].

In this model, the LV is divided into equal thirds perpen-
dicular to the long axis of the heart generating basal, mid-
cavity, and apical slices (Fig. 8). The basal third starts from
the area extending from the mitral annulus to the tips of the
papillary muscles at end-diastole. The mid-cavity region in-
cludes the entire length of the papillary muscles. The apical
section is the area beyond the papillary muscles to apex of
the LV cavity. The true apex or apical cap is the area (seg-
ment 17) of myocardium beyond the end of the LV cavity.
Our algorithm does not segment the myocardium beyond the
LV cavity, so we restrict our error reports only to the 16 seg-
ments. In addition, only slices containing myocardium in all
3600 are selected (due to the complex mixing of myocardium



(a)

(b)

(c)

Figure 7: (a) End-systolic slices (Subject-6) overlaid with
automatically propagated LV blood pool regions. (b) Ex-
tracted myocardial contours by dynamic programming. (c)
Projection of the fitted elastically adaptive deformable model
for the end-systolic phase (Subject-6).

and connective tissue at the base of the heart, especially the
septum). The basal, mid-cavity, and apical segments define
the location along the long axis of the ventricle from the
apex to the base. Concerning the circumferential location,
the basal and mid-cavity slices are divided into six segments.
The anterior and posterior inter-ventricular grooves serve as
the landmarks for determining the six segments. Similarly,
the apical slices are partitioned into four sectors (the sep-
tal sector and three equal subsectors for the lateral sector).
These segments are transformed into a bull’s-eye map, which
maps the basal slices as the outer ring and the apical slices
as the innermost ring.

Geometric Error Indices: To quantitatively assess the
accuracy of the automatically extracted contours with respect
to manual contours we use following indices.

A. Border positioning errors: The automatically de-
tected contours were quantitatively assessed for the position-
ing error in terms of radial distance of each point from the
corresponding point on the manually traced contour (Fig. 9).

Figure 8: The 17 segment LV model [4].

The error magnitude effectively captures the effect of error
on the LV volume, EF, and WT computations. Epicardial
contour detection is more difficult at the lateral portion of
the myocardium in the apical and the mid-ventricular slices.

B. Area Measurements: The error in area computation
was assessed using regression analysis and Bland-Altman
analysis for all the slices from all subjects. Fig. 10 depicts a
very good correlation between the endocardial areas traced
manually and the ones extracted by our method. The bias and
the limits of agreement are comparable to the inter-observer
variability inherent in manual methods.

C. Wall thickness: The wall thickness (WT) is computed
as the radial distance between the endo- and epicardial con-
tours. Figs. 11(a,b) depict the mean and standard deviation
of error in WT computation with respect to the manual con-
tours. The WT error is higher at the lateral side in the apical
and the mid-ventricular slices.

D. Ejection Fraction: The agreement between the EF
computation by the automatic and the manual method was
assessed using Bland and Altman’s method. The EF compu-
tations are carried out only for the slices in which automat-
ically generated contours were present. The EF computed
using these two methods are in good agreement. Specifi-
cally,

Reader 1: mean bias in EF (in %): +4.4 +/- 5.7; limits of
agreement (+/- 2SD): -7.0 to +15.8 (Fig. 12(a)).

Reader 2: mean bias in EF (in %): 0.63 +/- 4.7; limits of
agreement (+/- 2SD): -8.8 to 10.1 (Fig. 12(b)).

The inter-observer variability between the two readers is
as follows: mean bias in EF (in %): -3.8 +/- 3.4; limits of
agreement (+/- 2SD): 3.2 to -10.7 (Fig. 12(c)).

Our preliminary results indicate that our automatic algo-
rithm estimates the EF reliably, and the bias and the limits
of agreement are comparable to inter-observer variability in-
herent in manual methods.



(a) (b)

(c) (d)

(e) (f)

Figure 9: Mean and standard deviation of signed radial dis-
tance error for the (a,b) endocardial and the (c,d) epicardial
contours. Unsigned error for the (e) endocardial and (f) epi-
cardial contours.

4 Discussion and Conclusion

The trabeculae carneae near the apex and the dorsal wall, and
the two principal papillary muscles near the sternocostal wall
and the diaphragmatic wall, projecting out of the myocardial
wall, pose challenges to the automatic extraction of myocar-
dial contours. The lateral epicardial boundary is blurred due
to very low contrast between the myocardium and the air in
the lungs. The effect of these factors on the automatic con-
tour extraction are depicted in (Fig. 9). Observing these fig-
ures, the reader can easily infer that the endocardial bound-
ary extraction successfully overcomes the challenges posed
by the papillary muscles. However, the epicardial boundary
detection suffers at the myocardium and lung boundary, thus
introducing error in the WT estimates for those segments.

The qualitative and quantitative results obtained from our
algorithm are very encouraging. The results indicate the re-
liability of the estimates of the EF. The bias and the limits
of agreement are comparable to inter-observer variability in-
herent in manual methods. Further comprehensive clinical
validation using data from thirty cases is currently underway.

Figure 10: Linear regression and Bland-Altman plots for en-
docardial area measurements.
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